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Scope of the library

• A general purpose math library

• Fast … but not dedicated to speed

• Self-contained, i.e. no dependencies

• Multiple implementations for many 
algorithms
– favor strategy pattern

• 100% Java



History

• Started in 2003 when Commons was part of 
Jakarta
– patches submitted for inclusion in Commons Lang 

went outside Lang scope

• Started with simple numerical analysis and 
statistics components

• Version 1.0 released in December 2004

• Latest version is 2.1, released in March 2010

• Upcoming 2.2 and 3.0



Features (1/2)
• Raw types

– Complex numbers, fractions, arbitrary precision

– polynomials

– General field interface

• Basic computation

– Interpolation, univariate/multivariate functions, transforms

– Quadrature, 3D geometry, special functions

– random numbers, distributions

• Solvers

– Root finders, Ordinary Differential Equations



Features (2/2)

• Optimization
– Optimizers, curve fitting, genetic algorithms

• Linear algebra
– LU, QR, SVD decompositions

– algebraic operations, vectors

• Statistics
– Univariate statistics

– multiple regression

– correlation



A live project

• Mailing lists:
– 2 or 3 [math] threads per month on user list

– 2 or 3 [math] message per day on dev list

• 5+ Commons committers involved
– growing list of contributors

• About one release each year

• Diverse user base
– Astronomy, space flight dynamics, finance

– quantum physics, NGOs, graphics, libraries ...



Created/Solved Issues chart



Linear Algebra: several 
storage schemes

• Full matrices

– Simple two-dimensions arrays for small matrices

– Square blocks for large matrices

• Full vectors

– Simple one-dimension array

• Sparse matrices/vectors

– Open addressed map with compound index

• Storage scheme is tightly linked to performance

• Users can add their own implementation



Block storage



Partial class diagram



Available decompositions



Solving a linear system

// compute decomposition once for all
double[][] aData = new double[][] {
                       {  2,  3, -2 },
                       { -1,  7,  6 },
                       {  4, -3, -5 }
                   };
boolean    copyArray = false;
RealMatrix a = new Array2DRowRealMatrix(aData, copyArray);
DecompositionSolver solver = new QRDecompositionImpl(a).getSolver();

// solve A X = B
double[]    bData = new double[] { 1, -2, 1 };
RealVector  b     = new ArrayRealVector(bData, copyArray);
RealVector  x     = solver.solve(b);



Hints for linear algebra
• Select appropriate decomposition algorithm

– LU decomposition works only on square matrices

– QR decomposition is more stable than LU decomposition

– SVD is more costly, but provides covariance

• Select matrix storage according to size

• Interfaces are similar to JAMA ones

• Matrices inversions are almost never needed

• Commons-math supports fields matrices

– Available fields: complex, fractions, arbitrary precision floats 
(in 2.2)

– Only LU decomposition yet



Ordinary Differential 
Equations

• Large range of first order ODE solvers

– Fixed step

• classical Runge-Kutta, midpoint, 3/8, Euler …

– Adaptive step

• Dormand-Prince 8(5,3), Gill, Gragg-Bulirsch-Stoer, Higham-Hall …

– Multi-steps … better avoid them yet!

• Adams-Bashforth and Adams-Moulton (adaptive with Nordsieck vector)

• Rich set of features

– Continuous output

• Step handlers and complete evolution storage (even on file for later use)

– Discrete events

• G-stop, state reset, derivatives reset

– Automatic step size initialization



ODE organization



Solving an ODE problem

// user defined class represention the physical problem to solve
public class MyEquation implements FirstOrderDifferentialEquation {
    public int getDimension() { return 2; }
    public void computeDerivatives(double t, double[] y,
                                   double[] yDot) {
        yDot[0] =  y[1];
        yDot[1] = -y[0];
    }
}

// set up integrator
FirstOrderIntegrator integrator =
    new DormandPrince853(minStep, maxStep, absoluteTol, relativeTol);

// solve Initial Value Problem
double   t0   = 0.0;
double[] y0   = new double[] { 1.0, 0.0 };
double   t    = 1.0;
double[] y    = new double[2];
double realT1 = integrator.integrate(new MyEquation(), t0, y0, t1, y);



Continuous Output
// user defined class called during the integration process
public class MyStepHandler implements StepHandler {

    public void requiresDenseOutput() { return true; }

    public void reset() {}

    public void handleStep(StepInterpolator interp, boolean isLast) {

        double start = interp.getPreviousTime();
        double end   = interp.getCurrentTime();
        for (double t = start; t < end; t += (end – start) / 10) {

            interp.setInterpolatedTime(t);
            double[] interpolatedY = interp.getInterpolatedState();

            for (double yk : interpolatedY) {
               System.out.print(" " + yk);
            }
            System.out.println();

        }
    }
}



Discrete Events
// user defined class defining an event
public class MyEventHandler implements EventHandler {

    // method defining the event: it is triggered when the sign changes
    public double g(double t, double[] y) {
        return y[0] - 0.5;
    }

    // method called when the event has been acknowledged by integrator
    public int eventOccurred(double t, double[] y, boolean increasing) {
        if (increasing) {
          System.out.println("starting flight above 0.5 level at " + t);
          return CONTINUE;
        } else {
          System.out.println("back to 0.5 level at " + t + ", stopping");
          return STOP;
        }
    }

    // method called when the event has been acknowledged by integrator
    public void resetState(double t, double[] y) {
    }
}



Hints for ODE integration
• Use adaptive step size integrators and fixed step handler

– Fixed step integrators don't handle changing dynamics well

• Don't use

– Neither Adams-Bashforth nor Adams-Moulton

• unreliable yet, step decreases to 0

– FirstOrderIntegratorWithJacobians (will be completely replaced)

• Best integrators are Dormand-Prince 8(5,3) and GBS

• Don't put discontinuities near events functions roots! 



Numerical Analysis
• Types

– Complex, Fraction, Dfp (Decimal Floating Point), 3D geometry

• Functions

– Multivariate, univariate, differentiable, polynomials, special functions

• Algorithms

– Package analysis

• Root finders, quadrature, interpolation

– Package optimization

• Curve fitting

• Linear optimization with constraints

• Non linear optimization without constraints (with or without derivatives)

• Univariate minimization/maximization



Optimization
• Linear case

– Dantzig's simplex

– Linear cost function and constraints

– Full matrices: unsuited for very large problems (size of millions)

• Non-linear case

– Direct methods

• Nelder-Mead simplex, Torczon's multi-directional, Powell

– General methods

• Conjugate gradient, Gauss-Newton, Levenberg-Marquardt

– Architecture being revamped for version 3.0

• Curve fitting

– Based on non-linear optimizers



Hints for optimization
• General methods are the most effective

– Levenberg-Marquardt can be started far from optimum

• Direct method are robust

– Handle discontinuities

– Constraints can be simulated by penalty functions

– Better than general methods with finite differences derivatives

• Convergence handling is on the move ...



Miscellaneous
• Be aware of floating points properties

– Avoid cancellation effects

– Take care of equality tests

– Use NaN, +ꝏ, -ꝏ for initialization where appropriate

– Use FastMath rather than Math (when 2.2 is released ...)

• Provide feedback

– Bugs reports

– Enhancements requests

– Participate to discussion and design choices

• Don't use unreleased versions

– They are highly unstable

– They are more buggy



What will be in 2.2
• Many bugs fixes

• Preparation for transition to 3.0

– New interfaces

– Deprecations

• Performances improvements

– Percentile will be faster by several orders of magnitudes

• New features

– Computation

• FastMath, Decimal Floating Points

• Tricubic interpolation

– Optimization

• Powell direct optimizer

• Gaussian curve fitting

– Statistics, random numbers

• WELL family of pseudo-random generators

• Intercepts in multiple regression



What will be in 3.0

• Revamped interfaces for optimization
– More consistent handling of convergence

• New set of exceptions
– More specialized

– Some will have both a general message and some 
context data

• Completely rewritten ODE solver with Jacobians
– Better integration with existing solvers

• Revamped interfaces for statistics
– Will allow reuse of data sets
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