
Commons Pool and DBCP

Phil Steitz
Apachecon US, 2010

Agenda
• Pool and DBCP at 50,000 ft
• What configuration parameters mean
• Handling different kinds of workloads
• Development roadmap
• Getting involved

2

Pool and DBCP
• Born around the same time as Commons itself (spring, 2001)
• DBCP provides the database connection pool for Tomcat
• Pool provides the underlying object pool for DBCP

– GenericObjectPool Connections
– GenericKeyedObjectPool Statements

• Current latest release versions (as of November, 2010)
– Commons Pool 1.5.5
– Commons DBCP 1.3 (JDBC 3) and DBCP 1.4 (JDBC 4)

3

Pool Features
• Simple object pool and instance factory

interfaces (being “generified” in 2.0)
• Multiple pool implementations
• Most widely used impl is GenericObjectPool

– really works as idle instance pool
– configurable maintenance thread
– maxActive, maxIdle, minIdle control
– maxWait, whenExhaustedAction configurable
– instance validation on borrow, return, while idle
– LIFO / FIFO behavior configurable

4

Pool Features (cont.)
• StackObjectPool

– FIFO behavior, simple instance stack
– No limit to instances in circulation

• SoftReferenceObjectPool
– Pools soft references
– No limit to instances in circulation

• KeyedObjectPools
– GenericKeyedObjectPool
– StackKeyedObjectPool

• PoolUtils

5

DBCP Features
• Pool-backed DataSource implementations

– BasicDataSource
– PoolingDataSource
– BasicManagedDataSource
– SharedPoolDataSource

• Statement pooling

• Abandoned connection cleanup
• Connection validation

• “Eviction” of connections idle too long in the pool

6

DBCP Features (cont)
• Support for JDBC 3 (JDK 1.4-1.5) and JDBC 4

(JDK 1.6)
– DBCP 1.3.x implements JDBC 3
– DBCP 1.4.x implements JDBC 4
– Incompatibilities between JDBC 3 and 4 APIs have

forced split in 1.x version sequence

• Creates JDBC connections using Driver-
DriverManager- and DataSource-based physical
ConnectionFactories

• Can expose connection pool via a Driver that can
be registered and accessed using DriverManager

7

GenericObjectPool Configuration

8

Property Meaning Default Notes

maxActive Maximum number of object instances in
circulation (idle or checked out) 8 Negative means unlimited

maxIdle The maximum number of instances that
can be idle in the pool 8

Negative means unlimited

Enforced when instances
are returned to the pool

maxWait
The maximum amount of time that
borrowObject will wait for an instance to
become available for checkout

Unlimited

Negative means unlimited

Only meaningful if
exhaustedAction is
BLOCK

minIdle The number of idle instances that the
pool will try to keep available 0

Enforced only when pool
maintenance thread runs

Limited by maxActive

9

Property Meaning Default Notes

whenExhaustedAction
Action to take when no
instance is available to
borrow

BLOCK BLOCK enables
maxWait

timeBetweenEvictionRunsMillis
Time between pool
maintenance runs in
milliseconds

never runs
idle instance eviction,
minIdle, testWhileIdle
require this > 0

minEvictableIdleTimeMillis

The number of milliseconds
that an instance can sit idle in
the pool before being eligible
to be destroyed

30 minutes

Eviction only happens
when the maintenance
thread runs and visits
the instance

softMinEvictableIdleTimeMillis

Like minEvictableIdleTime
but with the additional
requirement that there are at
least minIdle instances in the
pool at idle timeout

0

Enforced only when
pool maintenance
thread runs

Superseded by
minEvictableIdleTime

numTestsPerEvictionRun
The maximum number of idle
instances that the
maintenance thread will visit
when it runs

3 Cycles through the
pool across runs

GenericObjectPool Configuration (cont.)

10

Property Meaning Default Notes

testOnBorrow
Use the object factory’s validate
method to test instances retrieved
from the pool

FALSE
Failing instances are
destroyed; borrow is retried
until pool is exhausted

testOnReturn Validate instances before returning
them to the pool FALSE Failing instances are

destroyed

testWhileIdle
Test idle instances visited by the
pool maintenance thread and
destroy any that fail validation

FALSE

Only meaningful if pool
maintenance is enabled
(i.e.
timeBetweenEvictionRuns
is positive)

lifo Pool behaves as a LIFO queue TRUE FALSE means pool
behaves as a LIFO queue

GenericObjectPool Configuration (cont.)

Simple Example

11

Instance being validated by maintenance thread
testWhileIdle = true, timeBetweenEvictionRuns > 0

numIdle = 6
maxIdle >= 6

Threads using
borrowed
instances

numActive = 3

numActive = 3
numIdle = 6

means
maxActive >= 9

Situations to Avoid
maxIdle << maxActive
If active count regularly grows to near maxActive, setting maxIdle too
small will result in lots of object churn (destroy on return, create on
demand)

12

maxIdle too close to minIdle with frequent
maintenance
Results in object churn as the pool struggles to keep the idle instance
count in a narrow range

Too frequent maintenance
Maintenance thread can contend with client threads for pool and
instance access

Poorly performing factory methods
Especially applies to validation methods if testOnBorrow, testOnReturn
and / or testWhileIdle are enabled

BasicDataSource Configuration

13

Property Meaning Notes

maxActive, maxIdle, minIdle,
maxWait, testOnBorrow,
testOnReturn, testWhileIdle,
timeBetweenEvictionRunsMillis,
numTestsPerEvictionRun

Same meanings and defaults
as pool

whenExhaustedAction is
BLOCK

initialSize
Number of connections created
and placed into the pool on
initialization

Cannot exceed the maxActive
pool property

defaultAutoCommit
defaultCatalog
defaultReadOnly
defaultTransactionIsolation
connectionProperties

properties of connections
provided by this DataSource

Clients can change these
properties on checked out
connections; but the value is
reset to default on passivation

driverClassName
fully qualified class name of
JDBC Driver used to manage
physical connections

Must be available on the
classpath at runtime

url
username
password

JDBC connection parameters
shared by all connections in the
pool

If set, username and password
supersede values in
connectionProperties

BasicDataSource Configuration (cont.)

14

Property Meaning Notes

validationQuery SQL Query used to validate
connections

Validation succeeds iff this
query returns at least one row;
testOnBorrow, testOnReturn,
testWhileIdle are ignored if
validationQuery is nullvalidationQueryTimeout Timeout for validation queries

Validation succeeds iff this
query returns at least one row;
testOnBorrow, testOnReturn,
testWhileIdle are ignored if
validationQuery is null

connectInitSQLs
Initialization SQL executed once
when a connection is first
created

If any of the statements in the
list throw exceptions, the
connection is destroyed

poolPreparedStatements
true means a prepared statement
pool is created for each
connection

Pooling PreparedStatements
may keep their cursors open in
the database, causing a
connection to run out of cursors

maxOpenPreparedStatements
maximum number of prepared
statements that can be pooled
per connection

Default is unlimited

BasicDataSource Configuration (cont.)

15

Property Meaning Notes

removeAbandoned
True means the pool will try to
identify and remove “abandoned”
connections

Abandoned connection removal
is triggered when a connection
is requested and
numIdle < 2 and
numActive > maxActive - 3

Connections are considered
abandoned if they have not
been used (via JDBC
operations) in more than
removeAbandonedTimeout
seconds

logAbandoned
True means stack traces for the
code opening “abandoned”
connections will be logged

Abandoned connection removal
is triggered when a connection
is requested and
numIdle < 2 and
numActive > maxActive - 3

Connections are considered
abandoned if they have not
been used (via JDBC
operations) in more than
removeAbandonedTimeout
seconds

removeAbandonedTimeout
The amount of time between
uses of a connection before it is
considered “abandoned.”

Default value is 300 seconds;
ignored if removeAbandoned is
false

logWriter PrintWriter used to log
abandoned connection info

Configuration Example
DBCP Using BasicDataSource
Application code “leaks” connections on some exception paths
Database times out and closes connections after 60 minutes of inactivity
Load varies from non-existent (off hours) to 100 hits / second spikes
during peak; ramp begins around 6AM local time, peaking around 11AM,
diminishing around 2-3PM
Peak load can be handled (sustained) with 100 database connections

16

Configuration Considerations
Eliminating connection leaks is much better than relying on abandoned
connection cleanup. Even with this configured, spikes in “leaky”
execution paths will cause connection churn and pool exhaustion.
Setting testOnBorrow will ensure connections timed out on the server
side are not returned to clients; testWhileIdle will remove these before
they are checked out (and also keep them alive if frequent enough)

Configuration Example (cont.)
Simplest option
Assumptions:

• Connection leaks can be removed
• You can afford to allocate 100 database connections to the app

17

Configuration Settings:
maxActive = 100
maxIdle = 100
testOnBorrow = true
testOnReturn = false
testWhileIdle = false
removeAbandoned = false
poolPreparedStatements = false
timeBetweenEvictionRunsMillis = -1

Set maxIdle to 50 to
reduce connections
reserved - cost is
connection churn

validate connections
when borrowed

If connection leaks cannot
be closed, set
removeAbandoned = true
and configure timeout to
be greater than longest
running query

Set to true and turn on
maintenance to keep idle
connections alive in the pool

Configuration Example (cont.)
If leaks can’t be closed (or are FIX_LATER)
• Estimate peak incidence rate (how many per unit time)
• Estimate longest running query time
• If maxActive / (peak incidence rate) < (max query time) you are SOL
• In fact, you need >> above to not be SOL
• If not SOL, configuring abandoned connection cleanup can help

18

Configuration Settings:

removeAbandoned = true
removeAbandonedTimeout > longest running query time (in seconds)

NOTE:

Abandoned connection cleanup must be triggered by a getConnection()
request

➡ All threads can block until a new thread arrives to trigger cleanup
(JIRA: DBCP-260)

Configuration Example (cont.)
Handling server-side connection timeouts
• Nothing you can do if clients check out and hold connections beyond

server-side timeout (other than close them as abandoned)
• Three ways to handle preventing stale connections from being

returned by getConnection()

1. Set testOnBorrow = true
2. Enable pool maintenance, set minEvictableIdleTimeMillis < server

side timeout (in ms)
3. Enable pool maintenance, set testWhileIdle = true and ensure

connections are visited frequently enough to avoid timeout
• Practical considerations
‣ Once physical connections are closed on the server side,

validation query may hang
‣ When using options 2 or 3 above, make sure to set

numTestsPerEvictionRun and timeBetweenEvictionRunsMillis so
that connections are visited frequently enough

19

Conserving Pooled Resources
Trimming idle instance pool when load subsides
Two ways to reduce “idleness”

1. Set maxIdle < maxActive
2. Enable pool maintenance, set minEvictableIdleTimeMillis > 0

• Practical considerations
‣ MaxIdle is enforced when instances are returned to the pool
‣ Oscillating load and maxIdle << maxActive can lead to a lot of

object churn
‣ Running pool maintenance too frequently can lead to performance

problems
‣ If maintenance is enabled and minIdle is set close to maxIdle,

object churn will result
‣ If instance creation is slow and load spikes are sudden, new

instance creation in a trimmed pool can cause performance
problems

20

Simple Config Code

21

 BasicDataSource ds = new BasicDataSource();

 ds.setDriverClassName("com.mysql.jdbc.Driver");
 ds.setUrl("jdbc:mysql:///test");
 ds.setUsername("username");
 ds.setPassword("password");
 ds.setDefaultAutoCommit(false);

 ds.setMaxActive(50);
 ds.setMaxIdle(50);
 ds.setMaxWait(10000);

 ds.setTestWhileIdle(true);
 ds.setTestOnBorrow(true);
 ds.setTestOnReturn(false);
 ds.setValidationQuery("SELECT 1");

 ds.setTimeBetweenEvictionRunsMillis(1000 * 60 * 15);
 ds.setMinEvictableIdleTimeMillis(1000 * 60 * 2);
 ds.setNumTestsPerEvictionRun(10);

 ds.setRemoveAbandoned(true);
 ds.setRemoveAbandonedTimeout(60 * 60);
 ds.setLogAbandoned(true);

Driver class must exist
on classpath

All new connections created
this way and reset to this value
before being reused

ds.getConnection() will timeout and
throw SQLException after 10 seconds

Connections that have not been used in
more than one hour may be closed

“Manual” setup using PoolingDataSource

22

 GenericObjectPool pool = new GenericObjectPool();
 pool.setMaxActive(15);
 pool.setMaxIdle(15);
 pool.setMaxWait(10000);

 Properties props = new Properties();
 props.setProperty("user", "username");
 props.setProperty("password", "password");
 PoolableConnectionFactory factory =
 new PoolableConnectionFactory(
 new DriverConnectionFactory(new TesterDriver(),
 "com.mysql.jdbc.Driver", props),
 pool, null, "SELECT 1", true, true);
 pool.setFactory(factory);
 ds = new PoolingDataSource(pool);

Manually create GOP used to manage
connections - can set properties not
exposed by BasicDataSource this way

Manually create object factory and
associate it with the pool -
BasicDataSource does this on first
getConnection() request

maxActive 34
exhausted action block, no timeout
pool maintenance off
Instance validation on borrow only
make latency 100 ms
destroy latency 0
validate latency 10 ms
client hold time 25 ms

Simulations

23

Using Commons Performance (Commons “Sandbox” component)
http://commons.apache.org/sandbox/performance

Effect of maxIdle << maxActive under oscillating load Effect of maxIdle << maxActive under oscillating load Effect of maxIdle << maxActive under oscillating load
No Idle Throttling Idle Throttling

maxIdle 34 10

mean response latency 35.78 ms 49.58 ms

std dev response latency 5.19 ms 33.54 ms

mean instance idle time 34.07 ms 17.87 ms

client threads 100
min delay 100 ms
max delay 1 second
ramp type linear
ramp period 500 ms
peak period 3 seconds
trough period 2 seconds
iterations 10000

http://commons.apache.org/sandbox/performance
http://commons.apache.org/sandbox/performance

maxActive 15

maxIdle 15

exhausted action block, no timeout

pool maintenance off

instance validation on borrow only

query type text scan

client threads 90

peak load 4 requests / client / sec

minimum load 1 request / client / sec

Simulations (cont.)

24

Effect of Abandoned Connection CleanupEffect of Abandoned Connection CleanupEffect of Abandoned Connection CleanupEffect of Abandoned Connection Cleanup

No abandonment 0.001 abandon rate 0.01 abandon rate

mean response latency 7.0 ms 7.57 ms 336.7 ms

std dev response latency 11.4 ms 12.90 ms 2461.9 ms

client threads 90
min delay 250 ms
max delay 1 second
ramp type linear
ramp period 20 seconds
peak period 100 seconds
trough period 20 seconds
iterations 10000

maxActive 34
maxIdle 10
exhausted action block, no timeout
pool maintenance off
Instance validation on borrow only
make latency 100 ms
destroy latency 0
validate latency 10 ms
client hold time 25 ms

Simulations (cont.)

25

Effect of Old Pool versionEffect of Old Pool versionEffect of Old Pool version

Pool 1.5.5 Pool 1.3

mean response latency 35.78 ms 986.22 ms

std dev response latency 5.19 ms 3766.4 ms

mean instance idle time 34.07 ms 10.2 ms

client threads 100
min delay 100 ms
max delay 1 second
ramp type linear
ramp period 500 ms
peak period 3 seconds
trough period 2 seconds
iterations 10000

Roadmap

• Improve Robustness
– Server / Connection

Failures
– Exception Management

26

Modernize API
– Generification
– JMX
– Fix sins of the pastModernize Implementation

– Replace wait/notify with JDK
1.5 concurrency

– Integrate Tomcat jdbc-pool
Improve Operational
Control
– Instance management
– Idle instance count

management

Pool

DBCP

Pool and DBCP

Roadmap (cont.)

27

• 2.0 Versions will break backward compatibility
and require JDK 1.5+

• 1.x releases will be bugfix only

• Code will be repackaged as
org.apache.commons.pool2 / dbcp2

• API refactoring has begun in svn trunk

• Patches welcome!

Get Involved!

28

1. Subscribe to Commons-dev
 http://commons.apache.org/mail-lists.html

2. Check out the code
 http://commons.apache.org/svninfo.html

3. Review open issues
 http://commons.apache.org/pool/issue-tracking.html

4. Talk about your ideas
5. Attach patches to JIRA tickets

http://commons.apache.org/patches.html
6. THANKS!!

http://commons.apache.org/mail-lists.html
http://commons.apache.org/mail-lists.html
http://commons.apache.org/pool/issue-tracking.html
http://commons.apache.org/pool/issue-tracking.html

