
Scalable Internet Architectures
George Schlossnagle <george@omniti.com>

Theo Schlossnagle <theo@omniti.com>

Introduction
As worldwide usage of the web explodes, companies and the individuals who power
them are constantly forced to ask 'How can I make this application scale.' While
presenting a general answer to this question is impossible, we feel that there are enough
general principals and particular experiences to fuel a healthy conversation about
methodologies for approaching such problems. Thus, this talk is not a recipe of how to
scale your particular app but rather an outline of how you might approach answering that
problem for yourself (which is in fact a central point in itself: you know your data better
than anyone else, and thus you are uniquely suited to answering your scalability problems
in an efficient manner.)

The foremost issue is to define what we mean by 'scalability.' The Free On-line
Dictionary of Computing defines it thus: Definition: How well a solution to some
problem will work when the size of the problem increases.

This is still a very vague definition, so we will refine it to say that a scalable solution
must retain the following attributes as demands increase:

• Performance
• Manageability
• Stability
• Efficiency

Performance
Defining performance is perhaps harder than defining scalability. Everyone has their own
yardstick for performance - memory statistics, io statistics, cpu utilization statistics to
name a few. While all these stats are good for diagnosing system and application
problems, they are really poor metrics for benchmarking webserver performance.
Webservers exist to provide content to their clients. The client (who either philosphically
or financially justifies the existence of the webserver) does not care whether the server is
paging hard, has a hot disk or a high load average. The client cares that their page comes
back quickly and reliably. System level statistics can provide excellent tools for
diagnosing problems, but they themselves are not what is critical to monitor.

Manageability
As systems evolve they naturally tend to increase in complexity, particularly when they
combine various custom and 3rd party applications. It's very easy for a collection of
simple components to turn into a management nightmare. Do your applications require
daily human attention to run correctly? If you are struck by a bus tomorrow, how long
would it take your replacements to stabilize all your information systems?

Stability
Stability and manageability are close kin. If you're running a high-capacity website, you
need to be available 24x7. As demand grows and your server farms expand, you
encounter a double-edged sword. On one hand, the growing client base means that
downtime is tolerated less and less, while the increase in components means that the
mean time to failure of a component is reduced. It is critical to plan for failure. The loss
of any single component can not seriously impact overall site performance.

Efficiency
An oft overlooked element of building any high-capacity system is efficiency Datacenter
space costs money. Machine resources cost money. Still, people routinely write
inefficient application code, run untuned systems and poorly designed databases, and
waste bandwidth. Often times this is a product of overly fast development cycles, or low
expected utilization. Just remember it's always easier to build something correctly in the
first place rather than rebuild it later when it breaks in production.

In this talk we will talk about design philosophies to improve the scalability of your
architecture, and analyze two case studies. Our exact agenda is:

• Choosing a Hardware/Application/Availability Architecture
• Deciding Between Commercial/Open-Source Solutions
• Case Study I: Setting up Local Proxies
• Case Study II: Application-Integrated Caching
• Case Study III: Distributed Logging

Choosing a Architecture
For the purposes of this paper we'll break hardware down into two categories: Enterprise
and Commodity. Enterprise hardware is characterized as being highly reliable, easily
maintainable, multiprocessor boxen, designed purposely for operating in a high-
availability/high-performance environment. Machines in this class tend to expensive and
come from vendors like Sun, HP, SGI, IBM, and Compaq. Commodity Hardware is
(generally) x86 architecture machines, using 'off-the-shelf' parts. They are cheap,
relatively unreliable, and surprisingly fast. Choosing the hardware that's right for you is
very much a matter of role. How important is the data? How available does it need to be?

A good rule of thumb for choosing appropriate hardware is how replicateable the data is.
Data such as html or php/perl sources are highly replicateable - it's very easy to stick
master copies in some location and synchronously copy them out to all your web servers.
This is an ideal place for using commodity hardware. An array of Linux or BSD boxes
can provide a great deal of horsepower at a fraction of the cost of enterprise equipment. If
a single box dies it is easy to replace and the impact is nominal.

A database is a much harder object to replicate, especially in a highly transactional
system. Systems that provide real zero-downtime seemless failure are expensive and
incur performance penalties. With single-points-of-failure, all steps should be taken to
insure platform stability and data integrity. This is a natural place for enterprise hardware
and software. Basically, if you have to put all your eggs in one basket, you should make it
a good basket.

We will skip over the topic of what overall application platform to choose - this is an
almost religous question, and beyond the scope of this talk. That having been said, there
are application architecure ideas which can be incorporated anywhere. One critical idea is
to bring the data to your applications, not the application to the data. A prime example of
this is ssl load-balancing. The 'traditional' method for maintaining ssl sessions (or say a
Java App that requires a users session to remain on a single server) is to implement
'sticky' sessions on your load balancer. This is an awful way to approach this problem.
Advanced switching features have to be used, any application server death is service-
affecting, and it is impossible to do resource utilization based load balancing. A smarter
approach is to leverage distributed systems technology (such as Ben Laurie's Splash!) to
maintain a distributed session cache, so that sessions can be transparently handled by any
machine in the cluster. Splash! currently distributes SSL session keys, but could trivially
be modified to distribute application session data.

Deciding Between Commercial and Open Source
Systems

There may not be an Open Source solution to your problem…
until you write it yourself.

Choosing between a Commercial and Open Source solution is a hard choice, and not one
to be taken lightly. Political considerations aside (which are something for a different
talk), how do you make a technical decision on whether to pay for software, use freely
available software, or write your own custom software? The traditional reasons for
buying commercial software are code 'maturity' and support. Code maturity is based on
the idea that a major vendors product has been in many environments before yours, and
likely all the bugs and corner-cases you might experience have been troubleshot and
fixed already. While this is in many cases trues (especially in widely used products),
many sales people will have you believe that code maturity is unique to commercial

software. Apache itself is a clear counter-example showing that Open Source products
can exibit the same levels of quality as commercial software.

Support is another oft-toted reason to buy commercial products. Paying for support is a
good thing. 24x7 uptime demands that problems be resolved quickly and efficiently. The
more complex and critical a product, the more reasonable it is to pay for support. There is
definite value to being able to pick up the phone at 2am and at least have someone
looking at your problem. Does this mean support is a panacea? There are enough poor
support service stories for any product to make you think that support is worthless. But
once the disatisfaction of having outstanding bugs open for long periods of time wears
off, most professional managers will tell you that vendor support (at least from major
vendors) comes through 95% of the time. Support doesn't only come from vendors,
though. People will always be a technology companies greatest resource. Much as
sensible people wouldn't run a large Oracle install without a experienced group of DBAs,
if you rely on Apache to make your buisness run, it makes sense to have someone on staff
or retainer who knows Apache intimately.

Another important selection criteria is how well a given product fits your needs.
Especially in the fast-changing web industry, the market is bloated with products that do
'everything you need'. When does it make sense to eschew existing products and forge
your own?

This is a very difficult question. Custom products tend to be buggy (at least compared
with popular and widely used commercial and open source products – as they say, many
eyes make bugs shallow). Custom products can be difficult to impossible to support
(especially if the developers leave your organization). Custom products take time and
money (at least in developer time, if nothing else) to develop. Custom products are often
less flexible than widely available products which by their nature are designed to fit a
number of situations.

The most important thing that custom solutions have going for them is that you
understand your data better than anyone else, and thus it is possible to design a solution
specifically to your needs. So how do you decide when it's time? If you're not having
performance issues, and don't foresee performance issues within your growth
expectations, custom solutions are probably not worth the hassle. When you having
problems, look at the available offerings: Were they originally designed for your tasks, or
was that functionality tacked on in a recent version? Is your data model sufficeintly
different from their focus that there are significant performance gains to be made? Can
you afford the developer time necessary to implement a robust custom solution?

If a custom software solution you develop in house is not in itself a key business
deliverable, consider open sourcing it. Not only is this a positive thing for the open
source community, but it is positive for your application as well. Exposing your products
to a wide range of people accelerates bug detection, and can help mitigate risk by not
requiring the product to be supported entirely in-house.

Now let's analyze in depth some actual applications of these ideas.

Case Study I: Local Proxies
One of the benefits of a N-tier architectureis reducing the number of ‘heavyweight’
application processes by adding a light weight layer in front of it which handles
connections to clients. Why is this beneficial? Let’s do the math by looking at the
Components of the request time for a web request:

• Network transfer time ~8 packets at network latency at say 80ms latency
• Page generation time say 1/2 second

With these rough figures, network time is over half the transaction time. If we can
eliminate or reduce the network transfer time component, we can serve the same amount
of traffic requiring fewer processes handling application code. Not only does this reduce
the memory requirements on your applications, it also reduces the number of connections
made to your database. As applications grow (say past 1000 active connections),
maintaining database scalability becomes a challenge. Although creating a distributed
database architecture is possible, it’s much more difficult than linearly scaling most
applications, so avoiding that is best if possible.

We can extract this same benefit with a minimilistic setup and avoid the hardware
redundancy and configuration complexity of a fully 3 tier architecture by setting up a tiny
mod_proxy instance on the same host as our applications severs. The proxy instance will
handle the high-latency connections to end-clients, while using low-latency connections
to a dynamic-content-serving apache server on the same machine.

We start setting up two apache configurations

Proxy Configuration

<IfDefine PROXY
DcocumentRoot /var/apache/htdocs
Listen myexternal_ip:80
MaxSpareServers 32
MaxClients 256
MaxRequestsPerChild 0
KeepAlive off
LoadModule proxy_module libexec/libproxy.so
LoadModule rewrite_module libexec/mod_rewrite.so
AddModule mod_proxy.c
AddModule mod_rewrite.c
ProxyRequests on
NoCache
ProxyPassReverse / http://127.0.0.1
RewriteRule ^proxy: - [F]

RewriteRule ^(http:|ftp:) - [F]
RewriteCond !^/static/
RewriteRule ^/(.*\.html)$ http://127.0.0.1/$1 [P,L,T]
</IfDefine>

Dynamic Configuration
<IfDefine DYNAMIC>
DocumentRoot /var/apache/htdocs
Listen localhost:80
MaxClients 40
MaxRequestsPerChild 0
KeepAlive off
LoadModule perl_module libexec/libperl.so
AddModule mod_perl.c
<Files *.html>
SetHandler perl-script
</Files>
</IfDefine>

Things to note about the proxy setup:
• The instance binds to the public ip
• The configuration is setup to allow for high concurrency (MaxClients is 256)
• Any request for a ‘.html’ file outside of the /static directory is proxied to the

loopback address
• Keepalives are off.

Things to note about the dynamic setup:
• The instance binds to the loopback address
• The configuration is setup to tightly manage our number of persistent db

connections.

Case Study II: Application-Integrated Caching
In our second case-study we will look at a caching technologies. When trying to choose
the optimal caching strategy for an application, we need to first answer a few questions
about our data.

• Is the data static for long periods of time?
• Is the data static for a short period of time, or is it always completely different?
• Does the data contain components which are static for a short period of time?
• How well does the data match the design of any commercial products being

considered?
A good way to illustrate these questions is by designing a caching solution for a
hypothetical application.

Web Forums
Our sample application will be a web-forums application. We need to be able to support
a multi-board forum site which supports message deletion and ordered display.

Initial Implementation
The initial implementation of the application is very straightforward. Forum entries are
stored in a database, and assembled and ordered on the fly. As the size and popularity of
the forums grow, the pages take an increasingly long time to run.

Second Implementation
Almost always the easiest caching solution to add to an architecture is a network level
caching appliance – either a proxy cache like squid or mod_proxy, or a similar
commercial black-box cache. From an application standpoint all we need to make are
some slight modifications to our application to enable it to respond correctly to HEAD
requests. This method works reasonably well, but still requires a good amount of
database accesses. Also, it requires us to install an entire new physical layer to our
application infrastructure. It would be nice to avoid this cost.

Third Implementation
To make further improvements to our caching strategy, we will attempt to exploit our
specific knowledge about how our application works, and add the caching at a deep level.
To execute on this, we will add output caching to our application code, and attempt to
avoid entering the application at all when unnecessary by using mod_rewrite to handle
our cache searching functionality.

Our plan will be as follows:
• On file request, mod_rewrite will look for the requested file.
• If the file is there, it will served directly.
• If the file is not present, a redirect to a generating url will be issued.
• This generating url will cache the page and return the content.
• Cache poisoning will be handled via an unlink() call if shared storage is used, or

via a distributed cache poisoning service if shared storage is not used.
The benefits of this system are:

• No additional hardware, and no additional physical layer of any kind.
• Cache generation and poisoning happen in the application, exactly when they

need to happen.
• Minimal database access.

To put this together we use the following rewrite block in our httpd.conf:

RewriteCond %{REQUEST_FILENAME} !-f

RewriteRule ^/forums/(.*)$ /admin/generator.php?forumid=$1

Generator.php is a script which uses output buffering to capture it’s output and cache it.

<?php

 $forumid = $_GET[’forumid'];

if(!$uri) {

 return_error();

 }

 ob_start();

 if(generate_page($forumid)) {

 $content = ob_get_contents();

 $fp = fopen($SERVER['DOCUMENT_ROOT'].$uri, "w");

 fwrite($fp, $content);

 ob_flush();

 }

 ob_clean();

 return_error();

?>

We need to flush the pages when they are updated as well. If we are using shared storage
(perhaps a centralized nfs mount), we can have the update script do something like:

<?php

 …
 update_page($uri);
 purge_cache($uri);
?>

Where purge_cache() does a filesystem unlink(). Alternatively, if we go with a fully
independent cache setup (no shared storage), we can have purge_cache() trigger a
cluster-wide cache poisoning via some sort of distributed message bus (for example an
XML-RPC server implemented over Spread).

Case Study III: Distributed Logging
In our third case study, we look at the problem of manageing logging in a large cluster.
Anyone who has managed a large site knows that consolidating access logs is a major
headache. Further it would be nice to be able to perform real-time analysis of the logs.

In our starting architecture, we do local logging on each webserver and then periodically
copy and consolidate them on a central server. This sort of scheme in general requires
alot of maintenance (especially as the number of machines who need to copy off logs
grows) and the merge operation itself is painful for large log sizes. Plus any sort of real-
time analysis is impossible.

There are a number of commercial solutions for doing distributed logging, but they're
expensive and lack the flexibility we need. There are also Apache modules for logging
directly to a database, but for exteremly high-volume sites this can be a bottleneck
(especially if you want to query the databse while you're pouring logs into it). In the end,
none of these solutions provide quite what we want, so we use a true distributed logging
setup, mod_log_spread.

Mod_log_spread works by using a reliable multicast transport to send logs to a multicast
group. This allows us to use any number of clients that can join the log group and
recieved a real-time stream of logs. Logs can be written to a central file without need for
any post-processing. Further, since the logs are being sent to a multicast group, it costs
nothing to add an extra client that does real-time processing of the logs or inserts them
into a database. In addition to traditional logging, have a freely useable stream of all
requests to the cluster offers many interesting possibilities for tracking user session state
asynchronously but in real-time.

	Navigation
	Return to menu
	Search

