HOUR 1 7

Setting Up a Secure
Server

This hour explains how to set up an Apache server capable of secure trans-
actions. In this hour, you will learn

 The installation and configuration of the mod_ss1 Apache module

e The SSL/TLS family of protocols and the underlying cryptography
concepts

* What certificates are and how to create and manage them

The Need for Security

As the Internet became mainstream and the number of companies, individu-
als, and government agencies using it grew, so did the number and type of
transactions that needed protection. Those include financial transactions,
such as banking operations and electronic commerce, as well as exchange of
sensitive information, such as medical records and corporate documents.

| 264

Hour 17

There are three requirements to carry on secure communications on the Internet: confi-
dentiality, integrity, and authentication.

Confidentiality

Confidentiality is the most obvious requirement for secure communications. If you are
transmitting or accessing sensitive information such as your credit card number or your
personal medical history, you certainly do not want a stranger to get hold of it.

Integrity

The information contained in the exchanged messages must be protected from external
manipulation. That is, if you place an order online to buy 100 shares of stock, you do not
want to allow anyone to intercept the message, change it to an order to buy 1000 shares,
or replace the original message. Additionally, you want to prevent an attacker from per-
forming replay attacks, which, instead of modifying the original message, simply resend
it several times to achieve a cumulative effect.

Authentication

You need to decide whether to trust the organization or individual you are communicat-
ing with. To achieve this, you must authenticate the identity of the other party in the
communication.

The science of cryptography studies the algorithms and methods used to securely trans-
mit messages, ensuring the goals of confidentiality, integrity, and authenticity.
Cryptanalysis is the science of breaking cryptographic systems.

The SSL Protocol

SSL stands for Secure Sockets Layer and TLS stands for Transport Layer Security. They
are a family of protocols that were originally designed to provide security for HTTP
transactions, but that also can be used for a variety of other Internet protocols such as
IMAP and NNTP. HTTP running over SSL is referred to as secure HTTP.

Netscape released SSL version 2 in 1994 and SSL version 3 in 1995. TLS is an IETF
standard designed to standardize SSL as an Internet protocol. It is just a modification of
SSL version 3 with a small number of added features and minor cleanups. The TLS
acronym is the result of arguments between Microsoft and Netscape over the naming of
the protocol because each company proposed its own name. However, the name has not
stuck and most people refer to these protocols simply as SSL. Unless otherwise speci-
fied, the rest of this hour refers to SSL/TLS as SSL.

Setting Up a Secure Server

265 |

You specify that you want to connect to a server using SSL by replacing http with https
in the protocol component of a URI. The default port for HTTP over SSL is 443.

The following sections explain how SSL addresses the confidentiality, integrity, and
authentication requirements outlined in the previous section. In doing so, it explains, in a
simplified manner, the underlying mathematical and cryptographic principles SSL is
based on.

Confidentiality

The SSL protocol protects data from eavesdropping by encrypting it. Encryption is the
process of converting a message, the plaintext, into a new encrypted message, the cipher-
text. Although the plaintext is readable by everyone, the ciphertext will be completely
unintelligible to an eavesdropper. Decryption is the reverse process, which transforms the
ciphertext into the original plaintext.

Usually encryption and decryption processes involve an additional piece of information:
a key. If both sender and receiver share the same key, the process is referred to as sym-
metric cryptography. If sender and receiver have different, complementary keys, the
process is called asymmetric or public key cryptography.

Symmetric Cryptography

If the key used to both encrypt and decrypt the message is the same, the process is
known as symmetric cryptography. DES, Triple-DES, RC4, and RC2 are algorithms used
for symmetric key cryptography. Many of these algorithms can have different key sizes,
measured in bits. In general, given an algorithm, the greater the number of bits in the
key, the more secure the algorithm is and the slower it will run because of the increased
computational needs of performing the algorithm.

Symmetric cryptography is relatively fast compared to public key cryptography, which is
explained in the next section. Symmetric cryptography has two main drawbacks, how-
ever. One drawback is that keys should be changed periodically, to avoid providing an
eavesdropper with access to large amounts of material encrypted with the same key. The
other drawback is the key distribution problem: How to get the keys to each one of the
parties in a safe manner? This was one of the original limiting factors, and before the
invention of public key cryptography, the problem was solved by periodically having
people traveling around with suitcases full of keys.

Public Key Cryptography
Public key cryptography takes a different approach. Instead of both parties sharing the

same key, there is a pair of keys: one public and the other private. The public key can be
widely distributed, whereas the owner keeps the private key secret. These two keys are

| 266

Hour 17

complementary; a message encrypted with one of the keys can be decrypted only by the
other key.

Anyone wanting to transmit a secure message to you can encrypt the message using your
public key, assured that only the owner of the private key—you—can decrypt it. Even if
the attacker has access to the public key, he cannot decrypt the communication. In fact,
you want the public key to be as widely available as possible. Public key cryptography
can also be used to provide message integrity and authentication. RSA is the most popu-
lar public key algorithm.

The assertion that only the owner of the private key can decrypt it means that with the
current knowledge of cryptography and availability of computing power, an attacker will
not be able to break the encryption by brute force alone in a reasonable timeframe. If the
algorithm or its implementation is flawed, realistic attacks are possible.

4 ublic key cryptogra is similar to giving away many identical lockpads
=14 o

4 and retaining the key that opens them all. Anybody who wants to send you

—

a message privately can do so by putting it in a safe and locking it with one
of those lockpads (public keys) before sending it to you. Only you have the
appropriate key (private key) to open that lockpad (decrypt the message).

The SSL protocol uses public key cryptography in an initial handshake phase to securely
exchange symmetric keys that can then be used to encrypt the communication.

Integrity

Data integrity can be preserved by performing a special calculation on the contents of
the message and storing the result with the message itself. When the message arrives at
its destination, the recipient can perform the same calculation and compare the results. If
the contents of the message changed, the results of the calculation will be different.

Digest algorithms perform just that process, creating message digests. A message digest
is a method of creating a fixed-length representation of an arbitrary message that
uniquely identifies it. You can think of it as the fingerprint of the message. A good mes-
sage digest algorithm should be irreversible and collision resistant, at least for practical
purposes. Irreversible means that the original message cannot be obtained from the
digest and collision resistant means that no two different messages should have the same
digest. Examples of digest algorithms are MD5 and SHA.

Setting Up a Secure Server 267 |

Message digests alone, however, do not guarantee the integrity of the message because
an attacker could change the text and the message digest. Message authentication codes,
or MACs, are similar to message digests, but incorporate a shared secret key in the
process. The result of the algorithm depends both on the message and the key used.
Because the attacker has no access to the key, he cannot modify both the message and
the digest. HMAC is an example of a message authentication code algorithm.

The SSL protocol uses MAC codes to avoid replay attacks and to assure integrity of the
transmitted information.

Authentication

SSL uses certificates to authenticate parties in a communication. Public key cryptogra-
phy can be used to digitally sign messages. In fact, just by encrypting a message with
your secret key, the receiver can guarantee it came from you. Other digital signature
algorithms involve first calculating a digest of the message and then signing the digest.

You can tell that the person who created that public and private key pair is the one send-
ing the message. But how can you tie that key to a person or organization that you can
trust in the real world? Otherwise, an attacker could impersonate his identity and distrib-

ute a different public key, claiming it is the legitimate one. Trust can be achieved by
using digital certificates. Digital certificates are electronic documents that contain a pub-
lic key and information about its owner (name, address, and so on). To be useful, the cer-
tificate must be signed by a trusted third party (certification authority, or CA) who
certifies that the information is correct. There are many different kinds of CAs, as
described later in the hour. Some of them are commercial entities, providing certification
services to companies conducting business over the Internet. Other CAs are created by
companies providing internal certification services.

The CA guarantees that the information in the certificate is correct and that the key
belongs to that individual or organization. Certificates have a period of validity and can
expire or be revoked. Certificates can be chained so that the certification process can be
delegated. For example, a trusted entity can certify companies, which in turn can take
care of certifying its own employees.

If this whole process is to be effective and trusted, the certificate authority must require
appropriate proof of identity from individuals and organizations before it issues a certifi-
cate.

By default, browsers include a collection of root certificates for trusted certificate author-
ities.

| 268

Hour 17

SSL and Certificates

The main standard defining certificates is X.509, adapted for Internet usage. An X.509
certificate contains the following information:

 Issuer: The name of the signer of the certificate

e Subject: The person holding the key being certified

¢ Subject public key: The public key of the subject

¢ Control information: Data such as the dates in which the certificate is valid

 Signature: The signature that covers the previous data

You can check a real-life certificate by connecting to a secure server with your browser.
If the connection has been successful, a little padlock icon or another visual clue will be
added to the status bar of your browser. With Internet Explorer, you can click the locked
padlock icon to open a page containing information on the SSL connection and the
remote server certificate. You can access the same information by selecting Properties,
and then Certificates from the File menu. Other browsers, such as Netscape, Mozilla, and
Konqueror provide a similar interface.

Open the https://www.ibm.com URL in your browser and analyze the certificate, fol-
lowing the steps outlined in the preceding paragraph. You can see how the issuer of the
certificate is the Equifax Secure E-Business Certification Authority-2, which, in turn, has
been certified by the Thawte CA. The page downloaded seamlessly because Thawte is a
trusted CA that has its own certificates bundled with Internet Explorer and Netscape
Navigator.

To check which certificates are bundled with your Internet Explorer browser, select
Tools, Internet Options, Content, Certificates, Trusted Root Certification Authorities.

You can see that both issuer and subject are provided as distinguished names (DN), a
structured way of providing a unique identifier for every element on the network. In the
case of the IBM certificate, the DN is C=US, S=New York, L=Armonk, O=IBM,
CN=www. ibm.com.

C stands for country, S for state, L for locality, O for organization, and CN for common
name. In the case of a Web site certificate, the common name identifies the fully quali-
fied domain name of the Web site (FQDN). This is the server name part of the URL; in
this case, www. ibm. com. If this does not match what you typed in the top bar, the browser
will issue an error.

Figure 17.1 shows the certificate information described earlier.

Setting Up a Secure Server 269 |

FIGURE 1 7. 1 “Jibm.com - Microsoft Internet Explorer
| Fle Edt vew Favortes Took Help | s
Cert(ﬁcate lnfoma’ | ®Bak - = - @ [Q| Qsearch FFavorites Frstory |BA- S W - B ¥ & R
tion. | s [ET g o v »
General | shows [<al> ~]
] ibm.com
Field [valus -
[Fversion ¥3
= serial rumber 1E36
Protocok HyperTest Transfer Protocol with Privacy [Elsignature algorithm mdSRSA
Lssuer Equifax Securs E-Business Ch-.. —I
Type Not Available [l valid from Friday, April 06, 2001 10:16:1...
Connection: 55130, DES with 56 bit encryption [Medium); RSA [Elvald to Saturday, April 20, 2002 10:1..,
with 1024 bit exchange [Esubject wiww.ibm. com, 16M, Armank, ...
Public ke; R34 (1024 Bt -
Addiess: hitps./Awaw.ibm.com/ Bpui ey {1024 5ts) I
[URL)
[N = . om.com
Size Not Available o=18M
L= Armank
5 = New York
Ciestedt Not Avaiable =t
Modified: Mot Available
Lerificates Analyze Edit Properties, . | Copy to File... |
L ok | cancel | s | "
|7 http:/ e ibm, comjbusinesscenter [[@ meemet

SSL Protocol Summary
You have seen how SSL achieves confidentiality via encryption, integrity via message
authentication codes, and authentication via certificates and digital signatures.

The process to establish an SSL connection is the following:

The user uses his browser to connect to the remote Apache server.

2. The handshake phase starts, and the browser and server exchange keys and certifi-
cate information.

3. The browser checks the validity of the server certificate, including that it has not
expired, that it has been issued by a trusted CA, and so on.

4. Optionally, the server can require the client to present a valid certificate as well.
Server and client use each other’s public key to securely agree on a symmetric key.

The handshake phase concludes and transmission continues using symmetric cryp-
tography.

Installing SSL

Now that you’ve learned all about SSL, you need to install SLL support for Apache. SSL
support is provided by mod_ss1, a module that is included with Apache but is not enabled

| 270

Hour 17

by default. mod_ss1, in turn, requires the OpenSSL library—an open source implementa-
tion of the SSL/TLS protocols and a variety of other cryptographic algorithms. OpenSSL
is based on the SSLeay library developed by Eric A. Young and Tim J. Hudson. You can
learn more about mod_ss1 and OpenSSL in the Web sites noted in the reference section
at the end of the hour.

OpenSSL

This section explains how to download and install the OpenSSL toolkit for both
Windows and Unix variants.

Windows

At the time of writing this book, the Apache Software Foundation does not provide an
SSL-enabled binary installer for Windows due to legal restrictions. That situation is
likely to change soon, and you will be able to access precompiled SSL. module and
libraries. Check the Apache site for up-to-date information. The rest of the hour assumes
that you have access to the openssl.exe command line utility, which will be included in
the bin/ directory of the SSL-enabled Apache distribution. It is a utility for generating
certificates, keys, signing requests, and so on.

Unix
If you are running a recent Linux or FreeBSD distribution, OpenSSL might already be

installed in your system. Use the package management tools bundled with your distribu-
tion to determine whether that is the case or, otherwise, to install it.

If you need to install OpenSSL from source, you can download OpenSSL from
http://www.openssl.org. After you have downloaded the software, you need to uncom-
press it and cd into the created directory:

gunzip < openssl*.tar.gz | tar xvf -
cd openssl*

OpenSSL contains a config script to help you build the software. You must provide the
path to which the software will install. The path used in this hour is
/usr/local/ssl/install, and you probably need to have root privileges to install the
software there. You can install the software as a regular user, but to do so, you will need
to change the path. Then you must build and install the software:

./config --prefix=/usr/local/ssl/install \
--openssldir=/usr/local/ssl/install/openssl

make
make install

If everything went well, you have now successfully installed the OpenSSL toolkit. The
openssl command-line tool will be located in /usr/local/ssl/install/bin/.

This tool is used to create and manipulate certificates and keys and its usage is described
in a later section on certificates.

Setting Up a Secure Server 271 |

mod_ssl

In the past, SSL extensions for Apache had to be distributed separately because of export
restrictions. Although there are limitations in redistribution of binaries that need to be
solved and clarified, these restrictions no longer exist for distribution of source code, and
mod_ssl is bundled and integrated with Apache 2.0. This section describes the steps nec-
essary to build and install this module. mod_ss1 depends on the OpenSSL library, so a
valid OpenSSL installation is required.

Unix
If you are using the Apache 2.0 server that came installed with your operating system,

chances are that it already includes mod_ss1. Use the package management tools bundled
with your distribution to install mod_ss1 if it is not present in your system.

When you build Apache 2.0 from source, you must pass the following options to enable
and build mod_ss1 at compile time.

--enable-ssl --with-ssl=/usr/local/ssl/install/openssl

This assumes that you installed OpenSSL in the location described in previous sections.

If you compiled mod_ss1 statically into Apache, you can check whether it is present by
issuing the following command, which provides a list of compiled-in modules:

/usr/local/apache2/bin/httpd -1
The command assumes that you installed Apache in the /usr/local/apache2 directory.

If mod_ss1 was compiled as a dynamic loadable module, the following line must be
added or uncommented to the configuration file:

LoadModule ssl_module modules/libmodssl.so

Managing Certificates

To have a working SSL server implementation, the first step is to create a server certifi-
cate. This section explains in detail how to create and manage certificates and keys by
using the openssl command-line tool. For example, if you are using SSL for an

| 272 Hour 17

e-commerce site, encryption prevents customer data from eavesdroppers and the certifi-
cate enables customers to verify that you are who you claim to be.

o The examples refer to the Unix version of the command-line program
/ openssl. If you are running under Windows, you need to use openssl.exe
= instead and change the paths of the examples to use backslashes instead of

forward slashes. The examples also assume that OpenSSL was installed in the
path described earlier in the OpenSSL installation section.

Creating a Key Pair

You must have a public/private key pair before you can create a certificate request.
Assume that the FQDN for the certificate you want to create is www.example.com. (You
will need to substitute this name for the FQDN of the machine you have installed Apache
on.) You can create the keys by issuing the following command:

./usr/local/ssl/install/bin/openssl genrsa -des3 -rand file7:file2:file3 \
-out www.example.com.key 1024

genrsa indicates to OpenSSL that you want to generate a key pair.
des3 indicates that the private key should be encrypted and protected by a pass phrase.

The rand switch is used to provide OpenSSL with random data to ensure that the gener-
ated keys are unique and unpredictable. Substitute file7, file2, and so on, for the path
to several large, relatively random files for this purpose (such as a kernel image, com-
pressed log files, and so on). This switch is not necessary on Windows because the ran-
dom data is automatically generated by other means.

The out switch indicates where to store the results.
1024 indicates the number of bits of the generated key.

The result of invoking this command looks like this:

625152 semi-random bytes loaded

Generating RSA private key, 1024 bit long modulus
..... ++++++

......................... et

e is 65537 (0x10001)

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

Setting Up a Secure Server 273 |

As you can see, you will be asked to provide a pass phrase. Choose a secure one. The
pass phrase is necessary to protect the private key and you will be asked for it whenever
you want to start the server. You can choose not to protect the key. This is convenient
because you will not need to enter the pass phrase during reboots, but it is highly inse-
cure and a compromise of the server means a compromise of the key as well. In any
case, you can choose to unprotect the key either by leaving out the -des3 switch in the
generation phase or by issuing the following command:

./usr/local/ssl/install/bin/openssl rsa -in www.example.com.key \
-out www.example.com.key.unsecure

It is a good idea to back up the www.example.com.key file. You can learn about the con-
tents of the key file by issuing the following command:

./usr/local/ssl/bin/openssl rsa -noout -text -in www.example.com.key

Creating a Certificate Signing Request

To get a certificate issued by a CA, you must submit what is called a certificate signing
request. To create a request, issue the following command:

./usr/local/ssl/install/bin/openssl req -new -key www.example.com.key
-out www.example.com.csr

You will be prompted for the certificate information:

Using configuration from /usr/local/ssl/install/openssl/openssl.cnf
Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:CA

Locality Name (eg, city) []: San Francisco

Organization Name (eg, company) [Internet Widgits Pty Ltd]:.
Organizational Unit Name (eg, section) []:.

Common Name (eg, YOUR name) []:www.example.com

Email Address []:administrator@example.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

It is important that the Common Name field entry matches the address that visitors to your
Web site will type in their browsers. This is one of the checks that the browser will

| 274

Hour 17

perform for the remote server certificate. If the names differ, a warning indicating the
mismatch will be issued to the user.

The certificate is now stored in www.example.com.csr. You can learn about the contents
of the certificate via the following command:

./usr/local/ssl/install/bin/openssl req -noout -text \
-in www.example.com.csr

You can submit the certificate signing request file to a CA for processing. VeriSign and
Thawte are two of those CAs. You can learn more about their particular submission pro-
cedures at their Web sites:

e VeriSign: http://digitalid.verisign.com/server/apacheNotice.htm

e Thawte: http://www.thawte.com/certs/server/request.html

Creating a Self-Signed Certificate

You can also create a self-signed certificate. That is, you can be both the issuer and the
subject of the certificate. Although this is not very useful for a commercial Web site, it
will enable you to test your installation of mod_ss1 or to have a secure Web server while
you wait for the official certificate from the CA.

./usr/local/ssl/install/bin/openssl x509 -req -days 30 \

-in www.example.com.csr -signkey www.example.com.key \
-out www.example.com.cert

You need to copy your certificate www.example.com.cert (either the one returned by the
CA or your self-signed one) to /usr/local/ssl/install/openssl/certs/ and your key
to /usr/local/ssl/install/openssl/private/.

Protect your key file by issuing the following command:

chmod 400 www.example.com.key

SSL Configuration

The previous sections introduced the (not-so-basic) concepts behind SSL and you have
learned how to generate keys and certificates. Now, finally, you can configure Apache to
support SSL. mod_ss1 must either be compiled statically or, if you have compiled as a
loadable module, the appropriate LoadModule directive must be present in the file.

If you compiled Apache yourself, a new Apache configuration file, named ssl.conf,
should be present in the conf/ directory. That file contains a sample Apache SSL config-
uration and is referenced from the main httpd.conf file via an Include directive.

Setting Up a Secure Server 275 |

If you want to start your configuration from scratch, you can add the following configu-
ration snippet to your Apache configuration file:

Listen 80

Listen 443

<VirtualHost _default_:443>

ServerName www.example.com

SSLEngine on

SSLCertificateFile \
/usr/local/ssl/install/openssl/certs/www.example.com.cert
SSLCertificateKeyFile \
/usr/loca/ssl/install/openssl/certs/www.example.com.key
</VirtualHost>

With the previous configuration, you set up a new virtual host that will listen to port 443
(the default port for HTTPS) and you enable SSL on that virtual host with the SSLEngine
directive.

You need to indicate where to find the server’s certificate and the file containing the
associated key. You do so by using SSLCertificateFile and SSLCertificateKeyfile
directives.

Starting the Server

Now you can stop the server if it is running, and start it again. If your key is protected by
a pass phrase, you will be prompted for it. After this, Apache will start and you should be
able to connect securely to it via the https://www.example.com/ URL.

If you compiled and installed Apache yourself, in many of the vendor configuration files,
you can see that the SSL directives are surrounded by an <IfDefine SSL> block. That
allows for conditional starting of the server in SSL mode. If you start the httpd server
binary directly, you can pass it the -DSSL flag at startup. You can also use the apachectl
script by issuing the apachectl startssl command. Finally, if you always want to start
Apache with SSL support, you can just remove the <ifDefine> section and start Apache
in the usual way.

If you are unable to successfully start your server, check the Apache error log for clues
about what might have gone wrong. For example, if you cannot bind to the port, make
sure that another Apache is not running already. You must have administrator privileges
to bind to port 443; otherwise, you can change the port to 8443 and access the URL via
https://www.example.com:8443.

Configuration Directives

mod_ss1 provides comprehensive technical reference documentation. This information
will not be reproduced here; rather, I will explain what is possible and which

| 276

Hour 17

configuration directives you need to use. You can then refer to the online SSL documen-
tation bundled with Apache for the specific syntax or options.

Algorithms

You can control which ciphers and protocols are used via the SSLCipherSuite and
SSLProtocol commands. For example, you can configure the server to use only strong
encryption with the following configuration:

SSLProtocol all
SSLCipherSuite HIGH:MEDIUM

See the Apache documentation for a detailed description of all available ciphers and pro-
tocols.

Client Certificates

Similarly to how clients can verify the identity of servers using server certificates, servers
can verify the identity of clients by requiring a client certificate and making sure that it is
valid.

SSLCACertificateFile and SSLCACertificatePath are two Apache directives used to
specify trusted Certificate Authorities. Only clients presenting certificates signed by these
CAs will be allowed access to the server.

The SSLCACertificateFile directive takes a file containing a list of CAs as an argu-
ment. Alternatively, you could use the SSLCACertificatePath directive to specify a
directory containing trusted CA files. Those files must have a specific format, described
in the documentation. SSLVerifyClient enables or disables client certificate verification.
SSLVerifyDepth controls the number of delegation levels allowed for a client certificate.
The SSLCARevocationFile and SSLCARevocationPath directives enable you to specify
certificate revocation lists to invalidate certificates.

Performance

SSLis a protocol that requires intensive calculations. mod_ss1 and OpenSSL allow sev-
eral ways to speed up the protocol by caching some of the information about the connec-
tion. You can cache certain settings using the SSLSessionCache and
SSLSessionCacheTimeout directives. There is also built-in support for specialized cryp-
tographic hardware that will perform the CPU-intensive computations and offload the
main processor. The SSLMutex directive enables you to control the internal locking
mechanism of the SSL engine. The SSLRandomSeed directive enables you to specify the
mechanism to seed the random-number generator required for certain operations. The
settings of both directives can have an impact on performance.

Setting Up a Secure Server 277 |

Logging

mod_ss1 hooks into Apache’s logging system and provides support for logging any SSL-
related aspect of the request, ranging from the protocol used to the information contained
in specific elements of a client certificate. This information can also be passed to CGI
scripts via environment variables by using the StdEnvvars argument to the Options
directive. SSLLog and SSLLogLevel enable you to specify where to store SSL-specific
errors and which kind of errors to log. You can get a listing of the available SSL vari-
ables at http://httpd.apache.org/docs-2.0/ssl/ssl_compat.html.

The ssLoptions Directive

Many of these options can be applied in a per-directory or per-location basis. The SSL
parameters might be renegotiated for those URLs. This can be controlled via the
SSLOptions directive.

The SSLPassprase directive can be used to avoid having to enter a pass phrase at startup
by designating an external program that will be invoked to provide it.

Access Control

The SSLRequireSSL directive enables you to force clients to access the server using SSL.
The SSLRequire directive enables you to specify a set of rules that have to be met before
the client is allowed access. SSLRequire syntax can be very complex, but itallows an
incredible amount of flexibility. Listing 17.1 shows a sample configuration from the
mod_ss1 documentation that restricts access based on the client certificate and the net-
work the request came from. Access will be granted if one of the following is met:

e The SSL connection does not use an export (weak) cipher or a NULL cipher, the
certificate has been issued by a particular CA and for a particular group, and the
access takes place during workdays (Monday to Friday) and working hours (8:00
a.m. to 8:00 p.m.).

¢ The client comes from an internal, trusted network.

You can check the documentation for SSLRequire for a complete syntax reference.

Listing 17.1 SSLRequire Example

SSLRequire (%{SSL_CIPHER} !~ m/*(EXP|NULL)-/ \
and %{SSL_CLIENT S DN O} eq "Snake 0il, Ltd." \
and %{SSL_CLIENT S DN _OU} in {"Staff", "CA", "Dev'} \
and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \
and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20)\
or %{REMOTE_ADDR} =~ m/~192\.76\.162\.[0-9]+$/

| 278

Hour 17

Reverse Proxy with SSL

Although at the time this book was written the SSL reverse proxy functionality was not
included in mod_ss1 for Apache 2.0, it is likely to be included in the future. That func-
tionality enables you to encrypt the reverse proxy connection to backend servers and to
perform client and server certificate authentication on that connection. The related direc-
tives are SSLProxyMachineCertificatePath, SSLProxyMachineCertificateFile,
SSLProxyVerify, SSLProxyVerifyDepth, SSLProxyCACertificatePath,
SSLProxyEngine, and SSLProxyCACertificateFile. Their syntax is similar to their
regular counterparts. You can find more information about the Apache reverse proxy in
Hour 15.

Problems with Specific Browser Versions

Some browsers have known problems with specific versions of the SSL protocol or cer-
tain features. Certain environment variables can be set to force specific behaviors. The
following example, included in the default configuration file, is a workaround for bugs in
the SSL implementation of Internet Explorer browsers.

SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

Summary

This hour explained the fundamentals of the SSL protocol and mod_ss1, the Apache
module that implements support for SSL. You learned how to install and configure
mod_ss1 and the OpenSSL libraries, and how to use the openssl command-line tool for
certificate and key generation and management. You can access the mod_ss1 reference
documentation for in-depth syntax explanation and additional configuration information.
Bear in mind also that SSL is just part of maintaining a secure server, which includes
applying security patches, OS configuration, access control, physical security, and so on.

Q&A

Q Can I have SSL with name-based virtual hosting?

A A question that comes up frequently is how to make name-based virtual hosts work
with SSL. The answer is that you can’t, at least currently. Name-based virtual hosts
depend on the Host header of the HTTP request, but the certificate verification
happens when the SSL connection is being established and no HTTP request can
be sent. There is a protocol for upgrading an existing HTTP connection to TLS, but
it is mostly unsupported by current browsers (see RFC 2817).

Setting Up a Secure Server 279 |

Q Can I use SSL with other protocols?

A mod_ssl implements the SSL protocol as a filter. Other protocols using the same
Apache server can easily take advantage of the SSL.

Quiz
1. How can you prevent the prompting for a password at startup?
2. How can you use the openssl command-line tool to connect to an SSL-enabled

server?

The openssl command-line tool enables you to connect to SSL-enabled servers.
Read the documentation and figure out how to do it. You can use the Unix man
page for openssl or read the documentation at http://www.openssl.org.

Quiz Answers

1. You can use the SSLPassPhrase method to point to a program that will provide the
pass phrase. The program should make the appropriate checks to make sure that it
reveals the pass phrase only to Apache.

Additionally, you could simply remove the password protection from the file con-
taining the key, as described earlier in the hour. This has severe security implica-
tions, but it can be very convenient.

openssl s _client -connect www.ibm.com:443

You will see information related to the connection, certificates, ciphers, and so on.
Then you can type

GET / HTTP/1.0

to get the contents of the index HTML page, similar to the way you learned in
Hour 2, “Understanding Apache Internals,” with telnet.

You can configure many aspects of the connection, as explained in the documenta-
tion.

Related Directives

This section contains directives mentioned in this hour or that are related to topics dis-
cussed in this hour. You can consult the Apache reference documentation for comprehen-
sive syntax information and usage.

| 280

Hour 17

Keys and Certificates

SSLPassPhraseDialog: Alternative ways of specifying a pass phrase to decrypt key
SSLcertificateFile: File containing server certificate
SSLCertificateKeyFile: File containing server key

SSLcertificateChainFile: File containing chain of certificates used to sign the
server certificate

SSLCACertificatePath: Path to a directory containing CA certificates for client
authentication

SSLCACertificateFile: Path to a file containing CA certificates for client authen-
tication

SSLCARevocationPath: Path to a directory containing CA for revoking client cer-
tificates

SSLCARevocationFile: Path to a file containing CA for revoking client certificates
SsSLVerifyClient: Enable client certificate verification

SSLVerifyDepth: Establish maximum depth to verify client certificates to

SSL Protocol

SSLProtocol: Versions of SSL supported

ssLCipherSuite: Ciphers supported

SSLEngine: Enable SSL protocol engine

SSLRequireSSL: Require client to connect to server using SSL

SSLRequire: Require specific rules for client to connect

Performance

SSLMutex: Locking mechanism
SSLRandomSeed: Initialize random number generator
SSLSessionCache: Specify an SSL-caching mechanism

SSLsessionCacheTimeout: Caching sessions expiry time

Setting Up a Secure Server 281 |

Others

e ssLoptions: Control various aspects of SSL operation

Reverse Proxy

* SSLProxyMachineCertificatePath, SSLProxyMachineCertificateFile,
SSLProxyVerify, SSLProxyVerifyDepth, SSLProxyCACertificatePath,
SSLProxyCACertificateFile: Equivalent to their regular server counterparts, but
related to the reverse proxy connection

Further Reading

An excellent, highly readable cryptography reference book is Applied Cryptography:
Protocols, Algorithms, and Source Code in C, Second Edition, by Bruce Schneier; ISBN
0471117099.

A great book on the SSL protocol, and especially useful if you are programming with
SSL libraries, is SSL and TLS: Designing and Building Secure Systems, by Eric Rescorla;
ISBN 0201615983.

OpenSSL project: http://www.openssl.org
ModSSL project: http://www.openssl.org

OpenBSD, a free Unix server operating system with a focus on security:
http://www.openbsd.com

Apache reference, by the original author of mod_ss1: http://www.apacheref.com
SSLv2 specification: http://home.netscape.com/eng/security/SSL_2.html

SSLv3 specification: http://home.netscape.com/eng/ssl3/draft302.txt

The following SSL-related RFCs can be obtained from http://www.rfc-editor.org/:

* Internet X.509 PKI: RFC 2459
e Transport Layer Security: RFC 2246
e Upgrading to TLS Within HTTP/1.1: RFC 2817

	Navigation
	Return to menu
	Search

