
© 2010 SpringSource, A division of VMware. All rights reserved

CONFIDENTIAL

Diagnosing and Fixing Memory Leaks in

Web Applications: Tips from the Front Line
Mark Thomas, Staff Engineer

2CONFIDENTIAL 2CONFIDENTIAL

Introduction

 Mark Thomas

 Involved in Apache Tomcat for 7 years

• Wrote the first memory leak detection and prevention implementation for Tomcat

• Implemented a large proportion of Servlet 3.0, JSP 2.2 & EL 2.2 for Tomcat 7

• Currently the Tomcat 7.0.x release manager

• Created Tomcat’s security pages

• Committer, PMC member

 Apache Software Foundation

• Member

• Part of the infrastructure team

 Staff Engineer at VMware

• Tomcat / httpd consulting and training

• Lead the SpringSource security team

3CONFIDENTIAL 3CONFIDENTIAL

Agenda

 How it all started

 How memory leaks occur

 Debugging a leak – demonstration

 Root causes of leaks

• Those already fixed

• Future plans

 Questions

4CONFIDENTIAL 4CONFIDENTIAL

How it all started

5CONFIDENTIAL 5CONFIDENTIAL

How it all started

 Presenting on Servlet 3.0 / Tomcat 7 to an audience like this

 Made an off-the-cuff remark

• “Permgen errors on reload are not caused by Tomcat bugs, they are caused by

application bugs”

 That generated a lot of discussion

 Spent the rest of the conference debugging memory leaks with

attendees

• Tomcat wasn’t causing the leaks

• Neither were the applications, at least not directly

• Root cause often in JRE code, triggered by 3rd party library

 Wrote some fixes for the specific issues seen

6CONFIDENTIAL 6CONFIDENTIAL

How it all started

 Patterns soon started to emerge

 Realised that Tomcat could provide generic fixes

 Start of what became:

org.apache.catalina.core.JreMemoryLeakPreventionListener

 Then ran some tests with some leaky applications

• Spring sample applications

• Test cases provided by users

• A couple of internal web applications

 Added additional detection and prevention based on these

 The user community has provided additional ideas and feedback

7CONFIDENTIAL 7CONFIDENTIAL

How memory leaks occur

8CONFIDENTIAL 8CONFIDENTIAL

How memory leaks occur: A little theory

 A class is uniquely identified by

• Its name

• The class loader that loaded it

 Hence, you can have a class with the same name loaded multiple

times in a single JVM, each in a different class loader

 Web containers use this for isolating web applications

 Each web application gets its own class loader

 Web application A can use Spring 2.5.6 whilst web application B can

use Spring 3.0.2 without any conflicts

 Other containers, e.g. OSGI, use a similar approach

 Classes are loaded into the Permanent Generation

9CONFIDENTIAL 9CONFIDENTIAL

How memory leaks occur: Reference chains

 An object retains a reference to the class it is an instance of

 A class retains a reference to the class loader that loaded it

 The class loader retains a reference to every class it loaded

 Retaining a reference to a single object from a web application pins

every class loaded by the web application in the Permanent

Generation

 These references often remain after a web application reload

 With each reload, more classes get pinned in the Permanent

Generation and eventually it fills up

10CONFIDENTIAL 10CONFIDENTIAL

Debugging a leak - demonstration
Apache Tomcat 7, YourKit Java Profiler, Simple web application

11CONFIDENTIAL 11CONFIDENTIAL

Debugging memory leaks

 Reload the application once

 Force GC

 Look for org.apache.catalina.loader.WebappClassLoader instances

 There should be exactly one per deployed application

 If you have more than that

• look for the instance where started = false

• trace its GC roots

• that will tell you what is holding the reference

• finding what created the reference might be harder

 A profiler makes this easy

 There are lots of good profilers available

• Full disclosure: I use YourKit because they give me a free copy to use with

Tomcat

12CONFIDENTIAL 12CONFIDENTIAL

Root causes
JRE triggered leaks

13CONFIDENTIAL 13CONFIDENTIAL

JRE triggered leaks

 All take a similar form

 Singleton / static initialiser

• Can be a Thread

• Something that won’t get garbage collected

 Retains a reference to the context class loader when loaded

 If web application code triggers the initialisation

• The context class loader will be web application class loader

• A reference is created to the web application class loader

• This reference is never garbage collected

• Pins the class loader (and hence all the classes it loaded) in memory

 Prevented by the JreMemoryLeakPreventionListener

14CONFIDENTIAL 14CONFIDENTIAL

JRE triggered leaks: sun.awt.AppContext

 Triggered by

• Use of javax.imageio (e.g. Google Web Toolkit)

• Use of java.beans.Introspector.flushCaches()

• Ironically, Tomcat calls this to try and prevent memory leaks through the bean cache

• Probably many others

 Prevented in Tomcat by:

• Calling ImageIO.getCacheDirectory()

• Pins Tomcat’s common class loader in memory

• This is fine – don’t expect to throw this one away

• Might be different if embedding Tomcat

15CONFIDENTIAL 15CONFIDENTIAL

JRE triggered leaks: sun.misc.GC.requestLatency(long)

 Starts a GC Daemon thread

 Thread’s context class loader will be context class loader when

thread is started

 Triggered by:

• javax.management.remote.rmi.RMIConnectorServer.start()

• Possibly others

 Prevented in Tomcat by:

• Calling sun.misc.GC.requestLatency(long)

• Has to use reflection

• JVM specific so need to handle other JVMs

• Pins Tomcat’s class loader in memory

• Should be OK (remember embedding)

16CONFIDENTIAL 16CONFIDENTIAL

JRE triggered leaks: More threads

 Both very similar to previous slide

 sun.net.www.http.HttpClient

• Starts an HTTP keep-alive thread

• Triggered by URL. openConnection()

• Prevented in Tomcat by loading the sun.net.www.http.HttpClient class

• JVM specific

 Java Cryptography Architecture

• Starts a Token poller thread

• Triggered by creating a message digest (under certain conditions)

• Prevented in Tomcat by calling java.security.Security.getProviders();

17CONFIDENTIAL 17CONFIDENTIAL

JRE triggered leaks: JarURLConnections

 URL connections are cached by default

 An open JarURLConnection locks the JAR file

 Affects all operating systems

• Harder to ignore on Windows

• Prevents web applications from being undeployed

• Potential security risk

 Triggered by

• log4j 1.2.15 and earlier

• javax.xml.bind.JAXBContext.newInstance()

 Prevented in Tomcat by:

• Disable caching by default

18CONFIDENTIAL 18CONFIDENTIAL

JRE triggered leaks: XML parsing

 Don’t know why this triggers a leak

 No GC roots reported by profilers

• JVM bug

• http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6916498

 Made it very difficult to track down

 Triggered by:

• DocumentBuilderFactory.newInstance();

 Prevented in Tomcat by:

• DocumentBuilderFactory.newInstance();

19CONFIDENTIAL 19CONFIDENTIAL

Root causes
Application triggered leaks

20CONFIDENTIAL 20CONFIDENTIAL

Application triggered leaks

 All take a similar form

 Application registers an object with a JRE provided registry

 JRE registry is loaded by the system class loader

 Not cleared when web application is reloaded

 Reference chain

• Registry retains a reference to the object

• Object retains a reference to its class

• Class retains a reference to its class loader (web application class loader)

• Class loader retains references to all classes it loaded

 Applications are responsible for clearing references they create

 Failure to do so is logged on application stop

21CONFIDENTIAL 21CONFIDENTIAL

Application triggered leaks: JDBC drivers

 JDBC drivers are automatically registered with

java.sql.DriverManager

• When loaded

• Through the services API

 JDBC drivers are NOT automatically de-registered

 Applications must de-register JDBC drivers when stopped

 Use a javax.servlet.ServletContextListener

• contextDestroyed() event

 Tomcat will de-register JDBC drivers if the applications forgets

22CONFIDENTIAL 22CONFIDENTIAL

Application triggered leaks: Threads

 Threads started by a web application will have the web application

class loader as the context class loader

 Applications must stop threads they start

 Tomcat will log an error if applications forget

 Tomcat can try and stop the thread (requires configuration)

• TimerThread via reflection – fairly safe

• If started via an Executor via reflection– fairly safe

• Thread.stop() – unsafe

 Stopping threads

• Code is not thread safe

• Often causes a JVM crash

23CONFIDENTIAL 23CONFIDENTIAL

Application triggered leaks: ThreadLocals

 The lifecycle of a ThreadLocal must match that of a request

 An application may never see a Thread again

• No way to remove the ThreadLocal later

 Applications must clear any ThreadLocals they create in the same

request

 Tomcat will log an error if applications forget

 Tomcat can try and clear the ThreadLocal (requires configuration)

• Code is not thread safe

• Not seen a problem in testing

24CONFIDENTIAL 24CONFIDENTIAL

Application triggered leaks: Non-application issues

 sun.rmi.transport.Target

• Nothing the application can do to clear these

• Tomcat does it silently via reflection

 ResourceBundle

• Uses a weak reference

• Still appears to trigger leaks

• Tomcat clears the references silently via reflection

 static final reference

• Not cleared by GC in some (very) old JVMs

• Code still present

• Disabled by default in Tomcat 7

 Tomcat also clears references it creates

• loggers, introspection utils

25CONFIDENTIAL 25CONFIDENTIAL

Future plans

26CONFIDENTIAL 26CONFIDENTIAL

Future plans

 See https://issues.apache.org/bugzilla

 Bugs

• Leaks triggered by JSP pages aren’t detected or cleared (48837)

 Enhancements

• Generic solution to ThreadLocal issues

Renew the thread pool after application reload (49159)

• Add the start date when reporting leaks in the manager app (49395)

 Can we reduce the leak by somehow manipulating the class loader?

• No success so far

 Keep 6.0.x in sync with new features as they are added to 7.0.x

• 6.0.30 will have all the latest changes

27CONFIDENTIAL 27CONFIDENTIAL

Useful links

28CONFIDENTIAL 28CONFIDENTIAL

Useful links

 http://tomcat.apache.org/

 http://svn.apache.org/viewvc/tomcat/trunk/java/org/apache/

catalina/core/JreMemoryLeakPreventionListener.java

catalina/loader/WebappClassLoader.java

 http://wiki.apache.org/tomcat/MemoryLeakProtection

 Mailing lists

• announce@tomact.apache.org

• users@tomcat.apache.org

• dev@tomcat.apache.org

29CONFIDENTIAL 29CONFIDENTIAL

Questions

