The Only Bug You
Want Near Your
Software

Erik Hatcher
erik@ehatchersolutions.com

The presentation abstract:

In the Java development world, there is no better example
of doing more with less than Ant. It's the Swiss Army knife
of Java build tools. Ant has emerged as the de-facto
standard Java build tool. All modern Java IDEs integrate
with it, most open-source Java projects use it. If you are
developing Java software and not using Ant, then chances
are you're doing things the hard way. It's relatively easy to
craft an Ant build file by cutting and pasting pieces from
other build files, but we don't want to get into a situation
where maintaining the build process is a full-time job. It is
important to understand Ant's capabilities in order to avoid
hacking at build files. By understanding Ant's basic data
types, syntax, and properties and applying some simple
best practice techniques, the build process can be easily
controlled, extended, and reused. Maintenance of Ant build
files is minimal 1f crafted appropriately - lets learn how!

Tl‘\;n v\vnnnﬂfnfi‘r\ﬂ ‘\'11.]] NAAXTAPre

Who am 1?

m Co-author, Java Development with Ant
m jGuru Ant FAQ Maintainer
m Ant Committer

m XDoclet Committer

m <insert title here>, eHatcher Solutions, Inc.

“Hatcher

Agenda

What Ant is
How to use it on a project

Syntax and usage
Properties

Datatypes
Power of properties
Unit testing
XDoclet

Ant is an Apache Jakarta project.

Unit testing will cover Junit testing and in-container Cactus testing.

XDoclet will cover half of the presentation even though its only one bullet item
here.

Introduction to Ant

m What is Ant? i\m\% e
Java-based bhuild tool

m Why use Ant?

Cross-platform
Java domain smart

Fast, extensible, integrated
Alternatives?

m Analogy

Factory automation

<KPAGHE ANTS

Ant is cross-platform in a couple of ways. It runs on all platforms that have a
JVM, and path/directory separators can be specified either Windows or Unix
format.

Fast - Ant’s dependency checking ensures the quickest route to the goal is
taken and no more work than necessary is done. Compilation, for example,
using <javac> compares date stamps of .class and .java files and only compiles
.java that are newer.

Extensible - Easily add third-party or custom tasks and datatypes. Or custom
logging/listening of the build process can be done with simple Java coding.
Several other more advanced ways of extensibility as well.

Integrated - every modern IDE has Ant integration built-in.

Alternatives - make, but its not even really competition in the Java world
because of the features of Ant that make it so much more suitable to Java
development. Make differs in dependency checking - it is solelybased on file
timestamp checking, whereas Ant has a lot of other mechanisms such as
remote server timestamp checking with <ftp>.

Factory automation - view your source code as the raw materials going in one
end of the factory, and the end product out the other. All of the tasks done to

Typical Things to Build

L/
@\@%%@%
AWMS EAR
i W

Ant can literally build *anything* desired, not just for Java projects. Using
XSL transformations during a build or accessing a database can all be a part of
an Ant build process. The typical Java project will at a minimum build .class
files, and then create a JAR of them. Web applications are bundled into WAR
files and enterprise applications possibly consisting of many web applications
are bundled into EAR files. Ant has facilities and specific handling of each of

these and much more.

Designing a Build

m What are you building?
m What does it take to build it?
m How are the steps related?

Before delving into the gory syntax details of Ant, first things first. Why have
a build process? The end result of our work needs to be considered first and
foremost. What is our projects overall objective? Then we step back and
figure out what the right tools are. Ant is the right tool for getting all Java
projects built. Start with the end result, likely a WAR or EAR, and decide
what steps are needed to get it built. How are those steps related to one
another? Some steps must come before others and a prescribed order of events
1S necessary.

Our Project

Search engine of static content allowing for site-
specific user interface customization.

So, lets frame this Ant presentation in the context of a real-world example
project that we can wrap our heads around and explore how Ant makes life
better. The application - a search engine for static content such as (Ant)
documentation or a personal scrapbook.

High-level Model

Source Code

4
’

) A SN
A/“/}}\J_‘L‘L\‘\‘

Application
Index (EAR)

In the big sense, here is the idea of this project. Documentation files are
indexed by the build process, source code is compiled, and the application
EAR file is built.

Technical Architecture

View - JSP content

Web Tier Commons Validator

Ant build
<index>

SearchSessionBean task

EJB Container

Lucene API

The application is divided into several layers. At the lowest layer, the Lucene
API is used for both indexing and searching. The build process indexes the
content, and the application accesses the index through a custom wrapper API.
The searching API is accessed through a stateless session bean to provide a
possible security access layer. At the presentation tier, a very simple Struts
configuration is used along with Commons Validator for form field validation
at both the client and server sides.

This architecture is relevant to our discussion because of the tricks we’ll make
Ant do related to our needs.

Note that index and content are separate from the actual application engine -
this makes good architectural sense as the content and index can be updated
while the site is still live.

Bonus Requirements

m Report the duration of each web request

m Allow viewing of build information from live
application

m Build and deploy multiple sites simultaneously,
each with separate indexes and content

These bonus requirements factor into some of the custom XDoclet generation
that will take place and taking advantage of Ant properties.

10

Project Structure

m Directory structure
Simpler is better
Map to artifacts
Customizations/personalizations
IDE issues
Separate source from artifacts - cleanable

Now that we’ve analyzed what we want built and how we’ll build it, its time to
start coding. But wait, where do we place our source code? Project directory
is a very important consideration. Ant is able to handle very bizarre project
structure, but it is most maintainable and sensical if things are arranged
cleanly. Look to many of the open-source projects to get some ideas on what
works well. There is not one best way to do it, but these are some rules of
thumb to follow.

For example, in this project, we have a common library which builds into a
standalone JAR. There is an EJB JAR, a web application (WAR) and then
finally all of it builds into a single EAR.

By choosing the proper structure, customizations such as building with new
library versions or site personalizations such as skinning sites uniquely for
each customer are made possible.

11

Top-level Directory Structure
lib
metadata
test
tools

web

This project is built upon several third-part librarys (Struts, Lucene, Jtidy, etc)
and the default versions of them live in a lib subdirectory. Later you will see
that its not just JAR’s crammed into a single directory, its much more
organized and structured to facilitate the extensive control we’ll have on the
build process.

Metadata is where deployment descriptor information lives, separated by
module underneath.

Src - this is our Java source code directory, with subdirectories underneath for
each major artifact.

Test - this mirrors our src tree with unit test Java code and even test data.

Tools - Ant is even often maintained in source control systems to precisely
version a system and allow it to be rebuilt with the exact version of Ant if
needed. Other code generators live here.

Web - this is where JSP’s live.

12

Java Directory Structure

src & test

anttask

common

ejb

web

Again, the src and test trees mirror one another and are separated into
component trees each being the package root.

13

Build File

m XML format

m Typically in project root directory

m Default name: build.xml

m Declarative - define steps, not scripty details
m Defines a single project

m A project contains targets

m Targets contain tasks

XML format means that entity references and well-formedness apply.

If desired, multiple build files can be created to separate concerns - for
example, I typically have a build.xml for building local code, but a cvs.xml to
deal with checking the code out for auomated builds, which in turn calls
build.xml for building the freshly checked out code.

Declarative - its not a scripting language - the steps are spelled out at a higher
level typically.

Targets typically correspond to the artifacts generated, or the individual steps
that do work to create the artifacts. Tasks are the lowest level of work - these
are the cogs in the machines of our factory automation analogy.

14

Dependencies

| ejbdoclet | | webdoclet |

package-common| | package-ejb || package-web |package-anttask|

‘\/‘/'

package-ear build-site-index
deploy-jboss

Targets are generally correspond to outputs, or stages.

Our end result is to deploy to an application server for local development.
Given the architecture of our system, building the EAR is independent of
indexing the content, and this shows in our build dependency graph.

Ejbdoclet and webdoclet are XDoclet targets for code/descriptor generation.

15

build.xml - Targets

<?xml version="1.0" 2>
<project name="antbook" default="default">

<target name="init">.</target>

<target name="clean" description="Removes build artifacts"

</target>

<target name="package-ear”
depends="package-common, package-ejb,package-web”
description="Package EAR">

</target>

<target name="deploy-jboss”
depends="package-ear,build-site-index”
description="Deploy to local JBoss">

</target>

<target name="default" depends="package-ear"/>

</project>

Here we see an Ant build file skeleton of the previously shown dependency
graph. Of note, the default target, which I recommend to be called “default”
for ease of use from the command-line. “clean” and “init” are targets you’ll
find in most build files. “init” is depended upon at the lowest level targets to
do things like store the timestamp and create temporary build directories.

Our default target does not deploy. This is intentional - it just builds, making it
friendly for environments where an app. server is not installed and local
deployment is not the goal.

16

Tasks

m Do the work

m Handle dependency checking internally
m Parameterizable

m Commonly used tasks include:

<mkdir>
<javac>
<jar>

Dependency checking by tasks is what separates make from Ant. Make is
responsible for dependency checking itself, whereas Ant pushes that
responsibility lower into the tasks. Tasks have domain specific attributes
allowing them to be parameterized.

<mkdir> makes a directory
<javac> compiles Java code
<jar> builds a JAR file

17

Running Ant targets

m Execute default target:

ant

m Execute specific target:

ant deploy-jboss

m Execute multiple targets:

ant test-common generate-test-reports

Executing multiple targets on the command-line processes the dependency
graph for each target invoked, which can be somewhat unexpected.

18

Command-line switches

m -projecthelp

® -project m -verbose / -debug
Buildfile: build.xml

m -find <file>
checkstyle Check code style . .

clean Removes build artifacts _d t
compile-anttask Compile anttask module B -diagnostics
compile-common Compile common module

compile-web Compile web module

deploy-jboss Deploy to local JBoss - -lOgﬁle <ﬁl€>
ejbdoclet Generate EJB code and descriptors

generate-test-reports Generate test reports

m -help

package-ejb Package EJB JAR

package-web Package WAR

fest antrack Test anttask module m ... and others
test-common Test common module

webdoclet Generate web and Struts descriptors

Default target: default

Document your targets to have -projecthelp output meaningful and useful.

-verbose for troubleshooting, typically. -debug for much more output.

-find - climbs a directory tree looking for the build file specified, and invokes
it. This is useful when at a command prompt deep into your project directory
tree.

-logfile - captures build output to a log file.

-help - displays command-line syntax

-diagnostics - displays versions of libraries being used and any potential
missing tasks (likely to happene for home-built versions of Ant).

19

Sample Ant Run

> ant deploy-jboss -Dsite=personal
Buildfile: build.xml

init:
[echo] Building for personal site.

deploy-jboss:
[copy] Copying 1 file to
/Users/erik/jboss-3.0.0/server/default/deploy

BUILD SUCCESSFUL
Total time: 18 seconds

Build time is an “incremental” build, not clean build of this system.

Note, the -Dsite=personal is a segue into the next section on Ant properties.

20

Properties

m Ant’s parameterizability

m [mmutable

m All JVM system properties available
m Useful Ant built-in properties:

ant.project.name
basedir

m ${property.name} for property value

Immutable is the keyword here. Its sometimes frustration for new Ant users,
but its actually one of the powerful features of Ant, allowing great flexibility in
control.

ant.project.name is the <project name="....”> value. basedir is the base
directory of the project, full path. Typically this is the directory where
build.xml lives, but not necessarily.

21

<property> task

m Name/value

<property name="site" value="sample"/>

m [oad from properties file
<property
file="sites/${site}/config.properties”
prefix="site"/>

m [.oad environment variables

<property environment="env"/>

Simple case is setting a property simply as a value.

Multiple properties can be loaded at once using the ‘file’ variant, and

optionally all properties can be prefixed (note that a “.” character is appended
to the suffix to separate it from the property names in the properties file).

Environment variables are very important pieces of information, with “env”
(Y34

being the recommended prefix - again a “.” 1s appended giving properties such
as env.JBOSS_HOME

Properties set from the command-line (using -D or -propertyfile) are set before
the build file is processed, and hence take precedence.

22

Property for file/directory

m Use the location variant:

<property name=“build.dir” location=“build”/>

<property name="index.dir”
location="${build.dir}/${site}/index”
/>

This Is on a separate slide because its so crucially important to emphasize.
Properties representing files or directories should be set using the ‘location’
variant of the <property> task. The value of the property is resolved to the full
path name (from the basedir, if path specified is relative).

This comes into play mostly with larger builds that delegate work to sub-builds
and override paths in the process.

23

Properties Quiz

build.properties
javac.debug=off

<property file=“build.properties”/>
<property name=“javac.debug” value=“on”/>
<echo message=“debug compilation is turned ${javac.debug}”/>

[echo] debug compilation is turned ?2??7?

Remember the most important fact about properties? They are (look
back a few slides for a reminder!).

24

Other Property setting tasks

m <available> - sets if resource present
m <uptodate> - sets if source files older

m <condition> - O/S, checksum, http, socket, files
match, and more.

m <tstamp>

m <xmlproperty>

<tstamp> sets a property or properties to date/time stamps, by default setting
TODAY, DSTAMP, and TSTAMP.

<xmlproperty> loads properties and names them hierarchically (with dotted
syntax) from XML files. This is moderately useful.

25

<javac>

m Facade over Java compilers
m Performs .java/.class out-of-date checking
m Example of why the docs are important!

<javac
srcdir="src/${module};${additional.src.dirs}"
destdir="${build.dir}/${module}/classes"
debug="${javac.debug}"
classpathref="compile.classpath"

/>

Attributes are associated with a type, not just a raw string. Docs are important
because it spells out the types. For example, <javac>’s attributes shown are of
these types:

Destdir - file

Debug - boolean

Srcdir - path

Classpath - by datatype reference

26

<javac> - A Closer Look

Property
<javac /

srcdir="sr
destdir="${build.dir}/S${modul
debug="5{javac.debug}"

classpathref="compile.classpath"

/>

c.dirs}t"
classes"

Path

Datatype reference

To start our discussion of Ant’s datatypes, lets use <javac> as an example.
Properties are used as simple text replacements. The srcdir attribute
corresponds to the “path” datatype. The classpathref attribute is a reference to
a previously defined path datatype.

For paths, note that Ant is happy with forward-slashes, semi-colons, colons,
and backslashes, regardless of the operating system.

Ant Datatypes

m Provides domain expertise (e.g. paths)
m Reusable

m Commonly used built-in datatypes:
Path
Fileset
Patternset
Selectors
Filterset
and others.- "

Ant’s domain expertise is with concepts such as “paths”, “file sets” and other
commonly used abstractions in build processes.

Datataypes, particularly paths, are well suited for reuse. Define them once,
and reuse them wherever needed.

28

Path

m Ordered list of path elements

m Analogous to Java CLASSPATH
m Cross-platform path syntax

m Contains files and/or directories

m May contain a fileset, individual elements, or
nested paths.

<path id="anttask.compile.classpath">
<pathelement location="${lucene.jar}"/>
<pathelement location="${jtidy.Jjar}"/>
</path>

Again, cross-platform syntax is fully supported. Note the use of Ant properties
in defining this example path. This combination provides a lot of control and
benefit, allong the JAR file names to be swapped easily as we’ll see soon.

29

Fileset

m Set of files from a single root directory

m Unordered

m Patternsets / Selectors filter files

m Many special files automatically excluded

<fileset dir="web" excludes="search.]jsp"/>

<fileset dir="${build.dir}/${site}" includes="*.]jsp"/>

The awkward note about filesets is that they must be rooted from a specified
base directory. Selectors provide incredible selection capabilities, far beyond
the simple patternsets we see here.

By default (unless specified otherwise with defaultexcludes="off’), CVS
directories and their files are automatically excluded. Visual SourceSafe
temporary files, IDE backup files, etc are automatically excluded.

30

Patternset

m Collection of file matching patterns
m Relative paths, can apply to any root directory
m Exclusions take precedence

m <include>/<exclude> conditional-capable

<patternset id=“java.files.pattern” includes=“**/*_java”/>
<fileset dir="src">

<patternset refid=“java.files.pattern”/>
</fileset>

Patternsets group inclusion and exclusion patterns, with exclusions taking
precedence.

In this example, the id attribute demonstrates patternset reuse in the <fileset>.

** represents recursive directories.

31

Selectors

m New to Ant 1.5
m Sophisticated file selection capability

m Available selectors: depth, size, date, present,
depend, contains

m Containers: and, or, not, none, majority

<copy todir="newfiles" includeemptydirs="false">
<fileset dir="web">
<not>
<present targetdir="currentfiles"/>
</not>
</fileset>
</copy>

Details of the mentioned selectors:

Depth - allows selecting files only at a certain directory depth from the root
directory.

Size - select all files of IMB or greater, for example.
Date - select files modified more than a month ago, for example.

Present - example shown, along with <not> container - all files in the web
directory that are not also in the currentfiles directory are copied to the
newfiles directory.

Depend - does file date dependency checking, selecting all files that are out of
date, for example.

Contains - select files that contains a certain string

Combine any of the above inside <and>/<or>/<not> type logic for even more
sophisticated selections.

32

Filterset

m Token replacement
metadata/app/application.xml
<web>
<web-uri>antbook-@SITE@.war</web-uri>
<context-root>antbook-@SITE@</context-root>
</web>

<copy todir="${build.dir}/${site}" overwrite="true">
<fileset dir="metadata/app" includes="application.xml"/>
<filterset>
<filter token="SITE" value="${site}"/>
</filterset>
</copy>

${build.dir}/personal/application.xml
<web>
<web-uri>antbook-personal.war</web-uri>
<context-root>antbook-personal</context-root
</web>

Filtersets are great for simple templated files, such as this deployment
descriptor being parameterized with the <copy> operation shown. Tokens are
replaced, and token delimiters can be specified, with “@” delimiters being the
default.

FilterChain / FilterReader

m FilterReader: remove/modify text
m FilterChain: ordered group of FilterReaders

m Built-in FilterReaders:
<classconstants>
<headfilter> / <tailfilter>
<linecontains> / <linecontainsregexp>
<tabstospaces>

FilterChain’s are like the piping of output of one command into the input of
another, with each command filtering or altering the data as it goes through.

<classconstants> - example on next slide.

<headfilter>/<tailfilter> - just like the head and tail commands in Unix, outputs
the first or last N lines of a file.

<linecontains(regexp)> - filter lines that contain a string or match a regular
expression.

<tabstospaces> - just don’t run it on your Make files! :)

34

g

FilterChain example

package org.example.antbook;
public interface Constants {

public static final String VERSION ="1.7";
}

[echo] Constants.VERSION = 1.7

The <classconstants> FilterReader is a special one in that it reads a .class file
(using BCEL). It pulls out any public static final values and outputs them as
name/value pairs, in this case it outputs VERSION=1.7. The <prefixlines>
then prefixes every line with “Constants.” yielding the output shown.

35

Other Ant datatypes

m Mapper - map source filename to destination
m Filelist - ordered collection of files

m Dirset

m ZipFileset

m ClassFileset

And there are many other datatypes that can come in handy depending on your
needs.

Mapper - rename files during a copy operation appending the .bak to each file,
for example, and much more.

Filelist - sometimes order matters, such as with the <concat> concatenate task.
Dirset - same as a fileset, except only contains directories, not files.

Zipfileset - allows an archive to be constructed with the contents of other
archives without having to unzip them first. Also allows prefixing of a fileset
within an archive to construct the internal structure as desired.

Classfileset - Constructs a set of minimal files that a specified class depends
upon by analyzing the class internals (using BCEL).

36

Overriding properties

m Carefully order <property>
<property
file="${user.home}/.${ant.project.name}-build.properties"/>
<property file="${user.home}/.build.properties"/>

<property file="build.properties"/>

<property environment="env"/>

<property name="jboss.home" location="${env.JBOSS HOME}"/>
<property name="env.COMPUTERNAME" value="${env.HOSTNAME}" />
<property name="lib.dir" location="1ib"/>

<property file="${lib.dir}/lib.properties"/>
<property file="common.properties"/>

m Command-line -D and -propertyfile switches
ant deploy-jboss -Dsite=personal

ant -propertyfile nightly-build.properties

Not really “override”, but rather “setting first” - but that’s the typical term for
it.

Carefully ordering property setting, fine-tuned control can be had. For
example, two properties files are initially loaded from the user.home directory
(a property provided by the JVM). The first property file is specific to the
current project based on the project name, and the second is a general user-
specific property file potentially for all projects. This allows users to have
their own preferences for a project without having to modify the main build
file.

Later, environment variables are loaded. Because Unix and Windows different
on the variable used to store the local machine name, a trick is used taking
advantage of immutability. On a Unix machine, HOSTNAME is loaded as
env.HOSTNAME, and then its set to a property env.COMPUTERNAME
(which would not exist on a Unix machine). From then on,
${env.COMPUTERNAME} contains the local machine name for either
platform.

Properties can be set on a per-build basis on the command-line using -D or -

£:1
propertytme:

37

Controlling with Properties

m Existence of property is IMPORTANT
<junit..
<batchtest todir="${test.dir}/data" if="testcase">
<fileset dir="${test.dir}/${module}/classes”
includes="**/${testcase}.class"/>
</batchtest>
<batchtest todir="${test.dir}/data" unless="testcase">
<fileset dir="${test.dir}/${module}/classes”
includes="**/*Test.class"/>
</batchtest>
</junit>

m Conditional:
<target>
Patternset <include>/<exclude> elements

<fail>
<fail unless="site.config.present">

Site configuration for ${site} not present.
</fail>

Properties are either set or not set, if set they have a value. Whether they are
set or not is as important as the value of a property. Conditions if and unless
take the existence of a property into account, and can be specified at the target
and patternset levels, and also on the <fail> task and on <batchtest> on the
<junit> task for flexible control over how a build operates.

38

Datatype References

<path id="web.compile.classpath">
<pathelement location="${dist.dir}/antbook-common.jar"/>
<pathelement location="${dist.dir}/antbook-ejb.jar"/>
<pathelement location="${struts.jar}"/>
<pathelement location="${oro.jar}"/>
<pathelement location="${commons-digester.jar}"/>
<pathelement location="${commons-fileupload.jar}"/>
<pathelement location="${commons-lang.jar}"/>
<pathelement location="${commons-resources.jar}"/>
<pathelement location="${commons-validator.jar}"/>
<pathelement location="${j2ee.jar}"/>

</path>

<path id="web.test.classpath">
<pathelement location="${junit.jar}"/>
<path refid="web.compile.classpath"/>
</path>

Here is an example of classpath definitions, with the second one taking
advantage of reuse by incorporating the first one and adding more to it. Again
note the extensive use of Ant properties to represent JAR files - making it easy
to “override” their settings.

Library Dependencies

m Easily allow:
Multiple projects to use different library versions

A developer to build against a new version without
affecting the team or local environment

m Property immutability is the key!

This is an example of the control properties can give to a project. For example,
in this project it would be great if upgrading to a new version of Struts or
Lucene is trivial to do, and has almost no maintenance involved. This
technique accomplishes this.

40

lib Directory Structure

lib

lucene-1.2

lucene-1.2.jar

jakarta-struts-1.1-b2-1ib

| struts.jar

Jtidy-04aug2000r7-dev
L puild

I— Tidy.jar

Under the lib directory of this project, each third-party dependency is extracted
as-is from its binary distribution - quirky directory structure and all. Note that
Lucene has the version number in both the base directory and its JAR file - we
retain that. Jtidy has an intermediate directory. Keeping the directory
structure of the libraries in tact allow us to easily replace versions (as long as
they don’t change the structure!).

41

lib.properties

lib/lib.properties - Global default library mappings
#

Lucene - http://jakarta.apache.org/lucene

#

lucene.version =1.2

lucene.dir=${lib.dir}/lucene-${lucene.version}
lucene.jar=${lucene.dir}/lucene-${lucene.version}.jar

#

Struts - http://jakarta.apache.org/struts
#

struts.version = 1.1-b2

struts.dir=${lib.dir}/jakarta-struts-${struts.version}-1ib
struts.jar=${struts.dir}/struts.jar

Each library has a .version property associated with it, and a .dir property
pointing to the base directory of its installation. Each library has its own
property mapped as well. The next slilde will show how these can be used to
control things tightly.

42

Swapping Libraries

m Per-build
ant -Dlucene.jar=/path/to/mylucene.jar
m Per-project

Create build.properties with overrides:
lucene.version=1.3

m Per-developer

Create ~/.antbook-build.properties:
struts.dir=/Users/erik/struts-dev
site=personal

From the command-line, a new library version can be tried to ensure it works
and all tests pass.

Per-project - perhaps other projects in your system need to depend on different
versions of the same library? Easy, use a project-specific build.properties to
specify the version. A library repository can be maintained in the source code
repository allowing projects to use a common set of libraries with the default
versions always being the latest stable versions.

Developers have control over any property without affecting other developers
using home directory property files.

Also note that any of the properties (.version, .dir, and .jar) can be overridden
allowing for very specific control.

43

Site Customization

m Controlled by ${site} property

m Artifacts unique to site:
Index and content (of course)
application.xml (different WAR file names)
web.xml (different index directory references)
jboss.xml (different JNDI names for session bean)
search.jsp (results presentation differs)

This application uses a ${site} property throughout to customize its output
based on site-specific settings and to separate it from other sites being built
simultaneously.

44

Loading site properties
<!-- Site configuration -->
<property name="site" value="sample"/>
<property name="site.dir" location="sites/${site}"/>

<property name="index.dir”
location="${build.dir}/S${site}/index"/>

<property file="${site.dir}/config.properties”
prefix="site"/>

sites/sample/config.properties
search.link=<a href="file://<bean:write name="item" property="field (path)"/>">
<bean:write name="item" property="field(title)"/>

Site-specific config.properties are loaded, with the prefix “site.”. These
properties affect the presentation making it custom per-site.

45

’
Declarative ¢ |ogic’

m Per-site customizations happen without any
explicit “logic”
m search.jsp customization:

<copy todir="${build.dir}/${site}" overwrite="true">
<fileset dir="web" includes="search.jsp"/>
<filterset>
<filter token="LINK”
value="${site.search.link}"/>
</filterset>
</copy>

m WAR and EAR are named by $ {site}:

<war destfile="${dist.dir}/antbook-${site}.war”..>

Because we load a properties file named by another property
(${site.dir}/config.properties) we’ve implicitly done some logic by
“switching” on the site name. This is still declarative (no if statements or
branching).

The presentation tier is customized per site using a filtered copy, and the WAR
file generated is uniquely named by the site name.

46

Unit testing

m Test-driven design
m Courage
m Refactoring

“Any program feature without an automated test simply doesn’t exist.”
(Kent Beck, eXtreme Programming Explained)

This cannot be emphasized enough - testing is very very important for
agile/extreme approaches. Focus on quality workmanship. Ant provides the
capability to automate tests, with particularly nice handling of Junit test cases.

With sufficient tests in place, you can have the courage to modify any code in
the system (collective ownership) without worrying about breaking something
unknowingly - the tests will prove things are ok.

Refactoring is only possible with good tests in place, allowing the code base to
stay clean at all times rather than accumulating legacy cruft from developers
that are not empowered or courageous enough to modify the code extensively.

Writing tests first is a great way to prove out your API and hone its usage
before writing the details. Tests fail at first and then gradually pass as things
are fleshed out. This builds confidence.

47

JUnit TestCase

public class TextDocumentTest extends DocumentTestCase

{

public TextDocumentTest (String name) {
super (name) ;

}
TextDocument doc;

public void setUp() throws IOException ({
doc = new TextDocument (getFile("test.txt"));

}

public void testDoc() {
assertEquals ("Contents", "Test Contents", doc.getContents()) ;

}

public void tearDown () {
doc = null;
}

JUnit’s main class to be extended is TestCase. In this example we have a
custom subclass that provides a document for testing its parsing. There are a
similar and more complicated HtmIDocument and HtmlDocumentTest classes.

<junit> task

<copy todir="${test.dir}/${module}/classes">
<fileset dir="test/${module}" excludes="**/*_ java"/>
</copy>

<junit printsummary="no” errorProperty="test.failed”
failureProperty="test.failed” fork="${junit.fork}">
<!-- . . . ==
<sysproperty key="docs.dir" file="${test.dir}/${module}/classes"/>
<sysproperty key="index.dir" file="${test.dir}/index"/>

<formatter type="xml"/>
<formatter type="brief" usefile="false"/>

<batchtest todir="${test.dir}/data">
<fileset dir="${test.dir}/${module}/classes"
includes="**/*Test.class"
/>
</batchtest>
</junit>

<fail if="test.failed">Unit tests failed.</fail>

These tests are run using the <junit> task. Things to note - by default <junit>
does not fail the build if tests fail. This is a bad default, but its actually more
preferred to not fail immediately and have a chance to generate reports or send
an e-mail if tests fail.

System properties are passed to tests using <sysproperty>, and my
DocumentTestCase base class uses docs.dir to access test data files.

Formatters are used to display or capture test results. Brief results are
displayed, and complete results captured to XML files.

Naming conventions should be used (**/*Test.java for source code files) to
facilitate the running of only concrete tests.

49

Unit test reporting

[Unit Test Results,

#indes hitm|

Packages

org example antbook. ant lecene

Classes
Him|DocumentTest

TextDocumentTest

Unit Test Results

Designed for use with JUnit and Ant.

Summary
Tests Failures Errors Success rate Time
3 o o 100.00% 2.854

MNote: failures are anticipated and checked for with assertions while errors are unanticipated

Packages

Tests Errors Failures Time(s)

3 o o 2.854

This report generated from the XML captured data. Note the details provided
and the easy navigation to the details.

50

"
<junitreport> task

<junitreport todir="${test.dir}">
<fileset dir="${test.dir}/data">
<include name="TEST-*.xml"/>
</fileset>

<report format="frames" todir="S${test.dir}/report"/>

</junitreport>

Here is how the report is generated with Ant. This is done using XSLT, and
the output can be customized if desired. Because this can add time, its not
necessary to generate reports every time you run tests. Depending on your
needs, you can pull this into a separate target and only run as needed. The
brief console output is usually sufficient for troubleshooting issues.

51

Cactus

m [n-container unit testing

setUp(),
) tes B2 (),
@ beginXX() @ tearDioam()

|
i
i
@ —
¥¥ ¥ TestCase = ! Lk ¥¥ ¥V TestCase
ot ! Proxy
: R
|
i .
i

end3 ()

|
Chent side I Server side

By far one of the best documented Jakarta projects. Here’s to Vincent Massol
- my hero!

This diagram describes the Cactus test case lifecycle. It adds begin/end
methods on the client-side. On the server side the tests run as plain JUnit tests.
The client receives and records the result just as if it had run locally.

Cactus example

public class SearchFormTest extends CactusStrutsTestCase {
public SearchFormTest (String s) {
super (s) ;

}

public void testValidation () {
addRequestParameter ("query","") ;
setRequestPathInfo ("/search");
actionPerform();
verifyActionErrors (new String[] {"query.required"});
verifyInputForward() ;

This test verifies that the Struts validation is working properly for the search
form. The query field is required, but it is not being set on the request and thus
a validation error occurs and is verified. The CactusStrutsTestCase is actually
a base class from the Sourceforge StrutsTestCase project and provides nice
Struts-specific capabilities such as verifying errors.

53

What else?

m Running Java / native programs
m Remote deployment

m Native development

m Custom Ant development

m Maven & Centipede

m Continuous integration

m Last but not least.....XDoclet

whew - this is about the halfway point. The rest of the presentation will
cover XDoclet but to whet your appetite for Ant more, here are some other
features available.

Ant can launch Java and native programs easily, even allowing Ant to do
dependency checking on a set of files and launch a native program for each file
(or passing all non-up-to-date files on one command-line).

Remote deployment is possible using <ftp> and <telnet>.

Native development can be done by either launching make through <exec> or
using the new <cpp> tasks being developed at the ant-contrib project on
Sourceforge.

Developing custom tasks is easy (you just need an execute() method, actually),
and Ant has other extensibilities such as custom loggers/listeners, mappers,
filters, and selectors.

Maven and Centipede are “meta” Ant projects that wrap Ant inside a cleaner
project descriptor, taking care of many of the routine gory details automatically
such as implicitly providing compilation, archiving, documenting, and even
CVS change log and unit testing features.

54

What is XDoclet?

m Javadoc metadata templating engine
m Attribute-oriented programming
m Outgrown its EJBDoclet roots

Clﬁ;{

Attribute Oriented Programming

(@rags

It reads Javadoc tags, either custom or standard, and passes a model of all

source code processed to a templating engine. It was designed first for EJB,

which has a lot of duplication involved, but its usefulness soon was seen in
other areas of code/descriptor generation.

55

Why XDoclet?

m Avoid code/metadata duplication

m Pragmatic Programming:
DRY - Don’t Repeat Yourself
Program close to the problem domain
Write code that writes code

m JSR’s 175 & 181

EJB is ugly, real ugly. But XDoclet makes it “easy” by generating all the ugly
pieces while you write the one piece of real code that you need to write. Lots
of other J2EE deployment descriptors and code can be easily generated,
making maintenance headaches much less.

The Pragmatic Programmer book (Dave Thomas, Andy Hunt) espouses several
great practices, such as Don’t Repeat Yourself (every piece of knowledge must
have a single unambiguous authoritative representation), Program close to the
problem domain, and write code that writes code. XDoclet is all of those.

Sun is also embracing this paradigm of metadata coding, details to follow.

56

JSR 175

A metadata facility for the Java™
Programming Language would allow
classes, interfaces, fields, and
methods to be marked as having
particular attributes.

This JSR essentially spells out what XDoclet already is, although integrated
with the language much tighter (ala C#’s metadata capabilities, perhaps).

57

JSR 181

This JSR defines an annotated
Java™ format that that uses
Java™ Language Metadata (JSR
175) to enable easy definition of
Java Web Services in a J2EE
container.

And leveraging the previous JSR, web services will automatically supported
using this metadata facility. Again, like .NET’s capabilities to expose any
method as a web service. Scary, but true.

58

XDoclet Architecture

m Built upon XJavaDoc
m Separated into modules
m Embedded templates

m Sophisticated Ant task with dynamically loaded
subtasks

m Tag handlers

XJavaDoc will be discussed on the next slide - it’s the parser and model.

XDoclet has a pluggable architecture allowing additions to be dropped in and
auto-discovered. Modules exist for many vendors and frameworks already.

The templates that it uses are built into the JAR files for each module, and can
be copied and customized (if needed) easily.

Currently XDoclet (version 1.2) only is runnable through Ant and it has
excellent Ant integration and runs *fast* with good dependency checking.

A rich set of “tag handlers” (very much like JSP tag libraries) exist making
writing templates quite easy. XDoclet’s documentation is very detailed and
well organized.

59

XJavaDoc

m JavaCC-based source code parser

m Builds model of:
Packages
Classes / inheritance hierarchy
Methods and parameters
Member variables
Constructors
@tags
.- 'oh yeah, and Javadoc comments too

A very fast parser of Java source code was created by the XDoclet wizards -
much faster than Sun’s javadoc tool. An object model of all source files
processed is built, and contains all of the pieces shown here. Templates have
access to the entire model.

60

Our Project (refresher)

Search engine of static content allowing for site-
specific user interface customization.

Just a reminder, quickly, of the sample project we’re still working on. This is
even more relevant for the XDoclet section because of the massive work it will
do for us even in a tiny project.

" JEE———
High-level Model

Again, quick reminder.

62

Technical Architecture

View - JSP content
Web Tier Commons Validator
Ant build
<index>
SearchSessionBean task

EJB Container

Lucene API

Its important to note here that there are deployment descriptors for EJB (the
stateless session bean), the web application, Struts, and the Validator. There
are also vendor specific descriptors needed for EJB, typically and cookie cutter
code such as home, remote, and lookup utilities that are needed for every EJB.

63

Bonus Requirements

m Report the duration of each web request

m Allow viewing of build information from live
application

m Build and deploy multiple sites simultaneously,
each with separate indexes and content

Reporting the duration is handled with a servlet 2.3 filter, which needs to be
listed in web.xml. Build information is not XDoclet related, but just a

reminder. XDoclet deals with our multiple sites requirement by generating site
specific information.

64

XDoclet in this project.- -

m Generates:
To-Do list
EJB: home/remote/lookup utilities
Deployment descriptors: ejb-jar.xml, jboss.xml
Web: web.xml, struts-config.xml, validation.xml
Ant task: custom properties file generation
Starter JSP / resource properties

whew - that’s a lot of stuff. This really makes life a lot easier and more
pleasant for developers.

The examples of XDoclet usage are going to first show the end result of what
is generated and then back into how it is generated from the source code and
Ant.

ToDo List

Overview

Packages

org.example.antbook. ant. lucene (4)

Classes

IndexTask (1)

SearchinitServiet (1)
SearchQueryException (1)
FileExtensionDocumentHandler (1)

TextDocument (2)

Todo list for Generated by XDoclet.

Location Description

arg ! book.ant.lucene.FileEx i um

class Implement
dynamic document
type lookup

org ! k k.ant.lucene.IndexTask

IM private void indexDoes()

org " book.ant.lucene. TextDocument

class

IM public String getContents()

org I book.c

chQueryException

class

Fix JavaDoc
comments here

finish this method

Add
printStackTrace
and other
constructors

Here is an example To-Do list. It looks similar to Javadoc and is a great report
to generate nightly or during continuous integration builds to keep the team up-

to-date.

How do we mark to-do’s in the source code? See the next slide...

66

@todo

/**
* Index the fileset.
*

*@exception IOException if Lucene I/0 exception

*/

private void indexDocs () throws IOException {
/.

}

Simple - just flag an @todo tag at the method, member variable, or class level.

One thing to note is that JDK 1.4’s javadoc tool actually outputs a warning
saying this is a reserved tag indicating that Sun intends this to be used in a
manner similar to XDoclet’s usage at some point in the future.

Ant <taskdef>

<taskdef name="todo"
classname="xdoclet.modules.doc.DocumentDocletTask"
classpathref="xdoclet.classpath"

/>

<target name="todo">
<mkdir dir="${build.dir}/todo"/>

<todo destdir="${build.dir}/todo" >
<fileset dir="src/anttask"/>
<fileset dir="src/common"/>
<fileset dir="src/ejb"/>
<fileset dir="src/web"/>

<info/>
</todo>
</target>

Here is what it takes in Ant to generate a to-do list. <taskdef> is how custom
or 3rd party tasks are defined in Ant.

The <info/> subtask is what generates the todo list and could do so on any tag,
not just @todo.

'EJB Deployment Descriptor

.<!-- ejb-jar.xml -->

<enterprise-beans>
<session >
<ejb-name>org.example.antbook.session.SearchSession</ejb-name>

<home>org.example.antbook.session.SearchSessionHome</home>
<remote>org.example.antbook.session.SearchSession</remote>
<ejb-class>

org.example.antbook.session.SearchSessionBean
</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>

Here is a very typical simplistic EJB deployment descriptor - our single
stateless session bean. Note that the classname is listed here, and if we were
not generating this file and wanted to move our source code around, the
descriptors would break.

69

Vender-specific Descriptors

<jboss>
<enterprise-beans>

<session>
<ejb-name>org.example.antbook.session.SearchSession</ejb-name>
<jndi-name>
personal/org.example.antbook.session.SearchSession
</jndi-name>
</session>

</enterprise-beans>

<resource-managers>
</resource—managers>

</jboss>

Once again, the duplication. Ouch. Fully qualified classname again, along

with

JNDI lookup information.

70

Session Bean

/**
* Qejb.bean type="Stateless”
* jndi-name="${site}/org.example.antbook.session.SearchSession"
* @Qejb.util generate="physical"
*/
public class SearchSessionBean implements SessionBean {

/7

/**
* @ejb.interface-method
*/
public Document[] search(String indexDir, String query)
throws SearchQueryException, SystemException {
return SearchUtil.findDocuments (indexDir, query);

And here 1s how the source code is tagged to generate the previous two
descriptors. Make special note of the Ant property usage in the XDoclet tags.
This adds incredible control.

The @ejb.interface-method tag is a marker to generate this method in the home
and remote (and/or local) interfaces.

Ant Property Substitution

m Allows build-time control over values generated

<property file="${user.home}/.${ant.project.name}-build.properties"/>
<property file="${user.home}/.build.properties"/>
<property file="build.properties"/>

<property name="site" value="sample"/>

/**

* @Qejb.bean type="Stateless”

* jndi-name="${site}/org.example.antbook.session.SearchSession"
* @Qejb.util generate="physical"

*/
public class SearchSessionBean implements SessionBean { . . . }

Ant property substitution adds some very special capabilities allowing session
beans to have unique JNDI lookups among deployed sites in the same
container.

Session Bean: XDoclet-style

Source Code .
SessionBean

Home
interface

Remote
interface

Generated

Lookup

Utilities | | 100%8Xm!

ejb-jar.xml

Only the session bean was written. XDoclet did the rest. Wow.

73

<ejbdoclet>

<target name="ejbdoclet" depends="init">
<taskdef name="ejbdoclet"
classname="xdoclet.modules.ejb.EjbDocletTask"
classpathref="xdoclet.classpath"/>

<mkdir dir="${build.dir}/ejb/gen"/>
<ejbdoclet destdir="${build.dir}/ejb/gen"
addedtags="(@xdoclet-generated at ${TODAY}"
ejbspec="1.1"
force="${xdoclet.force}"
mergedir="metadata/ejb">
<fileset dir="src/ejb"/>

<remoteinterface/>
<homeinterface/>
<utilobject/>
<jboss validatexml="true" destdir="${build.dir}/${site}"/>
<deploymentdescriptor validatexml="true"/>
</ejbdoclet>
</target>

Here’s the Ant syntax to do the generation shown. Note that <ejbdoclet> can
be forced to regenerate or do dependency checking. Merge directory will be
discussed in a moment.

The generation here is restricted to the ejb source code tree.

JBoss’ deployment descriptor is site-specific, and so its destination directory is
overridden specially.

74

Serviet Definition

<servlet>

<servlet-name>search-init</servlet-name>
<servlet-class>

org.example.antbook.web.SearchInitServlet
</servlet-class>

<init-param>
<param-name>index-dir</param-name>
<param-value>/Users/erik/. . ./personal/index</param-value>
</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

Now to the web tier generation. We have an initialization servlet with the path
to the index in it.

Serviet

/**
* @web.servlet name="search-init" load-on-startup="1"
* @Qweb.servlet-init-param name="index-dir" value="${index.dir}"
*
* @todo Refactor to use JNDI for directory lookup.
*/
public class SearchInitServlet extends HttpServlet ({
public void init () throws ServletException {
super.init () ;

ServletConfig config = getServletConfig();
getServletContext () .setAttribute (Constants.SEARCH DIRECTORY,
config.getInitParameter ("index-dir"));

This metadata is easily codified into the servlet.

Let’s take a moment to ponder this. We’ve moved *deployment* descriptor
information into our source code. Does that really make sense or have we
broken some J2EE best practice by shifting the deployer role to the developer?
Well, you decide, but its worth considering because @tags are definitely not
the right place for everything. We’ll see this more as we go.

Note that Ant property substitution is again being used for the initialization
value, making the data in the @tags really come from the build time
environment and not hard-coded in the code. Interesting!

76

Filter Definition

<filter>

<filter-name>TimingFilter</filter-name>
<filter-class>org.example.antbook.web.TimingFilter</filter-class>

</filter>
<filter-mapping>

<filter-name>TimingFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

And here’s our timing filter being defined in web.xml.

77

Filter

/**
* Logs duration of each request.
*
* @web.filter name="TimingFilter"
* Qweb.filter-mapping url-pattern="/*" servlet-name="TimingFilter"
*/
public class TimingFilter implements Filter {
/7.
}

And our filter source code. The URL pattern information is questionable
whether it is ok in the source code. For projects that do not need to be truly
sysadmin/deployer configurable it works great this way and that is typically
the case. For this filter, the idea is to time every request and no other role
needs to control this.

78

Tag Library Descriptor

<taglib>

<tlib-version>1.0</tlib-version>

<jsp-version>1.2</jsp-version>

<short-name>antbook</short-name>

<tag>
<name>buildprops</name>
<tag-class>org.example.antbook.web.BuildPropertiesTag</tag-class>
<tei-class>org.example.antbook.web.BuildPropertiesTei</tei-class>

</tag>

</taglib>

Tag libraries require their own Tag Library Descriptor (TLD) file.

79

Tag Library

*

Iterates build properties and places name/value into
page scope.

@jsp.tag name="buildprops"
bodycontent="JSP"
tei-class="org.example.antbook.web.BuildPropertiesTei"

% %k ¥ b ok X ot

~

public class BuildPropertiesTag extends BodyTagSupport {
//
}

This metadata makes perfect sense to be tied to the source code.

80

Web Deployment Descriptor
merge |
files

web.xml TLD

SearchlnitServlet |TimingFilter ildPropertiesTag

And our web tier generation is upside down from our EJB generation. We
have many inputs into a single deployment descriptor.

And here 1s where merge points make their appearance. Again, not all
metadata belongs in the source code and much of it couldn’t be there. XDoclet
provides a way to feed this information into the templates.

81

Merge Points

m Not everything is stored in source code

m Customization entry point to generated artifacts
m Often documented in the generated code

m web.xml, for example:

External serviet mappings
Tag library mappings

Welcome file list, error pages, etc

The templates contain “merge points” - places where specific files are pulled in
to the template generation process (and even processed as if they were
templates, if desired).

We’ll see an example of the documented merge points in a moment, but
essentially if a merge file is not present an XML or Java comment is generated
that indicates what filename could be created to inject some merge
information.

82

Quick Struts Overview

SearchForm

/search.do?query=e*

ActionServlet

instantiates, populates, validates

executes

SearchAction

Because this is a Struts app, and lots of generation occurs at this level, here’s a

brief overview to see what generation can take place here.

A struts-config.xml defines form beans by name/classname and action
mappings. Validation requires a validation.xml defining every field of every
form that is to be validated (required, date, etc). These validation rules can be

done server-side or even client-side with injected JavaScript.

The JSP and string resources can be passively generated as “starter code” as

we’ll see shortly.

83

Struts Descriptors

m struts-config.xml
Global form bean definitions
Action mappings
m validation.xml
Field-level validations per form or action
118N / L16N
Extensible

These are the descriptions of the Struts “deployment descriptors”, as shown
from the previous diagram.

Of great importance is the action mappings for Struts. These can be generated
by XDoclet, but I do not believe this particular glue is appropriate for the
source code. Multiple forms can be used for a single action class, and multiple
actions can process the same form - this glue is not appropriate for source code
in my opinion. Your mileage may vary, and certainly for simple applications it
might just be the easiest/quickest way to work and do the job successfully.

84

" S
struts-config.xml

<form-beans>
<form-bean name="SearchForm"
type="org.example.antbook.struts.SearchForm"

/>

<l——
If you have non XDoclet forms, define them in a file
called struts-forms.xml and
place it in your merge directory.

-—>

</form-beans>

The gist, YADD (yet another deployment descriptor). Name/classname pairs
for form beans.

Here, also, is an example of XDoclet’s comment about a merge point that
could be used to define some external form beans (rarely the case for Struts,
but that’s beside the point... :)

validation.xml
L Form bean name

<form name="SearchForm"> F ld
<field property="query" <+ — 1eld name

depends="required"> Validation(s)

<msg name="required"

key="query.required”
/> ™ Message key (optional)

<arg0 key="SearchForm.query"/>
</field>

</form> Argument for message

query.required=You must enter a query

Validator’s deployment descriptor. Details are of course unimportant for the
sake of demonstration, but regardless, there are many details here that really

belong with our form bean source code.

query.required is a resource key that could be localized and is what appears if
the user does not enter a query. The argument (arg0) is a key which refers the
label of the field, and could be dynamically placed in the error message using

{0} syntax in query.required.

86

Struts ActionForm

/**
* Search query entry form.
*
* @struts.form name="SearchForm"
*/
public class SearchForm extends ValidatorForm {
private String query;

/**
* Sets the query attribute of the SearchForm object
*
* @struts.validator type="required" msgkey="query.required"
*/
public void setQuery(String query) {
this.query = query;
}

public String getQuery() {
return query;

}

Here is our Struts form bean. The name is provided and also the validations.

87

<webdoclet>

<webdoclet destdir="${build.dir}/web/WEB-INF"
force="${xdoclet.force}"
mergedir="metadata/web">

<fileset dir="src/web"/>

<deploymentdescriptor validatexml="true”
destdir="${build.dir}/${site}”

/>

<jsptaglib validatexml="true”
shortName="antbook"”
filename="antbook.tld”

/>

<strutsconfigxml validatexml="true" version="1.1"/>

<strutsvalidationxml omitdtd="true"/>

</webdoclet>

XDoclet’s webdoclet task generates web.xml, antbook.tld, struts-config.xml
and validation.xml. Wow, again!

88

Custom Generation

m Supply your own templates for the standard
subtasks

m Use <template> subtask for ad hoc generation
m Write tag handlers / subtasks

If a bug or enhancement to a template is all that is needed for an existing
subtask, simply tweak a custom version of a builtin template file and tell the
subtask to use yours instead of the built in one. Its that easy.

Not only can XDoclet do all of the previous generations out of the box, it
allows you to build your own templates and generate from source code using a
generic <template> subtask.

At the super power user edge of the spectrum, custom tag handlers can be
written as well as subtasks. This can be needed for more involved generation
(consider the to-do list generation example - it generates many files for the
frameset configuration - that’s way too much for <template> ad hoc
generation).

89

Ant Task Library

m Declare multiple Ant tasks using a properties file:

<taskdef resource="taskdef.properties”
classpath="${lucene.jar}:${dist.dir}/antbook-
anttask.jar:${jtidy.jar}"

/>

m Name/classname pairs:

index=org.example.antbook.ant.lucene.IndexTask

m Task(s) available:
<index index="${index.dir}”
overwrite="false”>.</index>

Custom Ant tasks can be defined by mappings in a properties file in order to
define multiple tasks at once and to provide a level of protection against
classnames changing and breaking build files. As long as the properties file
(which can be embedded in a task library's JAR file) is kept up to date, the
build file does not need to change when upgrading. (and yes, XDoclet should
use this facility for defining their tasks - I'm working on it!).

And finally, an example of how the index task is used in the build file.

90

Custom Ant Task Metadata

/*k*
* Ant task to index files with Lucene
*

* @ant.task name="index"
*/
public class IndexTask extends Task {

//

All our task needs is a name.

91

" JEEE
<template> subtask

<xdoclet destdir="${build.dir}/anttask/classes">
<fileset dir="src/anttask">
<include name="**/*_java" />
</fileset>

<template templatefile="metadata/anttask/taskdef.xdt"
destinationfile="taskdef.properties">
<configParam name="date" value="${DSTAMP} @ ${TSTAMP}"/>
</template>
</xdoclet>

To liven things up, here’s an example of generating that properties file, but
injecting a configuration (build-time) parameter into the template. This is a
date/timestamp.

92

XDoclet template

Created: <XDtConfig:configParameterValue paramName="date"/>
<XDtClass:forAllClasses>
<XDtClass:ifHasClassTag tagName="ant:task" paramName="name'">

<XDtClass:classTagValue tagName="ant:task" paramName="name"/>
=<XDtClass:fullClassName/>

</XDtClass:ifHasClassTag>
</XDtClass:forAllClasses>

/**
*@ant.task name="index"
*/

public class IndexTask extends Task

Java source:

Result: # Created: 20020903 @ 2133
index=org.example.antbook.ant.lucene.IndexTask

Shown on top - the XDoclet template used to generate the properties file, then
a snippet of the Java source code, and finally the end result.

Notice the tag library syntax of the templates. The configuration parameter is
easily available. Tags have a namespace (XDtClass for most of this example).
forAllClasses loops over all classes in the model (remember XJavaDoc from
the earlier slides). If the class has an @ant:task (or @ant.task, see note below)
with a name parameter then a properties line is emitted with that that name, an
equals sign, and the fully qualified classname. Instantly our task library
“descriptor” will be kept up to date with our source code (if we remember to
@tag it, of course).

Note: colons and dots are interchangeable as @tag separators currently.

93

Passive Generators

Based on metadata from XDoclet
One-time generation

Results customized

Regeneration painful after customizing
Great for rapid development

Example:
Starter Struts JSP pages
String resources

Sometimes its handy to just generate some quick and dirty “starter” code to
then take and tweak. This is a one-time process and not repeated unless the
modified files should be completely overwritten and changes lost.

In this example, developers create form beans first and can run a generator to
create a JSP file which is automatically localized with generated string
resources for field labels.

94

Starter Struts Pieces

SearchForm

Localized
resources

<table> |SearchForm.query=Query

<tr>
<th><bean:message key="SearchForm.query"/></th>
<td><html:text property="query"/></td>
</tr>
</table>

Very simple (andn ugly) HTML, but it gets the presentation generated quickly
which can be later refined by those with true layout skills :)

The string resources are generated with the form name dotted with the field
name, with a reasonable representation for a label (first letter of words
uppercased and space separated). Struts forms can even be nested JavaBean’s,
so the dotted syntax could be recursive!

Per-class template generation

<xdoclet destdir="${build.dir}”
excludedtags="@version, @author"
force="${xdoclet.force}">
<fileset dir="${struts.src.dir}"
includes="**/${form.name}.java"
/>
<template templateFile="src/FormKeys.xdt"
ofType="org.apache.struts.validator.ValidatorForm"
acceptAbstractClasses="false"
prefixWithPackageStructure="false"
destinationFile="{0}.properties"
/>
<template templateFile="src/StrutsForm jsp.xdt"
ofType="org.apache.struts.validator.ValidatorForm"
acceptAbstractClasses="false"
prefixWithPackageStructure="false"
destinationFile="{0}.]jsp"
/>

</xdoclet>

.xdt - XDoclet Template - this is the generally used file extension for template
files.

Only concrete subclasses of ValidatorForm are processed. The first
<template> generates [classname].properties. The second generates
[classname].jsp. The file contents are cut and pasted to the proper final place -
chances are [classname] is not the desired name of the JSP. The properties are
pasted into ApplicationResources.properties (the Struts default resources file).

prefixWithPackageStructure is disabled, but is handy in some cases.

96

Template w/ Custom Tag

<XDtTagDef:tagDef namespace="Struts”
handler="org.example.antbook.xdoclet.FormTagsHandler" />

<XDtStruts:forAllFields>

<XDtClass:classTagValue tagName="struts.form" paramName="name"/>.
<XDtStruts:fieldName/>=<XDtStruts:fieldDescription/>

</XDtStruts:forAllFields>

The template for the string resources property file. A custom tag handler was
developed to handle the recursive logic and other tricky pieces made easy in
Java code, but difficult/impossible with existing template tags.

Some tags are “body” tags, and process the body either iteratively or
conditionally. Other tags are “content” tags and generate some content directly
into the generation process. One builtin tag is used, the other tags are custom.

forAllFields must only iterate over fields that have validations specified.
fieldName could potentially be a recursively defined dotted name for nested
beans. fieldDescription is just some pretty formatting of the field name
(thisIsSomeField would output as “This Is Some Field”, for example).

97

Custom Tag Handler

public void forAllFields (String template, Properties attributes)
throws XDocletException {
XClass clazz = getCurrentClass();
TreeMap setters = new TreeMap (getFields(clazz));

for (Iterator iterator = setters.keySet().iterator();
iterator.hasNext () ;) {
curFieldName = (String) iterator.next();
XMethod field = (XMethod) setters.get (curFieldName) ;

setCurrentMethod (field);
generate (template) ;

}

public String fieldName (Properties props) {
return curFieldName;

}

Here’s the code of two tags. See, its not that bad, but does require some
learning of XJavaDocl’s API, but good IDE’s make this trivial, especially
alongside some of XDoclet’s own tag handler source code.

Future of XDoclet

m Velocity templating

m Jakarta project?

m Support for metadata JSR’s
m XDocletGUI

XDoclet 2 is already in progress and Velocity is being actively integrated
(probably already done by the time of this presentation). XDoclet to Apache?
Quite possible! Its an indispensible tool for J2EE (and even some general
Java) developers.

XDoclet team is committed to supporting the metadata JSR’s and is already
well ahead of the curve for tool support.

XDocletGUI is well under way and plugins for IDEA and jEdit already exist
(and probably others by the time of this presentation). It allows slick reading
and _writing_ of XDoclet tags into Java code. XJavaDoc is bidirectional!

99

References

m Java Development with Ant
http://ww I /obidos/ASIN/1930110588
http://ww i /antbook/

m Ant
http://jakarta.apache.org/ant

JAVA
' DEVELOPMENT

_. & ,\yﬂuAnt

Erik Hatcher
Steve Lowghion

m XDoclet

http://xdoclet.sourceforge.net

m Pragmatic Programmer
http://www.pragmaticprogrammer.com/

m Agile development
eXtreme Programming Explained, Kent Beck
Agile Software D loy t, Alistair Cockburn

My book - written by two authorities on Ant, both committers and *very*
actively involved in the Ant communities.

XDoclet gets an entire chapter in my book.

These three books changed my life. Please read them. Be agile.

100

The End

m Thank You!

101

	Navigation
	Return to menu
	Search

