Content Storage with
Apache Jackrabbit

2009-03-25, Jukka Zitting




Introducing JCR

Content Repository for Java™ Technology API

-> Version 1.0 defined in JSR 170, final in 2006

-> Version 2.0 defined in JSR 283, final (hopefully) in 2009
-> Open source RT and TCK developed in Apache Jackrabbit

Flexible, hierarchically ordered content store with features like
full text search, versioning, tfransactions, observation, etc.

Combines and extends features often found in file systems and
databases; a "best of both worlds" approach.




Introducing Apache Jackrabbit

Entered Apache Incubator Components:

in 2004, graduated in 2006, jackrabbit-api

now a TLP with 24 jackrabbit-core
committers jackrabbit-standalone
jackrabbit-webapp
Version 1.0 (and JCR RI) in jackrabbit-jca

2006, currently at 1.5.3. jackrabbit-ocm
Version 2.0 (and JCR 2.0 jackrabbit-jcr-rmi
RT) planned for 2009. jackrabbit-webdav
jackrabbit-jcr-server
Also: JCR Commons, Sling etc.




Structure of a content repository

Consists of one or more workspaces, one of which is the
default workspace.

A workspace consists of a tree of nodes, each of which can
have zero or more child nodes. Each workspace has a single
root node.

Nodes have properties. Properties are typed (string,
integer, date, binary, reference, etc.) and can be either
single- or multivalued.




Structure, cont.

Each node or property has a hame, and can be accessed
using a path. Names are namespaced.

A referenceable node has a UUID, through which it can be
accessed or referenced. Referential integrity is guaranteed.

Each node has a primary node type and zero or more mixin
types. Node types define the structure of a node. A node
can also be unstructured.




Content repository features

Read/write Node types
Search (XPath and SQL) Locking

XML impoh‘/expor"r Access control
Observation Atomic changes

Versioning XA transactions




Getting started with Jackrabbit

Download and run the standalone server:

java -jar jackrabbit-standalone-1.5.3.jar

-> Web interface at http://localhost:8080/

-> WebDAV at http://localhost:8080/repository/default
-> JCR access over RMI at http://localhost:8080/rmi

-> Repository data in ./ jackrabbit

-> Configuration in ./ jackrabbit/repository.xml

If you have a servlet container, use the webapp

If you have a J2EE application server, use jca




Remote access

JCR-RMI layer available
since Jackrabbit 0.9.

Good functional coverage,
not so good performance.

-> administrative tools

Look at clustering for
better performance.

Jackrabbit 1.6: spi2dav

0.da.j.rmi.repository:

new URLRemoteRepository(
"http://.../rmi");

new RMIRemoteRepository(
"//.../repository");

Classpath:

jer-1.0.jar
jackrabbit-jcr-rmi-1.5.3.jar
jackrabbit-api-1.5.3.jar
(also in rmiregistry!)




Jackrabbit as a shared resource

JCA adapter in an
application server
-> accessed through JNDI

Jackrabbit webapp in a
servlet container

-> JNDT or servlet context
-> JNDI: complex setup

-> Cross-context access

JNDI configuration with
jackrabbit-servleft:

<servlet>
<servlet-name>Repository</servlet-name>
<servlet-class>
org.apache.jackrabbit.servlet.JNDIRepositoryServlet
</servlet-class>
<init-param>
<param-name>location</param-name>
<param-value<javax/ jcr/Repository</param-value>
</init-param>
</servlet>

Accessing the repository:

public class MyServlet extends HttpServlet {
private final Repository repository =
new ServletRepository(this);
¥




Jackrabbit in embedded mode

RepositoryConfig config = RepositoryConfig.create(
"/path/to/repository", "/path/to/repository.xml");
RepositoryImpl repository = RepositoryImpl.create(config):.

try {

// Use the javax.jcr interfaces to access the repository

} finally {
repository.shutdown();

}




Embedded mode.

Only a single instance can
be running at a time.

For concurrent access:

- multiple sessions

- RMI for remote access
- clustering

Also: TransientRepository

cont.

Maven coordinates

<dependency>
<groupId>org.apache.jackrabbit</groupId>
<artifactId>jackrabbit-core</artifactId>
<version>1.5.3</version>
<exclusions>

<exclusion>
<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>
</exclusion>

</exclusions>

</dependency>

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4jl12</artifactId>
<version>1.5.3</version>

</dependency>

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>jcl-over-sif4j</artifactId>
«version>1.5.3</version>

</dependency>




Logging - what's this SLF4J thing?

Jackrabbit uses the SLF4J
logging facade for logging.

Benefits: Great for
embedded uses, can adapt
to

Drawbacks: What do I put
in my classpath?

if bin do

calls to SLF) API from logbac ic.jar .
. logback-classic
client code

if binding done

— “
SLF4)-API

If4j-api.j
(sIf4j-api.jar) if binding do
with s|f4j-jdk14J
til.logging (JUL)

if binding don
with slfdj-s mpI

<delegate to underlying logging

if binding do
with slf4j-no pj

system> “

if binding do
with slfdj-jcl.ja j

L oggi g gJcu)




SLF4J in practice

SLF4J APT is automatically
included as a dependency of
jackrabbit-core.

You need to explicitly add
the SLF4J implementation.

Jackrabit webapp, jca and

standalone use slf4j-log4;,
so you can use normal log4j
configuration.

Classpath with log4;j:

sif4)

slf4)
log4j-1.2.14.jar

log4 ]

-api-1.5.3.jar
-log4j-1.5.3.jar

.properties

Classpath with no logging:
slf4j-api-1.5.3.jar
slf4j-nop-1.5.3.jar




Repository configuration

Configuration in a repository.xml file. Default configuration
shipped with Jackrabbit. Structure defined ina DTD.

Contains global settings and a workspace configuration
template. The template is instantiated to a workspace.xml
configuration file for each new workspace.

Main elements: clustering, workspace, versioning, security,
persistence, search index, data store, file system




Persistence managers

Use one of the bundle Configuration:

persistence managers. driver,url,user password

-> select one for your db schema

_ schemaObjectPrefix

Other persistence minBlobSize

managers mostly for bundleCacheSize

backwards compatibility. consistencyCheck/Fix
blockOnConnectionlLoss

Default based on embedded

Apache Derby. Needs CREATE TABLE
permissions!




Search index

Per-workspace search
indexes based on Apache
Lucene.

By default everything is
indexed. Use index
configuration to customize.

Clustering: Each cluster
hode maintains local search
iIndexes.

Configuration:
min/maxMergeDocs
mergeFactor

analyzer
textFilterClasses
respectDocumentOrder
resultFetchSize

Performance:
property, type, ft -> fast
path -> slow




Text extraction

Full text indexing of file
contents based on various
parser libraries (POT,
PDFBox, etc.).

Currently only for the jcr:
data property with correct
jerimimeType.

Jackrabbit 2.0: indexing of
all binary properties.

textFilterClasses:
PlainTextExtractor
MsWordTextExtractor
MsExcel TextExtractor
MsPowerPoint TextExtractor
Pdf TextExtractor
OpenOfficeTextExtractor
RTFTextExtractor
HTMLTextExtractor
XMLTextExtractor




Data store - dealing with lots of data

Data store feature available  Implementations:
since Jackrabbit 1.4 FileDataStore
DbDataStore
Content-addressed storage sandbox: S3DataStore
of large binary properties.
Garbage collection:
Completely transparent to gc = si.createDSGC();
client applications. gc.scan();
gc.stopScan():
Uses garbage collection to gc.deleteUnused():
remove unused data. |




Content modeling: David's model

1. Data First. Structure Later. Maybe.

2. Drive the content hierarchy, don't let it happen.
3. Workspaces are for clone(), merge() and update()
4. Beware of Same Name Siblings

5. References considered harmful

6. Files are Files are Files

7. ID's are evil




Content modeling

CREATE TABLE author (
id INTEGER,
hame VARCHAR,

): _

CREATE TABLE post (
id INTEGER,
author INTEGER,
posted DATETIME,
title VARCHAR,
body TEXT

. Example

/blog
/ jukka
@name = Jukka Zitting
/2009
/03
/25
/hello
@author = jukka
@posted
@title
@body




Example, cont.

CREATE TABLE comment (
id INTEGER,
post INTEGER,
title VARCHAR,
body TEXT
):
CREATE TABLE media (
id INTEGER,
post INTEGER,
data BLOB,
caption VARCHAR

/hello
/comments
/salut
@title = Salut!
@body
/media [nt:folder]
/image.jpg [nt:file]
/code [nt:folder]
/Example.java [nt:file]




Example, cont.

Versioning:

/he

@]
@]

lo [mix:versionable]
criversionHistory
cr:baseVersion

node.checkout();

// ..

node.save();
node.checkin();

Locking:
/hello [mix:lockable]

node.lock();

7/ .
node.unlock();




Common issues: Content hierarchy

Jackrabbit doesn't support very flat content hierarchies.
You'll start seeing problems when you put more than 10k
child nodes under a single parent.

Solution: Add more depth to your hierarchy. Divide entries
by date, category, author, etc. If nothing else, use the first
letter(s) of a title, a content hash, or even a random number
to distribute the nodes.

Note: You can still access the entries as a single flat set
through search. The hierarchy is for browsing.




Common issues: Concurrent edits

Three ways to handle concurrent edits:
1. Merge changes

2. Fail conflicting changes

3. Block concurrent changes

Jackrabbit does 1 by default, and falls back to 2 when
merge fails. You can explicitly opt for 3 by using the JCR
locking feature.

Estimate: How often conflicts would happen? Will the
benefits of locking be worth the overhead.




Questions?




