
ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 1

Notes

ApacheCon November 18, 2002

Tomcat Performance Tuning
and Troubleshooting

Glenn L. Nielsen
UNIX Programming Coordinator

Missouri Research and Education Network (MOREnet)

http://kinetic.more.net/web/javaserver/performance.shtml

http://www.more.net/

Tuning Tomcat for performance and resolving problems which affect availability are
critical for a production instance of Tomcat. This session addresses how to collect
and analyze data to trouble shoot problems and configure Tomcat for performance.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 2

Notes

Overview

ÿProduction Tomcat Architecture

ÿPerformance Tuning

ÿTroubleshooting

Production Tomcat Architecture

In production Tomcat relies on a number of resources which can all impact its overall
performance. Understanding the overall system architecture is key to tuning
performance and troubleshooting problems.

Performance Tuning

•How to measure and test performance

•JVM version, memory usage, and garbage collection

•Tomcat version and configuration

•Database connection pools

•Application Design and Profiling

Troubleshooting

•Collecting and analyzing log data

•Common problems

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 3

Notes

Production Tomcat Architecture

Connectors

Hardware
OS

JVM
Tomcat

Applications

DBCP HTTP AJP

Hardware
OS

Database

Hardware
OS

Web Server

Hardware
OS

Remote Client

Hardware. CPU(s), memory, network IO, and file IO

Operating System.SMP and thread support

Database.Conncurrent db connections allowed, db connection pooling, and object
caching.

JVM. Version, tuning memory usage, and tuning garbage collection are important.

Tomcat. Later releases are more optimized for performance. If you use JavaServer
Pages, Jasper 2 available in Tomcat 4.1 significantly boosts performance.

Application. Application design can have the largest impact on overall performance.

Web Server. Can be used in front of Tomcat to serve static content removing this
load from Tomcat. This allows Tomcat to do what it does best, dynamic web
application content.

Network. Network delays. Nothing we can do about this.

Remote Client. Speed of remote client network connection. Nothing we can do
about this except compress the content using Apache mod_gzip or Tomcat
compression filter.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 4

Notes

Performance Tuning--Measuring
Performance

ÿ Before you can tune your server for optimal
performance you must be able to measure how
well it is performing.

ÿ Request Latency: The time it takes from when a
remote client requests a page until that page has
been completely rendered in their browser.

ÿ Request latency mean and
standard deviation trend graph

Without testing and measuring performance how can you know if any changes made
have improved performance?

Request latency is the most important performance measurement.

You can only control the portion of the overall request latency which occurs while
processing the request on your servers.

There is nothing you can do about the speed of the remote clients network connection
or any network delays between your servers and the remote client.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 5

Notes

Performance Tuning --
Measuring Performance

ÿ Test systems should match production as closely as
possible.
– Same hardware, OS, and software.

– Populate databases with the number of records expected in
production.

– Test HTTP requests with different request parameters.

– Simulate expected traffic over time including short term
spikes.

– Final tests should be over longer periods (days).

Databases

An application may perform well with a small number of records in the database.
Performance could degrade a great deal as the number of records in the table(s)
increases.

Request parameters

Test with the extremes. A page which performs a search may perform well when the
search criteria returns a small result set, but perform poorly when the search criteria
returns a large result set.

Simulated request traffic

A page which performs well with low request volume can cause the server to fail
under higher request volume.

Longer tests

The JVM performance changes over time and can actually improve if using HotSpot.
Memory leaks, db temporarily unavailable, etc. can only be found when running
longer tests.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 6

Notes

Performance Tuning --
Measuring Performance

ÿ Server load testing tools:
– Apache Jakarta JMeter

– ab - Apache HTTP server benchmarking tool

– Many other free and commercial load testing tools.

ÿ Production:
– Apache 1.3 mod_jk (1.2)

– Wily Technology - Introscope Application Server
Monitoring

Apache Jakarta JMeter

http://jakarta.apache.org/jmeter

Apache HTTP server benchmarking tool

http://httpd.apache.org/docs/programs/ab.html

mod_jk

If you are using Apache 1.3 and mod_jk 1.2 you can use JkRequestLogFormat to log
individual Tomcat request latency in nanoseconds.

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jk2/jk/aphowto.html

Production Runtime Monitoring

http://www.wilytech.com/

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 7

Notes

Performance Tuning -- JVM

ÿUse the most recent stable JVM release.

ÿUse HotSpot profiling optimizer "-server".

ÿTune JVM memory usage and garbage
collection (GC).

ÿ If possible dedicate a server for use as app
server.

Sun Java 1.3 and later releases include the HotSpot profiling optimizer customized
for long running server applications.

Sun Java 1.4 improves performance for servlet containers by approximately 35%.

Tomcat will freeze processing of all requests while the JVM is performing GC. On a
poorly tuned JVM this can last 10's of seconds. Most GC's should take < 1 second
and never exceed 10 seconds.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 8

Notes

Performance Tuning -- JVM
memory and GC

ÿ You must test and tune the JVM for your
hardware, OS, and application.
– Tune the -Xms (minimum) and -Xmx (maximum) java

stack memory

– Use -Xincgc to enable incremental garbage collection

– Try reducing -Xss thread stack memory usage

– Use -verbose:gc to capture GC performance data

– JavaWorld Garbage Collection Article

– Sun HotSpot Performance Documenation

Setting the minimum and maximum java stack memory to the same value can
improve GC performance.

Make sure the java process always keeps the memory it uses resident in physical
memory and not swapped out to virtual memory.

JVM garbage collection performance can degrade significantly if the JVM stack gets
swapped out to disk as virtual memory.

JavaWorld Garbage Collection Article

http://www.javaworld.com/javaworld/jw-01-2002/jw-0111-hotspotgc.html

Sun HotSpot Performance Documenation

http://java.sun.com/docs/hotspot/index.html

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 9

Notes

Performance Tuning -- Tomcat

ÿEach major new Tomcat release has been
better optimized for performance.

ÿJavaServer Page performance was
signficantly improved in Tomcat 4.1 which
includes version 2 of the Jasper JSP Engine.

ÿFor medium to high volume sites use a web
server in front of Tomcat to serve static
content.

Jasper 2

Can perform JSP page recompile in the background. Implements JSP custom tag
pooling.

Web server

Let the web server do what it does best, serve static content. And let Tomcat do what
it does best, generate dynamic content.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 10

Notes

Performance Tuning -- Tomcat
Configuration

ÿExample Tomcat 4.1 Configuration

ÿSet reloadable to false

ÿSet liveDeploy to false

ÿSet debug to 0

ÿSet swallowOutput to true

See Appendix A -- Example Tomcat 4.1 Configuration

reloadable false

When reloadable is true Tomcat tries to detect web application class changes and
automatically reload any classes which change. Setting this to false removes a lot of
unnecessary overhead in production.

liveDeploy false

liveDeploy controls whether your webapps directory is periodically checked for new
web application directories and war files. This is done using a background thread.
Set this to false and use the manager application or ant deploy tasks instead.

debug 0

Disable all debug output, unnecessary logging just adds overhead.

swallowOutput true

This makes sure all output to stdout or stderr for a web application gets directed to
the web application log rather than the console or catalina.out. This makes it easier
to troubleshoot web application problems.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 11

Notes

Performance Tuning -- Connector
Configuration

ÿExample Tomcat 4.1 Configuration

ÿminProcessors

ÿmaxProcessors

ÿacceptCount

ÿenableLookups

See Appendix A -- Example Tomcat 4.1 Configuration

minProcessors

Set to number of processors required for normal request volume.

maxProcessors

Set to twice the max number of concurrent requests expected.

acceptCount

Don't set too high, this sets the number of pending requests awaiting processing. In
my opinion it is better to deny a few requests than overload Tomcat and cause
problems for all requests.

enableLookups

DNS lookups can add significant delays.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 12

Notes

Performance Tuning -- Jasper 2
Configuration

ÿExample Jasper 2 Configuration

ÿSet development to false

ÿUse JSP custom tag pooling

ÿUse an external java compiler like Jikes

See Appendix B -- Example Jasper 2 Configuration

development false

Disables JSP page out of date checks on each request and enables JSP background
recompiles. development is set to true by default.

JSP custom tag pooling

Object pooling of classes which implement custom tags significantly improves
performance of JSP pages which use custom tag libraries. JSP custom tag pooling is
enabled by default.

External compiler - Jikes

The JVM compiler javac has known memory leaks. Eliminates JVM memory usage
and GC overhead of javac.

http://oss.software.ibm.com/developerworks/opensource/jikes/

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 13

Notes

Performance Tuning -- Databases

ÿExample Tomcat 4.1 Configuration

ÿJakarta-Commons DBCP

ÿTomcat 4.1 JNDI DataSource How To

ÿDatabase object caching

See Appendix A -- Example Tomcat 4.1 Configuration

Jakarta-Commons DBCP

http://jakarta.apache.org/commons/dbcp.html

Tomcat 4.1 JNDI DataSource How To

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jndi-datasource-examples-
howto.html

Database object caching

•Using middleware to persist and cache objects from your database can
significantly improve performance.

•Fewer delays due to db query latency.

•Less thrashing of the JVM for creation and subsequent GC of objects created for
result sets.

•Object Relational Bridge http://jakarta.apache.org/ojb/

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 14

Notes

Performance Tuning --
Application Design

ÿSwitch dynamic pages to static pages

ÿCache dynamic page output

ÿDatabase connection pooling

ÿDatabase object caching

ÿReduce the amount of HTML generated for
large pages

Switch dynamic pages to static pages

If the data used to generate a dynamic page rarely changes change to a static page
which you regenerate periodically.

Cache dynamic page output

If each request for a page doesn't generate unique output but changes too frequently
to make it static, consider temporary caching of the generated output.

•Servlet 2.3 Cache Filter
http://www.servletsuite.com/servlets/cacheflt.htm

•Jakarta-Taglibs Cache JSP tag library
http://jakarta.apache.org/taglibs/doc/cache-doc/intro.html

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 15

Notes

Performance Tuning --
Application Profiling

ÿUse tools like JProbe or OptimizeIt to
profile your web applications during the
development phase.

JProbe

http://www.sitraka.com/software/jprobe/

OptimizeIt

http://www.borland.com/optimizeit/

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 16

Notes

Troubleshooting – Log Review

ÿReview logs often

ÿ Intermittent problems

ÿApplication bugs

ÿConnector Broken Pipe

Review logs often, daily if possible.

Can help identify intermittent problems.

Application bugs can be found and fixed.

Connector Broken Pipe

•For HTTP Connector indicates that the remote client aborted the request.

•For a web server JK Connector indicates that the web server process or thread
was terminated.

•These are normal and rarely due to a problem with Tomcat.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 17

Notes

Troubleshooting -- Common
Problems

ÿTomcat Pauses

ÿMemory Usage

ÿNo Processors Available

ÿmod_jk errors

ÿDatabase connections

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 18

Notes

Troubleshooting -- Tomcat Pause

ÿTomcat freezes or pauses with no requests
being processed.

ÿUsually due to a long pause from JVM
garbage collection.

Use java -verbose;gc startup argument to collect GC data.

A long pause can cause a cascading effect and high load once Tomcat starts handling
requests again.

Don't set the Connector acceptCount to high.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 19

Notes

Troubleshooting -- Memory
Usage

ÿJVM system memory usage

ÿOutOfMemory exceptions and memory leaks

JVM system memory usage

•JVM memory usage will increase over time to your -Xmx maximum memory
config.

•The JVM will never release that memory back to the OS.

•The JVM manages its memory usage internally.

•Use the java -verbose:gc option to collect data on JVM memory usage.

OutOfMemory exceptions and memory leaks

•These are almost always caused by your application code.

•Try increasing -Xmx if you have available memory on the system.

•Stop and restart Tomcat

•Profile your web application to determine where and why it is using excessive
amounts of memory or leaking memory.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 20

Notes

Troubleshooting -- No Processors
Available

ÿTomcat pause from long GC times

ÿTomcat overloaded

ÿDatabase connection delays

ÿConnector maxProcessors set to low

ÿThread Stacktrace Dump

Tomcat overloaded

•Review request volume

•Review Tomcat CPU usage

•Review request latency

Database connection delays

If there are database connection problems each request which uses the database could
pause for as long as your db connection timeout. This puts processing for requests
which use the db into a long wait. More and more Processors get used because too
many requests are waiting for the db.

Connector maxProcessors set to low

If there is no other problem causing the Connector to run out of Processors, your
maxProcessor setting may be to low. I recommend setting it to twice the number of
concurrent requests you expect Tomcat to process.

Thread Stacktrace Dump

http://developer.java.sun.com/developer/technicalArticles/Programming/Stacktrace/

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 21

Notes

Troubleshooting -- mod_jk errors

ÿError ajp_process_callback - write failed

ÿError - jk_tcp_socket_recvfull failed

ÿError connecting to the Tomcat process

Error ajp_process_callback - write failed

The remote browser client aborted the HTTP request. It is normal to see this error
once in a while. This error occurs more frequently when request latency has
increased due to Tomcat being overloaded.

Error - jk_tcp_socket_recvfull failed

All of Tomcats AjpProcessor's are in use and Tomcat rejected the connection.
Tomcat is overloaded or the Connector maxProcessors needs to be increased.

Error connecting to the Tomcat process

Either Tomcat isn't running or Tomcat and mod_jk are configured to use different
ports.

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 22

Notes

Troubleshooting -- Database
Connections

ÿDatabase Connection Failures

ÿRandom Connection Closed Exceptions

Database connection failures

•Long JVM GC times greater than db connection timeout can cause intermittent
db connection failures.

•Database connection pool out of connections due to abandoned db pooled
connections which are never recycled.

•Spike in traffic to site using up all available db connections. This can either be
in your db connection pool configuration or in your database server
configuration.

Random Connection Closed Exceptions

•Usually caused by a bug in the web application usage of the db.

•See Appendix C -- Random Connection Closed Exceptions

ApacheCon November 18, 2002

Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen 23

Notes

Tomcat Performance Tuning
and Troubleshooting

Questions?

Comments?

ApacheCon November 18, 2002 Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen

Appendix A -- conf/server.xml Tomcat 4.1 configuration

<Server port="8005" shutdown="SHUTDOWN" debug="0">

 <Service name="Tomcat-Apache">

 <Connector className="org.apache.ajp.tomcat4.Ajp13Connector"
 port="8009" minProcessors="50" maxProcessors="375"
 acceptCount="10" connectionTimeout="0" debug="0"/>

 <Engine name="Tomcat-Apache" defaultHost="www.myhost.com" debug="0">

 <Logger className="org.apache.catalina.logger.FileLogger"
 prefix="catalina_log." suffix=".txt"
 timestamp="true"/>

 <Host name="www.myhost.com" debug="0"
 appBase="webapps" swallowOutput="true"
 unpackWARs="true" autoDeploy="true" liveDeploy="false">

 <Realm className="org.apache.catalina.realm.JDBCRealm" debug="0"
 driverName="org.gjt.mm.mysql.Driver"
 connectionURL="jdbc:mysql://localhost/realm?autoReconnect=true"
 connectionName="admin" connectionPassword="password"
 userTable="users" userNameCol="user_name" userCredCol="user_pass"
 userRoleTable="user_roles" roleNameCol="role_name" digest="MD5" />

 <Logger className="org.apache.catalina.logger.FileLogger"
 prefix="myhost_log-" suffix=".txt" timestamp="true"/>

 <DefaultContext debug="0" reloadable="false" swallowOutput="true">
 <!-- JNDI JDBC DataSource Resource for using MySQL dB -->
 <Resource name="jdbc/data" auth="CONTAINER"
 type="javax.sql.DataSource"/>
 <ResourceParams name="jdbc/data">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>
 <parameter><name>username</name><value>username</value></parameter>
 <parameter><name>password</name><value>password</value></parameter>
 <parameter>
 <name>driverClassName</name>
 <value>org.gjt.mm.mysql.Driver</value></parameter>
 <parameter>
 <name>url</name>
 <value>jdbc:mysql://localhost/myhost?autoReconnect=true</value>
 </parameter>
 <parameter>
 <name>maxIdle</name>
 <value>50</value>
 </parameter>
 <parameter>
 <name>maxActive</name>
 <value>200</value>
 </parameter>

1 of 2

ApacheCon November 18, 2002 Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen

 <parameter>
 <name>maxWait</name>
 <value>10000</value>
 </parameter>
 <parameter>
 <name>logAbandoned</name>
 <value>true</value>
 </parameter>
 <parameter>
 <name>removeAbandoned</name>
 <value>true</value>
 </parameter>
 <parameter>
 <name>removeAbandonedTimeout</name>
 <value>300</value>
 </parameter>
 </ResourceParams>
 </DefaultContext>

 <Context path="/manager"
 docBase="/usr/local/kinetic/tomcat4/server/webapps/manager"
 debug="0" privileged="true">
 <Valve className="org.apache.catalina.valves.RemoteAddrValve"
 allow="127.0.0.1"/>
 </Context>

 </Host>

 </Engine>

 </Service>

</Server>

2 of 2

ApacheCon November 18, 2002 Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen

Appendix B -- conf/web.xml Jasper 2 configuration

 <!-- The JSP page compiler and execution servlet, which is the mechanism -->
 <!-- used by Tomcat to support JSP pages. Traditionally, this servlet -->
 <!-- is mapped to URL patterh "*.jsp". This servlet supports the -->
 <!-- following initialization parameters (default values are in square -->
 <!-- brackets): -->
 <!-- -->
 <!-- checkInterval If development is false and relaoding is true, -->
 <!-- background compiles are enabled. checkInterval -->
 <!-- is the time in seconds between checks to see -->
 <!-- if a JSP page needs to be recompiled. [300] -->
 <!-- -->
 <!-- compiler Which compiler Ant should use to compile JSP -->
 <!-- pages. See the Ant documenation for more -->
 <!-- information. [javac] -->
 <!-- -->
 <!-- classdebuginfo Should the class file be compiled with -->
 <!-- debugging information? [true] -->
 <!-- -->
 <!-- classpath What class path should I use while compiling -->
 <!-- generated servlets? [Created dynamically -->
 <!-- based on the current web application] -->
 <!-- -->
 <!-- development Is Jasper used in development mode (will check -->
 <!-- for JSP modification on every access)? [true] -->
 <!-- -->
 <!-- enablePooling Determines whether tag handler pooling is -->
 <!-- enabled [true] -->
 <!-- -->
 <!-- ieClassId The class-id value to be sent to Internet -->
 <!-- Explorer when using <jsp:plugin> tags. -->
 <!-- [clsid:8AD9C840-044E-11D1-B3E9-00805F499D93] -->
 <!-- -->
 <!-- javaEncoding Java file encoding to use for generating java -->
 <!-- source files. [UTF8] -->
 <!-- -->
 <!-- keepgenerated Should we keep the generated Java source code -->
 <!-- for each page instead of deleting it? [true] -->
 <!-- -->
 <!-- largefile Should we store the static content of JSP -->
 <!-- pages in external data files, to reduce the -->
 <!-- size of the generated servlets? [false] -->
 <!-- -->
 <!-- logVerbosityLevel The level of detailed messages to be produced -->
 <!-- by this servlet. Increasing levels cause the -->
 <!-- generation of more messages. Valid values are -->
 <!-- FATAL, ERROR, WARNING, INFORMATION, and DEBUG. -->
 <!-- [WARNING] -->
 <!-- -->
 <!-- mappedfile Should we generate static content with one -->
 <!-- print statement per input line, to ease -->
 <!-- debugging? [false] -->
 <!-- -->
 <!-- reloading Should Jasper check for modified JSPs? [true] -->

1 of 2

ApacheCon November 18, 2002 Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen

 <!-- -->
 <!-- scratchdir What scratch directory should we use when -->
 <!-- compiling JSP pages? [default work directory -->
 <!-- for the current web application] -->
 <!-- -->
 <!-- If you wish to use Jikes to compile JSP pages: -->
 <!-- Set the init parameter "compiler" to "jikes". Define -->
 <!-- the property "-Dbuild.compiler.emacs=true" when starting Tomcat. -->
 <!-- If you get an error reporting that jikes can't use UTF8 encoding, -->
 <!-- try setting the init parameter "javaEncoding" to "ISO-8859-1". -->

 <servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>
 <init-param>
 <param-name>logVerbosityLevel</param-name>
 <param-value>ERROR</param-value>
 </init-param>

 <!-- Uncomment the following two parameters to use jikes as the
 java compiler for generated java code from JSP pages. -->
 <init-param>
 <param-name>compiler</param-name>
 <param-value>jikes</param-value>
 </init-param>
 <init-param>
 <param-name>javaEncoding</param-name>
 <param-value>ISO-8859-1</param-value>
 </init-param>

 <!-- Set the following two parameters to false for production -->
 <init-param>
 <param-name>development</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>mappedfile</param-name>
 <param-value>false</param-value>
 </init-param>
 <load-on-startup>3</load-on-startup>
 </servlet>

2 of 2

ApacheCon November 18, 2002 Tomcat Performance Tuning and Troubleshooting, Glenn Nielsen

Appendix C - Random Database Connection Closed Exceptions

These can occur when one request gets a db connection from the connection pool and closes it twice.
When using a connection pool, closing the connection just returns it to the pool for reuse by another
request, it doesn't close the connection. And Tomcat uses multiple threads to handle concurrent requests.
Here is an example of the sequence of events which could cause this error in Tomcat:

1. Request 1 running in Thread 1 gets a db connection.
2. Request 1 closes the db connection.
3. The JVM switches the running thread to Thread 2
4. Request 2 running in Thread 2 gets a db connection(the same db connection just closed by Request

1).
5. The JVM switches the running thread back to Thread 1
6. Request 1 closes the db connection a second time in a finally block.
7. The JVM switches the running thread back to Thread 2
8. Request 2 Thread 2 tries to use the db connection but fails because Request 1 closed it.

Here is an example of properly written code to use a db connection obtained from a connection pool:

 Connection conn = null;
 Statement stmt = null; // Or PreparedStatement if needed
 ResultSet rs = null;
 try {
 conn = ... get connection from connection pool ...
 stmt = conn.createStatement("select ...");
 rs = stmt.executeQuery();
 ... iterate through the result set ...
 rs.close();
 rs = null;
 stmt.close();
 stmt = null;
 conn.close(); // Return to connection pool
 conn = null; // Make sure we don't close it twice
 } catch (SQLException e) {
 ... deal with errors ...
 } finally {
 // Always make sure result sets and statements are closed,
 // and the connection is returned to the pool
 if (rs != null) {
 try { rs.close(); } catch (SQLException e) { ; }
 rs = null;
 }
 if (stmt != null) {
 try { stmt.close(); } catch (SQLException e) { ; }
 stmt = null;
 }
 if (conn != null) {
 try { conn.close(); } catch (SQLException e) { ; }
 conn = null;
 }
 }

1 of 1

	Navigation
	Return to menu
	Search

