
Using Apache Felix:
OSGi best practices

Marcel Offermans
luminis®

1

2

About me
• Marcel Offermans
• Software architect at luminis®

• Consultancy & product development
• Over 4 years of experience with OSGi

• Committer on the Apache Felix project
• marcel.offermans@luminis.nl

My name is Marcel Offermans. I am a software architect at luminis® (http://
www.luminis.nl/), which is a small company based in Arnhem, The Netherlands. We
do software consultancy and product development, predominantly for large
companies that create (hardware) products containing embedded and often
distributed software. I have over 4 years of experience using OSGi in commercial
projects and I'm a committer on the Apache Felix project.

3

Agenda
• Birds-eye view of the OSGi framework
• Building, partitioning and provisioning
• Dependency management
• Software testing
• Leveraging standard OSGi services
• Extending the service registry: JMX & SOAP
• Embedding OSGi

I'll start off with a very short, birds-eye view of OSGi. In talks earlier today, Richard
Hall has already explained how Apache Felix works and what OSGi is so I won't be
going into great detail about that.
This talk is about best practices, and these are mainly things we have learned by
using OSGi in commercial projects. Since there are many different areas, from
embedded to desktop to enterprise, this won’t be an exhaustive overview.
You will learn a bit about different build environment, how to partition software into
bundles, how to provision your software and how to dynamically manage service
dependencies.
Then we'll look at software testing and see what generic and specific tests should be
used.
Next up, we'll look at a some of the standard OSGi services and their application.
Because systems hardly ever exist in isolation, we'll have a look at some remote
aspects such as management and SOAP access and how to easily integrate those into
the framework.
Finally we'll have a look at some of the possibilities that exist for embedding OSGi.

4

Birds-eye view
• Security layer:

• similar to the Java 2 security model;
• bundles can be signed;
• PermissionAdmin service to manipulate

permissions.

Security

In short, OSGi is a component based, service oriented framework consisting of 4
layers.
First there's the security layer, which is similar to standard Java security, so I guess
most of you are already familiar with that. You can use policy files to determine what
software bundles can and cannot do. Furthermore, there is an option to sign bundles,
similar to the way you sign jars for Java Web Start. Finally, there is a service called
PermissionAdmin, which allows you to dynamically manipulate permissions. You can
use this to change policies on the fly or add new policies for newly installed
components.

5

Birds-eye view
• Security layer
• Module layer:

• unit of deployment is the bundle;
• bundles can export packages, specifying a

version for each
package;

• bundles can
import packages,
specifying a version range;

• resolved at run-time.

Security

Module

Second up is the module layer. At the module layer, the software is grouped into
bundles, where each bundle contains zero or more java packages and optionally some
other resources or even native libraries. Some of these packages are exported,
meaning they can be used by other bundles, others are private and only visible within
a specific bundle. Packages that are exported by one bundle, can be imported by
another. The exporter specifies a version number for a package. The importer can
specify a range of versions it is compatible with. At run-time the framework will
resolve such dependencies. All this allows you to keep implementations private, only
exposing API’s.

6

Birds-eye view
• Security layer
• Module layer
• Life-cycle layer:

Security

Module

Life-cycle

On top of that, the life-cycle layer determines the life-cycle of individual bundles.
Basically, bundles can be installed, started, stopped and uninstalled. Furthermore, an
installed bundle can be updated anytime. Finally, you can uninstall a bundle if you
don’t need it anymore. The “starting” and “stopping” states have hooks for you as the
bundle developer to actually make your bundle do something. By implementing the
BundleActivator interface, the framework will invoke your start() and stop() methods.
You will also get a BundleContext which is basically a reference to the API to talk to
the container.

7

Birds-eye view
• Security layer
• Module layer
• Life-cycle layer
• Service layer:

• registry;
• publish;
• query.

Security

Module

Life-cycle

Service

Finally, the service layer contains a registry where services are published. Each
bundle can register any number of services in the service registry. A service is
registered using the fully qualified name of its interface. Furthermore, you can add
any number of properties to this service. Both the name and properties can then be
used again by others that query the registry. A fast and powerful LDAP based query
language is used for that.

8

Birds-eye view
• Security layer
• Module layer
• Life-cycle layer
• Service layer
• Actual services

Security

Module

Life-cycle

Service

Bundle Bundle Bundle

On top of these four layers, which together form the container, you can install your
bundles containing the actual services.

9

OSGi frameworks
• Apache Felix

• Successor to Oscar
• Over 4 years in development

• Gatespace Telematics' Knopflerfish
• Open sourced
• Commercial support

• Eclipse Equinox
• Foundation for Eclipse

Let’s have a look at the different available OSGi implementations. Apart from several
commercial implementations, there are three major open source ones:
Apache Felix, which is new to Apache, but is the succesor to Oscar, a project that has
been under development for over 4 years now. We are still in incubation right now,
but we are working hard to get out of that because we feel we have a very stable
framework already.
Gatespace Telematics' Knopflerfish, an open source project that was initially a
commercial product. In fact, Gatespace is still offering commercial support for it, but
the framework itself is free.
Equinox, the foundation on which Eclipse is build. Around version 3.0, Eclipse actually
switched to OSGi when they were looking for a more dynamic, standard replacement
for their plugin system. At that time they considered both JMX (which JBoss uses too)
and OSGi. They eventually chose OSGi and although at first they did not make a big
deal about it, they are now offering it as a separate project. Actually, a lot of the
new features introduced in OSGi release 4 came from Eclipse, some of them mainly to
support the migration of “legacy code”.
Of course, at an Apache conference the politically correct thing would be to say to
just use Felix and forget about the rest, but actually we have had a lot of benefit by
developing and testing on multiple frameworks.

Build System
• Ant

• use macro features for repetitive tasks
• use “mangen” to automatically create imports

• Maven
• used within Felix
• one bundle per “project” model

• Eclipse
• one bundle per project

10

There are three major build systems you can use with OSGi:
Ant, which has been traditionally used by many Java projects. When using Ant, make
sure to structure your project in a smart way so you can use macro features for all
repetitive tasks. Also, there is a tool called “mangen” which you can use to
automatically generate imports based on byte code analysis of your actual code. The
advantage of using Ant is the fact that you are free to organize your project in any
way you want (but that can also be a disadvantage if you make a mess of it).
Maven, or actually Maven 2, has been used in Felix. It recommends you to use a “one
bundle per project” model, which is a very reasonable way of working, even though
we have traditionally used a “one subsystem per project” model, creating multiple
bundles during packaging. The Maven 2 OSGi plugin is available, but is still being
perfected, and we’re talking to the Maven developers too to make sure OSGi is
supported well in Maven.
Finally, you can use Eclipse as a build environment. It too uses a “one bundle per
project” model. Creating, building, running and debugging bundles is very easy,
because you can run your bundles directly in the IDE and use things like hot code
replace. On the other hand, there is a disadvantage of having to use Eclipse to do
builds, so I would not recommend it for more complicated projects.

11

Partitioning software
• Minimizing dependencies
• Considering rate of change
• Minimizing complexity
• Maximizing architected flexibility

Basically, I’m not going to say anything new here, because the points I make here are
common sense when designing software. However, it is interesting to see how the
OSGi framework enables us to really use partitioning even at run-time to keep the
system modular. In “traditional” environments you’ll often see that although the
design is modular, in practice some of these modularization is broken because in
general each piece of code has full visibility of all other code on the classpath.

Other important things to consider when drawing these models is the rate of change
of components. For example, for most applications, the user interface will change far
more often than the business logic, so keeping those separate is desirable from the
point of view of updating components.

12

Partitioning software

bundlebundle

bundlebundle

bundle

bundle

bundle bundle

packagepackage

package

package

Package dependencies at the module layer

So, because OSGi makes the dependencies and components explicit, it’s fairly easy to
get an overview of the services, packages and components or bundles in a design.
Creating a graph of these is very helpful, because it gives you a very quick overview
of all dependencies. This allows you to minimize those dependencies and really
evaluate the way you’ve created components.
You can create two graphs, this is the graph of all package dependencies at the
module layer. It clearly shows who imports and exports what.

13

Partitioning software

service bundlebundle

service bundle

service

service

bundle

bundle

bundle

bundle bundle

Service dependencies at the service layer

The second graph is arguably even more important and shows the service
dependencies at the service layer. It’s obviously useful to overlay both graphs to get
an overall impression of the dependencies.
Currently, there are no tools to automatically generate such graphs (either at design
time or at run-time) but that’s definitely something we would be interested in
because these graphs are very helpful to discuss the architecture of large systems
and to get insight into their operation while testing.

14

Provisioning
• Don't think about provisioning as an

afterthought!
• OSGi spec covers it:

• Initial provisioning bootstraps your systems
• allows you to use off the shelf OSGi hardware
• connects to a provisioning server and installs the

management agent

• Management agent handles updates
• installs the actual software
• keeps system up to date

So we’ve talked a bit about partitioning, the next thing to consider is provisioning.
Software provisioning is all about getting the right software bundles onto the right
platforms. Especially for embedded systems, but also for others, it is worth thinking
about how you are going to do this. In the past you often saw service engineers
connecting their laptops to some machine, uploading new firmware over a serial line.
Similarly, on the desktop, software companies would just send out new CD’s every
time a new version came out.
The first thing worth mentioning is that the OSGi spec covers provisioning. There is
an “initial provisioning” system for bootstrapping your system. The pre-condition for
initial provisioning is a device that already has a JVM and an OSGi framework
installed, but no bundles. The mechanism describes how a framework should connect
to a provisioning server and recursively get all the bundles necessary to run the so
called “management agent”. The management agent then takes over and
communicates with the provisioning server to further install and update the required
software.
For the embedded market this is very important, because it allows you to use “off
the shelf” OSGi hardware which you can just power-on and your software will
automatically install itself (usually a process which is done in the factory where the
machines with embedded software are assembled).

15

Dependency management
• Design using POJO's
• Use import/export instead of “require

bundle” to avoid too tight coupling
• Use a library, don't build it yourself!

Available options:
• service binder;
• dependency manager;
• declarative services;
• iPOJO.

Up til now we’ve mostly talked about dependency management from the design and
deployment point of view. Let’s now look at the run-time aspect. Summarizing
dependency management, there are two types of dependencies: Package
dependencies, which are explicitly declared in the manifest and resolved somewhere
between the installation and the startup of a bundle. Second, there’s service
dependencies, which are completely dynamic, since any service can appear and
disappear at any point in time. This creates a very flexible system, but at the same
time places a heavier burden on the developer, since he has to cope with changes in
the availability of the services he uses. There are two types we can distinguish:
required dependencies, which simply must be available, otherwise the component
cannot do its job, and optional dependencies, which can be used if available, but are
not necessary for the basic operation of the component.
The OSGi framework itself provides basic support for managing dependencies, but
still leaves you as the developer with some repetitive work. Luckily, there are many
available libraries to manage these dependencies for you. Of these, declarative
services is part of the R4 spec, the others are simply bundles which can be used in
any framework. In general, these libraries allow you to simply design your services as
POJO’s and declare their dependencies and have them injected. The main
differences between these implementations is how these dependencies are declared
and injected. For example, the dependency manager uses a Java API whilst the
service binder uses an XML file. We intend to start merging these different libraries
into one though. The main point I want to make is that you can write your services as
POJO’s, which is convenient and does not tie you to a framework like OSGi, so
there’s no “standard lock-in” ;)

16

Software testing
• Unit tests

• Build on your POJO's
• Mock service dependencies

• Integration tests
• Use a test framework
• Create tests that validate the life-cycles
• Test on multiple frameworks

• Continuous build
• catch bugs early

From using POJO’s it’s only a short step towards testing, because when you can write
your software using POJO’s, it makes it a lot easier to test. Again, a lot of these tips
are neither rocket-science, nor OSGi specific.
Using the POJO’s you can write a lot of unit tests. The service dependencies can then
easily be mocked. We have good experience using the EasyMock library, but there are
others which will no doubt work just as well. For each test, simply inject the mocked
services and you can easily write tests. Also, these tests will usually run very quickly,
which for big projects is a great advantage. I’ve recently been involved in a large
J2EE project that wanted to start using a continuous build process. The only
problem, their build and test cycle took somewhere between 4 and 6 hours so every
time their nightly build failed, they had only a couple of hours to fix the problem and
restart a build during the day time if they wanted to check if the problem would
really be gone once the next nightly build would run. This might be a bit extreme,
but I’ve seen more projects that take a long time to go through all their tests.
So basically my first advice is to test as much as possible using unit tests. The next
step is to invest in an automated integration test framework. You can use this to test
the collaboration of a whole group of components, and to do bundle life-cycle tests:
do all my bundles start, stop and update correctly. Since the OSGi framework itself is
fairly lightweight, it’s possible to simply start a whole framework, deploy some
bundles and run a test. You can use something like JMX or RMI to remotely control
the framework and get the results of the tests.
Finally, use a continuous build. This is simply another means of detecting problems as
early as possible.

17

Leveraging standard services
• OSGi compendium – catalog of standard

service descriptions
• Repository at bundles.osgi.org – over 1400

bundles, implement compendium and
other services

• More and more projects are made OSGi
compatible (often extending the standard
manifest is enough)

In OSGi, there are several ways to use standard services and components.
First of all, the second part of the OSGi specification, called the compendium,
contains a set of standard services. These cover areas from logging to configuration
settings, from user management to a HTTP service. Often, multiple different
implementations exist for any of these services, so there’s plenty to choose from
based on your specific requirements.
A great source for bundles is the bundle repository on the OSGi website. Currently it
contains over 1400 bundles, which implement compendium and other services. There
is a web interface to query the repository but even better, there is a bundle that
allows you to query the repository from within an OSGi framework. Using that
bundle, you can either manually or automatically install certain bundles from this
repository. Because the repository also has knowledge about a bundle’s
dependencies, these get installat automatically too.
Looking into the future it will probably be possible to extend the repositories that
Maven currently uses to include OSGi manifest information. This would even further
increase the database of available pluggable components. At the moment, within
Felix we’re still working hard on creating all the necessary Maven plugins to create
bundles and we’re very open to cooperating with other projects, helping them
expose their jars as bundles.

18

The OSGi compendium

Log

HTTP

Device Access

Configuration Admin

Preferences

Metatype

Wire Admin
User Admin

IO Connector

Initial Provisioning

UPnP™ Device

Declarative Services

Event Admin

Service Tracker

XML Parser

Position

Measurement and State

Execution Environment Spec

This is a quick overview of the services in the compendium. It’s a broad mix, so we
won’t discuss all of them. Instead, we’ll look at three fairly generic ones, which
we’ve used in our projects a lot.

19

User Admin
• Used in any application that needs role

based access control
• Provides: users, roles and groups
• Can authenticate users
• Can determine autorization for

authenticated users
• Fairly easy to plug-in to HTTP, SOAP, RMI,

JMX or anything else

First of all is UserAdmin. This is a service to do role-based access control. You can
define users, groups and roles and perform authentication (is this user really who he
says he is) and authorization (is this user allowed to perform this operation). There
are several implementations of this service available. There is a relatively simple one
that uses an object persistency mechanism to store data. There also is a version that
talks to the Apache Directory Server (at least, there is one in development at the
moment). Obviously, since the service interface is always the same, it’s fairly easy to
switch implementations.

20

Config Admin and Preferences
• Configuration Admin:

• contains externally configurable settings for a
service;

• allows manage-
ment systems to
configure all settings;

• settings can be
created even before the
actual bundle is installed.

!"#$%"&'($)&%*+,-./'0%1&+&,2&%3 456357

8/9.$:;',-$/9%<=0$9%"&'($)&%">&)$.$),-$/9%%?&'2$/9%@A7 B9-'/=;)-$/9

!"# $%&'()*+,-(%&./01(&.

23+4(53.2635('(5,-(%&

!"#$%&'()*+

!"#7! 8&-+%0*5-(%&

!"#$%&'()*+,-.)&'$/01)'$2#,3)4#$)2$-'$)15&,.-'.$-25#4.$&($."#$0#56&71#'.$

&($-'$89:)$9#,3)4#$;6-.(&,1<$=.$-66&>2$-'$85#,-.&,$.&$2#.$."#$4&'()*+,-.)&'$

)'(&,1-.)&'$&($0#56&7#0$?+'06#2<$

%&'()*+,-.)&'$)2$."#$5,&4#22$&($0#()')'*$."#$4&'()*+,-.)&'$0-.-$&($?+'06#2$

-'0$-22+,)'*$."-.$."&2#$?+'06#2$,#4#)3#$."-.$0-.-$>"#'$."#7$-,#$-4.)3#$)'$."#$

89:)$9#,3)4#$;6-.(&,1<

!"#$%&'() *+,-"#$%./"+,'012",'3&%4"5&'64&%4"&7

!"#7!7! 9::3&-(,;:

!"#$(&66&>)'*$,#@+),#1#'.2$-'0$5-..#,'2$-,#$-22&4)-.#0$>)."$."#$%&'()*+,-A

.)&'$/01)'$2#,3)4#$25#4)()4-.)&'B

C 8+5.9'*+,-"#$%./"+,$D$!"#$%&'()*+,-.)&'$/01)'$2#,3)4#$1+2.$2+55&,.$

?+'06#2$."-.$"-3#$."#),$&>'$+2#,$)'.#,(-4#$.&$4"-'*#$."#),$4&'()*+,-A

.)&'2<

C :&-9&5/"+,D!"#$%&'()*+,-.)&'$/01)'$2#,3)4#$1+2.$?#$-?6#$.&$0#0+4#$."#$

'-1#2$-'0$.75#2$&($."#$'##0#0$4&'()*+,-.)&'$0-.-<

C 8&#.5;D!"#$%&'()*+,-.)&'$/01)'$2#,3)4#$1+2.$2+55&,.$4&'()*+,-.)&'$

0-.-$&($#E)2.)'*$#'.).)#2$F2+4"$-2$0#3)4#2G<

C 6<=&5/'6%"&,/&1'D$!"#$%&'()*+,-.)&'$/01)'$2#,3)4#$1+2.$2+55&,.$."#$4,#A

-.)&'$-'0$0#6#.)&'$&($)'2.-'4#2$&($4&'()*+,-.)&'$)'(&,1-.)&'$2&$."-.$-$

?+'06#$4-'$4,#-.#$."#$-55,&5,)-.#$'+1?#,$&($2#,3)4#2$+'0#,$."#$4&'.,&6$

&($."#$%&'()*+,-.)&'$/01)'$2#,3)4#<

!"#$%&
'()*#(%&

!"#$%+,-
'()*#(%+$#*(

C;9=+&
=&(&+/>&'

D'$-&2
,%C;9=+&

C;9=+&%$2
=&>+/E&=

)/9.$:;',-$/9

8/9.$:;',-$/9
<=0$9

=,-,

Then there’s ConfigAdmin and Preferences. These are two services that at first
glance seem to have some overlap, since both are concerned with some kind of
“preferences” but upon closer examination, they are complementary:
ConfigAdmin contains all externally configurable settings for a service. For example,
let’s say we have a HTTP service. This is a service with several settings. You can
specify the port to listen to, and if the service should use SSL or not. ConfigAdmin
allows you to externally configure these settings, even if the actual HTTP service is
not even installed yet. This allows a management system to centrally manage
settings for all services.

21

Config Admin and Preferences

!"#$%"&'($)&%*+,-./'0%1&+&,2&%3 4445367

*'&.&'&8)&2%"&'($)&%"9&)$.$),-$/8%%:&'2$/8%4;4 *'&.&'&8)&2%<8-&'.,)&

!"#$%&'() *%&+&%&,-&.'/01..'2"1#%13

!"#$!$% &'()*+,-.

!"#$%&'%()#$(*$+"#$,'#*#'#-.#)$/#'01.#$)%#.1*1.2+1(-$1)$+($233(4$5&-63#)$+($

)+('#$2-6$'#+'1#0#$%'(%#'+1#)$)+('#6$1-$2$+'##$(*$-(6#)7$4"#'#$#2."$-(6#$

18%3#8#-+)$+"#$!"#$#"#%&#' $1-+#'*2.#9$!"#$!"#$#"#%&#'(#")*&# $1-+#'*2.#$

233(4)$2$5&-63#$+($.'#2+#$('$(5+21-2,'#*#'#-.#)$+'##$*('$):)+#8$%'(%#'+1#)7$

2)$4#33$2)2,'#*#'#-.#)$+'##$*('$#2."$&)#'$(*$+"#$5&-63#9

!"1)$)%#.1*1.2+1(-$233(4)$*('$18%3#8#-+2+1(-)$4"#'#$+"#$62+2$1)$)+('#6$

3(.233:$(-$+"#$)#'01.#$%32+*('8$('$'#8(+#3:$(-$2$52.;<#-6$):)+#89

!"#$/ 0)(1()(.2(345.+()1*2(

!"#$#"#%&#' $1)$2-$1-+#'*2.#$+"2+$6#*1-#)$+"#$8#+"(6)$+($82-1%&32+#$2$-(6#$

2-6$+"#$+'##$+($4"1."$1+$5#3(-=)9$>$!"#$#"#%&#' $(5?#.+$.(-+21-)@

A >$)#+$(*$%'(%#'+1#)$1-$+"#$*('8$(*$;#:B023&#$%21')9$

A >$%2'#-+$-(6#9

A >$-&85#'$(*$."136$-(6#)9

!"#$/$! 6,()*)27,(3

>02316!"#$#"#%&#' $(5?#.+$2342:)$5#3(-=)$+($2$4%&&9$>$+'##$1)$16#-+1*1#6$5:$1+)$

'((+$-(6#9$C-$)&."$2$+'##7$2$!"#$#"#%&#' $(5?#.+$2342:)$"2)$2$)1-=3#$%2'#-+7$

#D.#%+$*('$2$'((+$-(6#$4"1."$"2)2%+,, $%2'#-+9$

!"#$'((+$-(6#$(*$2$+'##$.2-$5#$*(&-6$5:$'#.&')10#3:$.2331-=$+"#$-."#%/01 $

8#+"(6$(*$2$-(6#$&-+13$%+, , $1)$'#+&'-#69$!"#$-(6#)$+"2+$2'#$+'20#')#6$+"1)$

42:$2'#$.233#6$+"#$1,-&.45%.$(*$2$-(6#9

!"#$#"#%&#'2345#2
*6-,#6#%/./*4%

77*%/#"$.X
0)(1()(.2(3
8()9,2(

77*%/#"$.X
0)(1()(.2(3

!"#$#"#%&#'2
(#")*
*6-,#6#%/./*4%

.29+%5,#

'//-%2=2-&0%8/>&

'//-%?2&'%8/>&2

4

4

4

@;;8

@;;8 48/>&2

?2&'%8,0&

8/>&%8,0&

:+%5,#2
!"#$#"#%&#'

:*2;,.<8+-)(
=>2('+,-.

9,'&8-

@;;8

4

4A8%B?8>+&%5%2&'($)&

• Preferences:
• contains bundle private

settings;
• is coupled to the bundle

life-cycle;
• like the standard Java API

there is a notion of system
and user preferences per
bundle.

Preferences is very similar to the standard Java API with the same name. Each
installed bundle has its own set of preferences (both user and system preferences,
but the actual interpretation of what a user in the context of that bundle is, is left to
the developer). These preferences are persistent, and they also “survive” updates of
the bundle. However, there is no mechanism to externally manipulate them. So
typically these preferences are used for internal settings. For example, imagine a
bundle that shows a Swing GUI, then the preferences for this bundle could contain
the window positions (per user if relevant).

22

Extending the service registry
• Plain OSGi: service implementation +

interface(s)
• Add interfaces to the implementation
• Leveraging the life-cycle

events of the service registry
• Java 5 annotations
• XML descriptors
• Super interfaces
• …

MusicStoreImpl

«OSGi
service»«remote

able»

«manage
able»

Next up, let’s discuss extending the service registry. Normally, in plain OSGi, you
have a service implementation and an interface that you will register in the OSGi
service registry. What you can do is use the event mechanism of this registry to
notify your own listener. If you then decorate your service implementations with
extra interfaces, you can give them to a factory and, for example, create JMX
MBeans for a management interface. In the next slides, I’ll show some examples of
what we’ve done.

23

Remote management with JMX
• Spec globally describes management, does

not choose any specific technology
• JMX is the Java standard for remote

management, so using it makes sense
• Built into Java 5, MX4J for many other

cases

When you want to do remote management, the OSGi spec globally defines how you
can do it, but it does not prescribe any specific technology. A lot of times, it makes
sense to use JMX because it’s the standard Java way of doing management. We use
Java 5, so we can take advantage of the built-in JMX implementation. Extending the
service registry like explained before, we can generate MBeans automatically and
publish them into the MBean server. For developers creating manageable views of
services, this is a very easy model to use. We actually use annotations to provide the
meta-data for the factory that will automatically generate the MBean.

24

Remote access with SOAP
• System rarely exists in isolation, therefore

we need remoting
• SOAP can be plugged in easily
• We used XFire, but others have integrated

Apache Axis too
• JSR-181 web service annotations

@WebService

Another example is SOAP. The reason for using SOAP is that it is a great way to
provide access to your framework from other platforms and environments.
We’re using XFire, but others have integrated Axis too. In the end, we can simply
annotate an interface with the @WebService annotation and have the XFire bundle
pick that up and turn the interface into a SOAP interface. So all you need to do as a
developer is tag the interfaces you want to have available remotely.

25

Embedding OSGi
• Embedding OSGi

• in Java Web Start
• in a servlet container
• in a J2EE server
• in OSGi

• OSGi embedding
• makes existing frameworks more flexible:
• Wicket, Cocoon, Spring (SPR-1802), (?), …

Another interesting subject is the embedding of OSGi. Basically there are two things
you can do. Either you embed OSGi in some other container or framework, or you
embed something else in OSGi.
OSGi itself can be embedded in other containers. For an open source desktop
application I have created a Java Web Start application that bootstraps an OSGi
framework that subsequently installed the rest of the application. For a customer of
ours we’re currently embedding OSGi in a servlet container to create a pluggable
web application where you can update parts of the application without having to
restart the whole web application. Also, there have been various examples of using
an OSGi framework inside a J2EE application container.
The other way round, you can embed other applications in OSGi. There are several
projects considering such a thing and I have personally experimented a bit with
Wicket, creating pluggable web applications.

Talking to an embedded Felix
• WARNING: this is implementation specific!

26

public class Main implements BundleActivator {
public static void main(String[] args) {

(new Main()).init();
}
public void init() {

Felix fw = new Felix();
List activatorList = new ArrayList();
activatorList.add(this);
fw.start(propertyResolver, activatorList);

}
public void start(BundleContext ctx) {

// context is your hook into the system!
}
public void stop(BundleContext ctx) {

// indicating the framework is stopped
}

}

Finally, this is an example of how to embed Felix in an application and how to
communicate with it. Basically, you provide a BundleActivator that you pass to the
framework when you start it. Your activator’s start() method will then be called,
allowing you to get hold of the BundleContext. This is your hook into OSGi.

Wrapping it up…
• Share some experiences!
• Any questions?
• Get on the Felix mailing list and ask!

27

