
Setting up a secure
server with Apache and

mod_ssl

Daniel Lopez Ridruejo

About Me

ASF member and long time Apache user

Interested in usability and lowering the learning
curve for Apache

Comanche GUI configuration tool

“Teach Yourself Apache” book

What this presentation is about

� Introduction to SSL

� mod_ssl module for Apache

� Building SSL-enabled Apache

� Creating key and certificate with openssl

� Signing the certificate

� Accessing your secure server

Cryptography

What does security mean?

� Confidentiality

� Integrity

� Authentication

The SSL/TLS protocols

� Secure Socket Layers / Transport Layer
Security

� Used to secure HTTP and other protocols

� URLs start with http:// instead of https://

� Encryption: Confidentiality

� Certificates: Authentication

� Digest Algorithms: Integrity

Encryption: Confidentiality

Symmetric Key

� Encryption/Decryption keys are the same

� Fast

� Key exchange problems

� Algorithms: DES, Triple-DES, RC4, RC2

Asymmetric Keys

� Encryption and Decryption keys are different

� Generally Slower

� Distribution is easier, mark one of the keys as
‘public’ and distribute widely. Keep the other
private

� Messages encrypted with one key can only
be decrypted with the other

� Algorithms: RSA

Digests : Integrity

� Fixed-length “fingerprint” of a message

� If the message changes, the fingerprint
changes

� Algorithms: MD5, SHA

� Attacker can replace both message and
digest. Include additional secret: Message
Authentication Codes (MACs)

Certificates : Authentication

� Ties your public key to your identity

� Write your public key and data about you in a
message, then ask a trusted third-party to
encrypt it with their private key.

� Everybody with the third-party public key can
verify the data is true (if you trust that third-
party, that is ;)

More on certificates

� Trusted third-party: Certification Authority
(Verisign, Thawte…)

� Their public keys are shipped with most
browsers

� Certificates can have expiration dates

� Certificates are used by browsers to verify
the identity of the server at the other end

How SSL works

� Client (browser) tries to connect to server

� Handshake: client and server exchange keys
and certificates

� Verify certificate validity

� Use each other’s public key to securely agree
on a symmetric key

� Transmit data using symmetric key

mod_ssl for Apache

� Several SSL alternatives for Apache
� Commercial: Covalent, Red Hat, IBM
� Open Source: mod_ssl, Apache SSL
� mod_ssl is the most popular, originally based
on Apache SSL

� Apache 1.3 version distributed separately
because of export restrictions. Requires
patching the server

� Bundled with Apache 2.0

Building mod_ssl

� Apache 1.3 this requires applying EAPI
patches and different build options

� This talk covers Apache 2.0

� Although compilation is different,
configuration is similar

� You can also get packaged and binary
versions for Linux, BSD, others

OpenSSL

� Underlying cryptography library
gunzip < openssl*.tar.gz | tar xvf -

cd openssl*

./config --prefix=/usr/local/ssl/install

--openssldir=/usr/local/ssl/install/openssl

make

make install

mod_ssl

� Bundled in Apache 2.0

� Needs to pass the following command line
options when building the server

-–enable-ssl

-–with-ssl=/usr/local/ssl/install/openssl

� Add the following to config file (if built
dynamically)

LoadModule ssl_module modules/libmodssl.so

Certificates

� Now we need to create a certificate for our server.
First step is to create a pair of public/private keys:

openssl genrsa -des3 -rand file1:file2:file3 -out
www.example.com.key 1024

625152 semi-random bytes loaded
Generating RSA private key, 1024 bit long modulus

.....++++++

.........................++++++
e is 65537 (0x10001)

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase

Creating a CSR

� We are going to provide data about us and
our server and create a Certificate Signing
Request

� The CA can then sign the certificate and
return it to us

./usr/local/ssl/install/bin/openssl req -new -key
www.example.com.key -out www.example.com.csr

Certificate Information
Using configuration from
/usr/local/ssl/install/openssl/openssl.cnf

Enter PEM pass phrase:
[…]
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []: San Francisco
Organization Name (eg, company) [Some Company]:.
Organizational Unit Name (eg, section) []:.
Common Name (eg, YOUR name) []:www.example.com
Email Address []:administrator@example.com
Please enter the following 'extra' attributes to be
sent with your certificate request

A challenge password []:
An optional company name []:

Creating a Self-Signed
Certificate

� Commercial certificates cost money and take
time

� If the server is private or you want to have a
temporary solution you can sign your own
certificate:

./usr/local/ssl/install/bin/openssl x509 -req

-days 30 -in www.example.com.csr -signkey
www.example.com.key -out www.example.com.cert

Configuring Apache

Listen 80
Listen 443
<VirtualHost _default_:443>
ServerName www.example.com
SSLEngine on
SSLCertificateFile \
/path/openssl/certs/www.example.com.cert
SSLCertificateKeyFile
/path/openssl/certs/www.example.com.key
</VirtualHost>

Test the installation

� Start Apache

� Prompt for password

� The URL is https://www.example.com

� Or https://www.example.com:8443 if
installing as regular user

A look at the server certificate

Other mod_ssl capabilities

� Control which protocols clients can use

� Client Certificates

� Reverse proxy (offload SSL from App
Servers)

� SSL session caching

� Access Control

Questions?

� http://www.modssl.org

� http://httpd.apache.org

� http://www.apacheworld.org

� You can reach me at daniel@rawbyte.com

