HIGH PERFORMANCE
PHP

GEORGE SCHLOSSNAGLE

<georgef@omniti.com>

WHAT IS PERFORMANCE?

e EENSURING THAT YOUR APPLICATION
WORKS CORRECTLY WITHIN REQUIRED
TIME CONSTRAINTS.

FACTORS AFFECTING
PERFORMANCE

e WEBSERVER SETUP

e | ANGUAGE OPTIMIZATION

e DATABASE SETUP

e DATA SETUP

e NETWORK SETUP

e APPLICATION DESIGN

e APPLICATION IMPLEMENTATION

LANGUAGE OPTIMIZATION

* NUMBER ONE IMPROVEMENT YOU CAN
MAKE IS USING A COMPILER CACHE

— APC
— PHPA
— ZEND CACHE

e CODE OPTIMIZER

— ZEND OPTIMIZER
— 777

DATABASE/DATA SETUP

e DATABASES NEED THEIR OWN TUNING
— SERVER SETUP
— SMART SCHEMA DESIGN

— BUILDING INDEXES/ STRUCTURING
QUERIES TO BE EFFICIENT

* HIRE A DBA, OR BECOME A DBA

APPLICATION DESIGN

e MACRO-LEVEL TUNING

e QUESTIONS:

— DOES THE APPLICATION DO WHAT WE
WANT AND NO MORE?

— ARE THERE DESIGN CHANGES THAT CAN
IMPROVE PERFORMANCE WITHOUT
SACRIFICING NECESSARY FEATURES?

APPLICATION DESIGN

e EXAMPLES
— APPLICATION-INTEGRATED CACHING
— REDUCING FEATURE BLOAT

APPLICATION IMPLEMENTATION

e MICRO-LEVEL TUNING

 IDENTIFYING AND ADDRESSING
PERFORMANCE BOTTLENECKS IN
SPECIFIC CODE SECTIONS

ROADMAP

SET GOALS
PROFILE
TUNE
EVALUATE

SETTING GOALS

e SO MANY THINGS TO MEASURE

PROFILING

Profiling 1s about
knowing where you
are and where you are

going.

WHY PROFILE?

e FINDING BOTTLENECKS IN A LARGE
CODE-BASE CAN BE DIFFICULT.

e QUANTITATIVE METHODS ARE LESS
SUBJECT TO PERSONAL. BIAS.

e TO SET METRICS FOR SUCCESS.

FINDING TROUBLESOME CODE

 SLA DRIVEN

POLITICAL. CONCERNS DICTATE
PERFORMANCE NEEDS FOR PARTICULAR
SCRIPTS. THIS MAKES GOAL-SETTING EASY,
ALTHOUGH PROBLEMS CAN LIE OUTSIDE THE
SYMPTOM.

* SMALL VOLUME

IF YOU HAVE FEWER THAN 10 FREQUENTLY
ACCESSED SCRIPTS/PAGES, OR IF YOU'RE
TROUBLESHOOTING A STANDALONE APP, SKIP
THESE STEPS AND PROFILE ALL THE CODE.

 RAW RESOURCE USAGE DRIVEN
A RELATIVELY FAST BUT FREQUENTLY

i ABE | W adi

EXECUTED SCRIPT CAN BE A BOTTLENECK. IF Salwi oo B
WE HAVE A SIGNIFICANT NUMBER OF .
CANDIDATES, WE NEED TO KNOW WHERE TO ‘M
FOCUS OUR EFFORTS.

RESOURCE MEASUREMENT
METHOD #1

UTILIZE PSYCHIC ABILITIES
(OR AN INNATE UNDERSTANDING OF THE APPLICATION)

RESOURCE MEASUREMENT
METHOD #2

1 5’/\‘

A BIT OF SCIENCE

TOTAL RESOURCE UTILIZATION =
(COST PER ACCESS) * (NUMBER OF ACCESSES)

RESOURCE MEASUREMENT ATTEMPT #1
MEASURING WITH APACHE’S
MOD_LOG_CONFIG

ADD “%T” TO YOUR APACHE LOGS:

o°
|_I
o°
[

o°
d—
-~
o°
H

-~

LogFormat "%h " %>s %$b $T” profile
e QUICK AND DIRTY

e SECONDS-ONLY ACCURACY IS TROUBLE, ESPECIALLY IF
MOST SCRIPTS AVERAGE LESS THAN A SECOND

HOT-ROD YOUR
MOD_LOG_CONFIG

WE CAN ADD LOW-COST, HIGH-RESOLUTION

TIMERS TO MOD_LOG_CONFIG.

— APACHE IS EASY TO HACK

— THIS ALSO ALLOWS FOR EXPOSURE OF POTENTIAL
PROBLEMS OUTSIDE PHP

— MUCH LESS INFORMATION TO PROCESS THAN FULL
TRACES

PHP-USERSPACE PROFILERS

e BENCHMARK PROFILER (PEAR)

PROFILERS THAT SIT IN THE
ZENDENGINE

e DBG (HTTP./ /DD.CRON.RU/DBG/)
e APD (PECL)

GENERATING PROFILES WITH APD

DOWNLOAD FROM PECL
OR
GET THE LATEST FROM PECL. VIA ANON CVS
> cd apd
> phpize; configure --enable-apd=shared
> sudo make install

IN PHP.INI ADD
THIS AUTOMATICALLY SHOULD INSTALL THE 'PHP_APD' ZEND MODULE INTO YOUR

<PHP INSTALL PATH>/1lib/php/<ZEND VERSION><-OPTIONAL DEBUG>/

DIRECTORY. IT ISN'T MANDATORY TO HAVE IT THERE, IN FACT YOU CAN INSTALL
IT ANYWHERE YOU CARE. IN YOUR INI FILE, ADD THE FOLLOWING LINES:

zend _extension = /absolute/path/to/php apd.so
apd.dumpdir = /absolute/path/to/trace/directory

READING APD PROFILES

pprofp <flags> <trace file>

Sort options

-a Sort
-1 Sort
-r Sort
-R Sort
-s Sort
=S Sort
-u Sort
-U Sort
-V Sort
-Z Sort

Display options

by
by
by
by
by
by
by
by
by
by

alphabetic names of subroutines.

number of calls to subroutines

real time spent in subroutines.

real time spent in subroutines (inclusive of child calls).
system time spent in subroutines.

sys. time spent in subroutines (inclusive of child calls).
user time spent in subroutines.

user time spent in subroutines (inclusive of child calls).
average amount of time spent in subroutines.

usert+system time spent in subroutines. (default)

-c Display Real time elapsed alongside call tree.

-i Suppress reporting for php builtin functions

-0 <cnt> Specifies maximum number of subroutines to display. (default 15)
-t Display compressed call tree.

-T Display uncompressed call tree.

?2>

SUPER-SIMPLE EXAMPLE

apd_set pprof trace();

function my print($var) {
print S$var;

}

function hello($var) {
Svar = ucfirst(strtolower(S$var);
return “Hello S$var\n”;

}
my print(hello(“George”));

PROFILE

[~/bench/php]> pprofp -T /tmp/pprof.25044
main
hello
strtolower
ucfirst
my print

Trace for hello.php

Total Elapsed Time = 0.01
Total System Time = 0.00
Total User Time = 0.00
Real User System secs/ cumm
$Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Name

0.0 1 0.0000 0.00 my print
0.0 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.00 ucfirst
0.0 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.00 strtolower
0.0 0.00 0.00 0.00 0.00 0.00 0.00 1§ /Mpooo 0.00 hello

0.0 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.00 main

FLOAT LIKE A BUTTERFLY
STING LIKE A BEE

PROFILING FAST RUNNING CODE
— BUILD A TESTING HARNESS

WHERE TO PROFILE

e IN DEVELOPMENT

v EASIEST

v 'REAL’ DATA OFTEN NOT AVAILABLE
e ON LIVE PRODUCTION CODE

v OFTEN LOGISTICALLY DIFFICULT

v CAN UNCOVER PROBLEMS NOT EXPOSED
ELSEWHERE DUE TO DATA
DIFFERENCES/ CONCURRENCY LEVELS

EXAMPLE: SEVEN DIRTY WORDS

PROBLEM:. A PERSONAL-PAGE APPLICATION
WHICH STORES CONTENT IN A DATABASE AND
FILTERS THEIR CONTENT FOR POTENTIALLY

MALICIOUS JAVASCRIPT IS MISBEHAVING IN
PRODUCTION.

EXAMPLE: SEVEN DIRTY WORDS

e FIRST WE PROFILE THE PAGE IN OUR TEST ENVIRONMENT:

Real

User

$Time (excl/cumm)

System

(excl/cumm)

secs/

(excl/cumm) Calls

cumm
call

s/call Name

5.0

50

0.0002
0.0025
0.0005
0.0001
0.0002

define
ociexecute
include
ocifetch
bar

EXAMPLE: SEVEN DIRTY WORDS

COMMENTS:

e 12 DB CALLS SEEMS EXCESSIVE, WE MAY BE
EXPERIENCING A DB BOTTLENECK

e OVERALL EXECUTION IS FAST, WE SHOULD LOOK
AT CODE RUNNING AGAISNT ‘LIVE’ DATA

EXAMPLE: SEVEN DIRTY WORDS

SAME PROFILE RUN IN PRODUCTION:;

Real User System secs/ cumm
$Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Name
99.9 20.02 20.02 9.13 9.13 0.01 0.01 54 1.1693 1.16 preg match
0.0 0.00 0.00 0.10 0.10 0.00 0.00 12 0.0083 0.00 ociexecute
0.0 0.02 0.02 0.04 0.04 0.02 0.02 390 0.0002 0.00 define
0.0 0.00 0.00 0.02 0.02 0.00 0.00 94 0.0002 0.00 ocifetch
0.0 0.04 0.21 0.01 0.16 0.01 0.03 37 0.0005 0.01 include

WOAH! A quick look at the call tree shows us

preg match /data/code/php/util/filters.php:326 time:(166,0,505)

EXAMPLE: SEVEN DIRTY WORDS

THIS CODE BLOCK IS:

function detectUnsafeHTML(S$html)

{
global $UNSAFE_HTML;

foreach (SUNSAFE HTML as S$rule) {
if (preg match($rule, $html)) {
return -1;

}
}

return 0;

}
AND SUNSAFE HTML IS AN ARRAY OF ‘UNSAFE’ TAGS AND OR PROFANITY
THAT WE DISALLOW. SINCE WE LOOP THROUGH THE LIST, SINCE THEY ARE
PROCESSED IN ORDER, WE CAN EVEN SPOT THE SLOW ONES IN THE LOOP.

EXAMPLE: SEVEN DIRTY WORDS

SUNSAFE HTML[]
SUNSAFE HTML[]
SUNSAFE HTML]]

!I<.*["a-z]onload\s*=!is";

!I<.*["a-z]onunload\s*=!is";

!I<.*["a-z]onerror\s*=!is";

GEE, WHO ADDED THESE? EACH RUNS IN O(N*M), WHERE N IS THE
NUMBER OF ‘<‘sS AND M IS THE NUMBER OF ‘onerror’S, ETC. SINCE
WE CAN'T GUARANTEE THAT THESE ARE EVEN INSIDE TAGS THIS WAY,
WE MAY AS WELL CHANGE THEM TO

SUNSAFE HTML]]
SUNSAFE HTML]]
SUNSAFE HTML]]

lonload\s*=!is";

lonunload\s*=!is";

lonerror\s*=1is";

EXAMPLE: SEVEN DIRTY WORDS

SAME PROFILE RUN IN PRODUCTION:;

Real User System secs/ cumm
$Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Name
0.0 0.00 0.00 0.11 0.10 0.00 0.00 12 0.0083 0.00 ociexecute
0.0 0.02 ©0.02 0.04 0.04 0.02 0.02 390 0.0002 0.00 define
0.0 0.00 0.00 0.02 0.02 0.00 0.00 94 0.0002 0.00 ocifetch
0.0 0.04 0.21 0.01 0.16 0.01 0.03 37 0.0005 0.01 include
0.0 0.01 0.01 0.02 0.02 0.02 0.02 54 0.0003 0.00 preg match

MUCH BETTER!

BAD REGULAR EXPRESSIONS OFTEN ONLY SHOW THEIR TRUE COLORS UNDER
CERTAIN DATA, SO BE CAREFUL. REMEMBER FOREWARNED IS FOREARMED.

INTERPRETING PROFILES

* PROFILING IS OFTEN VIEWED

) AS BLACK MAGIC

1 = i o
* + ik o
s . prd
g = 1
ol e
e, W
a - .
=
4
i

BENCHMARKING

USING BENCHMARK_ITERATE

USE BUILTINS/ EXTENSION
FUNCTIONS WHEN AVAILABLE

e BUILTIN FUNCTIONS ARE
SIGNIFICANTLY FASTER

MAX PAIN

include (‘Benchmark/Iterate.php’) ;

function my max(Sarray) {

Smax = Sarrayl[l];
foreach(Sarray as $el) {
if (Sel > Smax) {
Smax = S$el;

}

return Smax;

$benchmark = new Benchmark Iterate;
foreach (array (10, 100, 1000) as $size) {
foreach (array('max') as Sfunc) {
$array = gen array($size);
Sbenchmark->run (1000, S$func, Sarray):;
Sresult = S$benchmark->get () ;
print "$func run on datasize S$size: ".Sresult['mean']."\n";

MAX PAIN RESULTS

>php max.php
max run on datasize 10: 7.12444782257E-05
my max run on datasize 10: 0.000111220359802

max run on datasize 100: 8.70881080627E-05
my max run on datasize 100: 0.000425333499908

max run on datasize 1000: 0.000373518824577
my max run on datasize 1000: 0.0121217674017

THE BUILT-IN FUNCTION IS BETWEEN 2 AND 30 TIMES FASTER,
WITH INCREASING RETURNS AS OUR DATA SET GROWS.

WHAT IS THE MATRIX

MULTI-DIMENSIONAL ARRAY
SLICES

function get slice naive(Sarray) function get slice reset(Sarray)
{ {
Sretarr = array(); return array map ("reset”, Sarray) ;
foreach($array as Sel) { }
Sretarr([] = $el[0];

}

return Sretarr;

LOOPING CONSTRUCTS

* WHEN USING BUILTIN FUNCTIONS,
THERE IS A SUBSTANTIAL BENEFIT TO
USING BUILTIN LOOPING FUNCTIONS
LIKE ARRAY_MAP AND ARRAY_WALK

e OTHERWISE, MOST METHODS ARE
ABOUT EQUAL

USE YOUR DATABASE WISELY

e AVOID EXPENSIVE SQL

e ONLY SELECT THE INFORMATION YOU
WANT, ESPECIALLY FROM ‘WIDE
TABLES’

e STRIKE A BALANCE BETWEEN
APPLICATION-SIDE PROCESSING AND
DATABASE-SIDE PROCESSING

EXAMPLE:. PAGINATION (V1)

Function display page(S$pageNumber, $itemsPerPage)
{
$conn = ociconn wrapper();
Squery = (“SELECT * from guestbook order by date”);
$sth = Ociparse($conn, S$query);
Ociexecute($sth);
While(ocifetch($sth) && $I < ($page_number *

SitemsPerPage)) { SI++}

While(ocifetchinto(sth, Sresult) && SitemsPerPage--) {
Sretval[] = Sresults;

}

ocifinish(Ssth);
return Sretval;;

EXAMPLE: PAGINATION (V2)

Function display page(S$pageNumber, $itemsPerPage)
{
$conn = ociconn wrapper();
Squery = (“select * from
(select a.*, a.rownum rowid from
(SELECT * from guestbook order by date)
) where rowid between :begin and :end”);
$Ssth = Ociparse($conn, S$query);
Sbegin = SpageNumber * S$itemsPerPage;
Send = $begin += S$itemsPerPage;
ocibindbyname($sth, “:begin”. &$begin, -1);
ocibindbyname($sth, “:end”, &S$end, -1);
Ociexecute($sth);
ocifetchintostatement($sth, Sretval);
ocifinish($sth);
return Sretval;

EXAMPLE: PAGINATION (V3+)

e |[F WE ARE BUILDING OUT AN ‘INDEX’ PAGE
WITHOUT THE MESSAGE BODIES (JUST
SUBJECTS AND SENDERS), WE MAY WANT TO
AVOID THE NETWORK/MEMORY LOAD OF
SELECTING THE BODIES OUT.

e STORING PAGE NUMBERS IN THE DATABASE

(CAN BE EXTREMELY EXPENSIVE IF DELETE
LOAD IS HIGH)

e USING A FILESYSTEM/ SHARED-MEMORY CACHE
(IF OPERATING IN A CLUSTER, MAY REQUIRE A
DISTRIBUTED CACHE DELETION METHOD)

THANKS FOR THE MEMORIES

MEMORY IS CHEAP BUT NOT FREE

KNOW YOUR ZEND ENGINE

HOW DOES ALL THIS PROFILING
STUFF WORK

TWO STRAIGHTFORWARD METHODS

» USE BEGIN_FUNC_CALL/END_FUNC_CALL
HOOKS

* WRAP
ZEND_EXECUTE/ZEND_EXECUTE_INTERNAL

WHERE TO GO FROM HERE

* |F OTHER TUNING METHODS ARE NOT
SUCCESSFUL, WE CAN RECODE PORTIONS OF
THE APP IN C.

THE FAST AND THE FRUSTRATED
RECODING CRITICAL FUNCTIONS IN C

BENEFITS:

e SPEED

COSTS:

e HARDER TO MAINTAIN
e | ESS PORTABLE

INLINE_C

BENEFITS:

* AS FAST AS AN EXTENSION (ALMOST)
e SOMEWHAT EASIER TO MAINTAIN
COSTS:

e SECURITY

e FLEXIBILITY

A SIMPLE EXAMPLE

<?

require once("Inline C.php");
Sfunctionl = <<<EOF

PHP FUNCTION(times)

{
long i,3;
if (zend parse parameters(ZEND NUM ARGS() TSRMLS cc, "11",
&i,&j) == FAILURE) o — —
return;
RETURN LONG(i*j);
}
EOF;

$inline = new Inline C;
Sinline->add code($functionl);
Sinline->compile();
for($i=0;$i<10;S$i++) {
for($j=0; $3j<10; $j++) {
print "S$i * $j = ".times($i,S$j)."\n";
}

?2>

A LESS SIMPLE EXAMPLE
(IMPLEMENTING RC4)

e USE PEAR'S CRYPT_RC4
— [N PEAR.
— EASY TO USE.
— NOT EXTREMELY FAST.

e IMPLEMENT IN C
— FASTER
— MORE MAINTENANCE REQUIREMENTS

A LESS SIMPLE EXAMPLE
(IMPLEMENTING RC4)

$helper = <<EOF for(i=0;i<k_len;i++)

#define swap byte(x,y) t = *(x); *(x) = *(y); {

*(y) = t digit[2] = key[1*2];
void _rc4(unsigned char *buffer, int buflen, digit[3] = key[i*2+1];
{ unsigned char *key, int k_len) sscanf(digit, "$x",sseed[i]);

. . . }

h = = dexl = 2
unij%?ei-c:ﬁ? x =0, y 0, index U s for(counter = 0; counter < 256; counter++)
4 14 14
s[counter] = counter;

unsigned char k[256], s[256];
unsigned char xorIndex, t;
char digit[5]; {

for(counter = 0; counter < 256; counter++)

char seed[256]; t;iﬁxZ = (k[indexl] + s[counter] + index2) %
hort ter; ' .
in:rn.coun er swap_byte(&s[counter], &s[index2]);
! indexl = (indexl + 1) % k_ len;
. }
f(k_lens&l
* é I en&l) { for(counter = 0; counter < buflen; counter++)
en--;
" T {
e x = (x + 1) % 256;
} 14
= (s[x] + % 256;
k len /= 2; y = (s[x] +y)

swap_byte(&s[x], &s[yl);
xorIndex = (s[x] + s[y]) % 256;

A

buffer[counter] "= s[xorIndex];

strcpy(digit, "AA");
digit[4]='\0";

EOF;

A LESS SIMPLE EXAMPLE

(IMPLEMENTING RC4)

Sfunction = <<EOF
PHP_ FUNCTION(rc4)

{
char *data, *key;
int datalen, keylen;
if (zend parse parameters(ZEND NUM ARGS() TSRMLS CC,
&datalen, &key, &keylen) == FAILURE)
return;
_rcé4(data, datalen, key, keylen);
RETURN STRINGL(data, datalen, 1);
}

EOF;

"SS",

&data,

A LESS SIMPLE EXAMPLE
(IMPLEMENTING RC4)

$inline = new Inline C;
$inline->add code(Shelper);
S$inline->add code($function);
Sinline->compile();

Sencode = rc4("hello world", "d3adb33f");
Splaintext = rc4 (Sencode, "d3adb33f");
print "Plaintext: $plaintext\n";

SUMMARY

*THINK SMART!

SOUND APPLICATION (RE)DESIGN CAN BE
YOUR BIGGEST WIN.

L. OOK SMART!

USE PROFILING TO FOCUS YOUR EFFORTS
ON TROUBLESOME CODE BLOCKS.

BE SMART!

C IS FAST, BUT CARRIES MAINTENANCE
OVERHEAD. MAKE SURE YOU ENTER
THESE WATERS WITH PRUDENCE.

THANK YOU!

	Navigation
	Return to menu
	Search

