
Apache
Commons-math

Scope of the library

• A general purpose math library

• Fast … but not dedicated to speed

• Self-contained, i.e. no dependencies

• Multiple implementations for many
algorithms
– favor strategy pattern

• 100% Java

History

• Started in 2003 when Commons was part of
Jakarta
– patches submitted for inclusion in Commons Lang

went outside Lang scope

• Started with simple numerical analysis and
statistics components

• Version 1.0 released in December 2004

• Latest version is 2.1, released in March 2010

• Upcoming 2.2 and 3.0

Features (1/2)
• Raw types

– Complex numbers, fractions, arbitrary precision

– polynomials

– General field interface

• Basic computation

– Interpolation, univariate/multivariate functions, transforms

– Quadrature, 3D geometry, special functions

– random numbers, distributions

• Solvers

– Root finders, Ordinary Differential Equations

Features (2/2)

• Optimization
– Optimizers, curve fitting, genetic algorithms

• Linear algebra
– LU, QR, SVD decompositions

– algebraic operations, vectors

• Statistics
– Univariate statistics

– multiple regression

– correlation

A live project

• Mailing lists:
– 2 or 3 [math] threads per month on user list

– 2 or 3 [math] message per day on dev list

• 5+ Commons committers involved
– growing list of contributors

• About one release each year

• Diverse user base
– Astronomy, space flight dynamics, finance

– quantum physics, NGOs, graphics, libraries ...

Created/Solved Issues chart

Linear Algebra: several
storage schemes

• Full matrices

– Simple two-dimensions arrays for small matrices

– Square blocks for large matrices

• Full vectors

– Simple one-dimension array

• Sparse matrices/vectors

– Open addressed map with compound index

• Storage scheme is tightly linked to performance

• Users can add their own implementation

Block storage

Partial class diagram

Available decompositions

Solving a linear system

// compute decomposition once for all
double[][] aData = new double[][] {
 { 2, 3, -2 },
 { -1, 7, 6 },
 { 4, -3, -5 }
 };
boolean copyArray = false;
RealMatrix a = new Array2DRowRealMatrix(aData, copyArray);
DecompositionSolver solver = new QRDecompositionImpl(a).getSolver();

// solve A X = B
double[] bData = new double[] { 1, -2, 1 };
RealVector b = new ArrayRealVector(bData, copyArray);
RealVector x = solver.solve(b);

Hints for linear algebra
• Select appropriate decomposition algorithm

– LU decomposition works only on square matrices

– QR decomposition is more stable than LU decomposition

– SVD is more costly, but provides covariance

• Select matrix storage according to size

• Interfaces are similar to JAMA ones

• Matrices inversions are almost never needed

• Commons-math supports fields matrices

– Available fields: complex, fractions, arbitrary precision floats
(in 2.2)

– Only LU decomposition yet

Ordinary Differential
Equations

• Large range of first order ODE solvers

– Fixed step

• classical Runge-Kutta, midpoint, 3/8, Euler …

– Adaptive step

• Dormand-Prince 8(5,3), Gill, Gragg-Bulirsch-Stoer, Higham-Hall …

– Multi-steps … better avoid them yet!

• Adams-Bashforth and Adams-Moulton (adaptive with Nordsieck vector)

• Rich set of features

– Continuous output

• Step handlers and complete evolution storage (even on file for later use)

– Discrete events

• G-stop, state reset, derivatives reset

– Automatic step size initialization

ODE organization

Solving an ODE problem

// user defined class represention the physical problem to solve
public class MyEquation implements FirstOrderDifferentialEquation {
 public int getDimension() { return 2; }
 public void computeDerivatives(double t, double[] y,
 double[] yDot) {
 yDot[0] = y[1];
 yDot[1] = -y[0];
 }
}

// set up integrator
FirstOrderIntegrator integrator =
 new DormandPrince853(minStep, maxStep, absoluteTol, relativeTol);

// solve Initial Value Problem
double t0 = 0.0;
double[] y0 = new double[] { 1.0, 0.0 };
double t = 1.0;
double[] y = new double[2];
double realT1 = integrator.integrate(new MyEquation(), t0, y0, t1, y);

Continuous Output
// user defined class called during the integration process
public class MyStepHandler implements StepHandler {

 public void requiresDenseOutput() { return true; }

 public void reset() {}

 public void handleStep(StepInterpolator interp, boolean isLast) {

 double start = interp.getPreviousTime();
 double end = interp.getCurrentTime();
 for (double t = start; t < end; t += (end – start) / 10) {

 interp.setInterpolatedTime(t);
 double[] interpolatedY = interp.getInterpolatedState();

 for (double yk : interpolatedY) {
 System.out.print(" " + yk);
 }
 System.out.println();

 }
 }
}

Discrete Events
// user defined class defining an event
public class MyEventHandler implements EventHandler {

 // method defining the event: it is triggered when the sign changes
 public double g(double t, double[] y) {
 return y[0] - 0.5;
 }

 // method called when the event has been acknowledged by integrator
 public int eventOccurred(double t, double[] y, boolean increasing) {
 if (increasing) {
 System.out.println("starting flight above 0.5 level at " + t);
 return CONTINUE;
 } else {
 System.out.println("back to 0.5 level at " + t + ", stopping");
 return STOP;
 }
 }

 // method called when the event has been acknowledged by integrator
 public void resetState(double t, double[] y) {
 }
}

Hints for ODE integration
• Use adaptive step size integrators and fixed step handler

– Fixed step integrators don't handle changing dynamics well

• Don't use

– Neither Adams-Bashforth nor Adams-Moulton

• unreliable yet, step decreases to 0

– FirstOrderIntegratorWithJacobians (will be completely replaced)

• Best integrators are Dormand-Prince 8(5,3) and GBS

• Don't put discontinuities near events functions roots!

Numerical Analysis
• Types

– Complex, Fraction, Dfp (Decimal Floating Point), 3D geometry

• Functions

– Multivariate, univariate, differentiable, polynomials, special functions

• Algorithms

– Package analysis

• Root finders, quadrature, interpolation

– Package optimization

• Curve fitting

• Linear optimization with constraints

• Non linear optimization without constraints (with or without derivatives)

• Univariate minimization/maximization

Optimization
• Linear case

– Dantzig's simplex

– Linear cost function and constraints

– Full matrices: unsuited for very large problems (size of millions)

• Non-linear case

– Direct methods

• Nelder-Mead simplex, Torczon's multi-directional, Powell

– General methods

• Conjugate gradient, Gauss-Newton, Levenberg-Marquardt

– Architecture being revamped for version 3.0

• Curve fitting

– Based on non-linear optimizers

Hints for optimization
• General methods are the most effective

– Levenberg-Marquardt can be started far from optimum

• Direct method are robust

– Handle discontinuities

– Constraints can be simulated by penalty functions

– Better than general methods with finite differences derivatives

• Convergence handling is on the move ...

Miscellaneous
• Be aware of floating points properties

– Avoid cancellation effects

– Take care of equality tests

– Use NaN, +ꝏ, -ꝏ for initialization where appropriate

– Use FastMath rather than Math (when 2.2 is released ...)

• Provide feedback

– Bugs reports

– Enhancements requests

– Participate to discussion and design choices

• Don't use unreleased versions

– They are highly unstable

– They are more buggy

What will be in 2.2
• Many bugs fixes

• Preparation for transition to 3.0

– New interfaces

– Deprecations

• Performances improvements

– Percentile will be faster by several orders of magnitudes

• New features

– Computation

• FastMath, Decimal Floating Points

• Tricubic interpolation

– Optimization

• Powell direct optimizer

• Gaussian curve fitting

– Statistics, random numbers

• WELL family of pseudo-random generators

• Intercepts in multiple regression

What will be in 3.0

• Revamped interfaces for optimization
– More consistent handling of convergence

• New set of exceptions
– More specialized

– Some will have both a general message and some
context data

• Completely rewritten ODE solver with Jacobians
– Better integration with existing solvers

• Revamped interfaces for statistics
– Will allow reuse of data sets

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25

