Apache handlers with mod_perl

Author : rbowen

Date : 2002/10/0718 : 31 : 58

Contents

1 mod_perl as CGI accellerator 2
2 What mod_perl is really for 2
3 Example mod_perl handler 3
4 So what does this gain me 4
5 Writing a Perl module 4
6 Where the modules live 5
7 Installing a mod_perl handler 6

7.1 Installing a Perl module manually 6

7.2 Installing a Perl module the right way 6

7.3 Auto-generating this stuffo 7
8 Apache configuration 8
9 Actual useful handlers 9
10 What next? 10
11 Apache::DBI 10
12 Things not to do 11

121 exit . . oo o o 11

12.2 Global variables 11

12.3 Other random tips e 12

1 mod_perl as CGI accellerator

mod_perl is a very popular, widely installed module, which is used primarily as a CGI accelerator. Simply
by running a CGI program under the mod_perl handlers Apache: :Registry or Apache: :PerlRun, you can
get pretty significant speed improvements in your CGI performance, without changing a line of code.

At least, this seems to be what most people use it for.

And, it’s really good at it. Here’s some sample benchmarks using the ab utility that comes with Apache:

./ab -n 1000 -c 10 http://localhost/cgi-bin/examplel.cgi

Requests per second: 58.59 [#/sec] (mean)

./ab -n 1000 -c 10 http://localhost/cgi-perl/examplel.cgi

Requests per second: 108.70 [#/sec] (mean)

./ab -n 1000 -c 10 http://localhost/perl/examplel.cgi

Requests per second: 213.40 [#/sec] (mean)

So those are some pretty significant results.

2 What mod perl is really for

However, the real power of mod_perl is that you have direct access to the Apache API, so that you can write
handlers for any phase of the Apache transations, directly in Perl.

The Apache API provides hooks into every part of the HTTP transaction, so that modules can affect
authentication, URL mapping, content negotiation, or any other aspect of the transaction.

mod_perl lets you do this in Perl.

Now, this is only going to be an advantage if you happen to know Perl, but, aside from that little piece
of trivia, this is a great tool for rapid development of web based applications, without all of the pain and
slowness associated with CGI.

mod_perl handlers are most frequently used for content generation - that is, as a replacement for CGI
programs that do roughly the same thing. However, they are also frequently used for AAA (Authentication,
Authorization and Access Control) handlers.

A mod_perl handler is a Perl module with a method called handler. Actually, you can call your method
whatever you want, but the convention is to call it handler, and this is the method that mod_perl will call
by default if you don’t specify something else.

This method will receive a single argument, which is an object in the Apache class. It is traditional to call
this object $r, which presumably stands for “Request”. This object can then be used to make calls into the
Apache APL

This method, by means of calling methods via $r, returns content in much the same way that a CGI program
would do.

3 Example mod_perl handler

The following is an example mod_perl handler - the standard beginner “hello world” example program which
does nothing more interesting than to display a message in the browser.

package Apache::HandlerTest;
File is called Apache/HandlerTest.pm
Path: /usr/lib/perl5/site_perl/5.6.0/Apache/HandlerTest.pm

sub handler
my $r = shift; # Apache session object
$r->content_type(’text/html’);
$r->send_http_header;
$r->print("Hello, world.");

1

To configure Apache to use this handler, you would need to add a configuration section like the following to
your httpd.conf file:

<Location /handlertest>
SetHandler perl-script
PerlModule Apache::HandlerTest
PerlHandler Apache::HandlerTest
</Location>

This configuration will cause requests to the URL /handlertest to be handled by Apache: :HandlerTest.
If you want to call your method something other than handler, or if you have several methods in the same
module, you can specify a method name in the PerlHandler directive:

PerlHandler Apache::HandlerTest::othermethod

As this handler does not do anything particularly interesting, there are only a few things worth commenting
on here.

First, rather than printing output, as we are used to doing in CGI programs, output is sent directly to the

Apache API using the various methods illustrated. A CGI program is a forked process, and whatever it
prints to STDOUT gets piped back to Apache for redelivery to the client. A mod_perl handler, on the other
hand, is running in process in the Apache child, and sends things directly through the API. This, among
several other things, leads to a substantial performance boost over CGI.

Second, it is useful to note that we set just the content_type header, but we can set any of the other
standard headers in a similar manner. Alternately, if we are only interested in sending the one header, we
can actually do this with a single function call as shown below:

$r->send_http_header(’text/html’);

This would reduce the above handler by one line. Some people find that important. ;-)

4 So what does this gain me

There are a number of things that this gains you over just writing CGI programs. The first of these things
is performance. Our fastest CGI running under Apache: :Registry ran at 213 requests per second on my
crusty old laptop. The above mod_perl handler, which does essentially the same thing, ran at 296 requests
per second. - almost another 50% improvement.

The reasons for this are numerous, and are even more numerous when your handler is doing something
slightly more useful, such as database access, as we’ll discuss later.

First, Whereas CGI forks an external process, the mod_perl handler runs in process, meaning that no inter-
process communication is needed. The mod_perl module is loaded in with the Apache process, as is any
other module

Second, your Perl code does not need to be loaded and compiled each time, as is the case with CGI programs.
The PerlModule directive causes your Perl module to be loaded into the Apache child process. The code
contained in it is evaluated, and cached in memory as the compiled bytecode. Each time your handler is
invoked, this compiled code is merely executed. No interpretation and compilation phases are required.

Of course, this is a bit of an over-simplification, and you need to see the mod_perl documentation for the
gory details. But that’s the basic idea.

5 Writing a Perl module

In order to write a mod_perl handler, you need to know how to write a Perl module. Specifically, you need
to know how to write an OO (Object Oriented) Perl module. This is much easier than one might expect.
OO is really simple in Perl.

Here are the basics.

A class, which is one of the fundamental building blocks of OO terminology, is just a module. A module is
simply a file beginning with a package declaration, and containing one or more methods.

A method is a function which receives, as its first argument, an object. An object method is called by an
object using the special arrow syntax:

$return = $object->method(@arguments) ;

And an object is a reference (usually a hash reference) which has been acted upon by the bless() operator
to associate it with a particular class.

Strictly speaking, you don’t really need to know all of this stuff to write mod_per handlers. But it helps.
In a particular module, methods will typically receive, as their argument, an object in that class.

For example, if you were to create an object in the Object: :Namespace class:

use Object::Namespace;
my $object = Object::Namespace->new;
$return = $object->methodname;

The the method, in the Object: :Namespace class, would look something like this:

sub methodname
my $self = shift;
$self is an object in the Object::Namspace class

The class Object: : Namespace will (usually) be located in a file called Namespace.pm, which is located in a
Object/ subdirectory somewhere.

But where ...

6 Where the modules live

When a Perl module is loaded, using the use keyword, Perl loads that particular module file from the file
system, by looking in several different directories until it finds the file.

The list of directories in which it will look - the module path - is stored in the global variable INC. To see
the contents of the variable INC, run the following command:

rbowen@rhiannon: ~% perl -le ’print join "\ n",@INC;’
/usr/lib/perl5/5.6.0/1686-1inux
/usr/lib/perl5/5.6.0
/usr/lib/perlb5/site_perl/5.6.0/1686-1inux
/usr/lib/perl5/site_perl/5.6.0
/usr/lib/perl5/site_perl

The sample output there shows the module path for an installation of Perl 5.6.0 on Linux. This may be
different on your system.

In each of these directories, the modules name is used to find the file path. For example a module called
Apache: :HandlerTest will be located in the file Apache/HandlerTest.pm, somewhere in the Perl library
path. In this particular case, that file is located at
/usr/1ib/perlb5/site_perl/5.6.0/Apache/HandlerTest.pm

7 Installing a mod _perl handler

Installing a mod_perl handler consists of two steps. First, you have to install the Perl module itself, and
then you have to tell Apache that you want to use it.

Installing a Perl module is a fairly simple process. It can be done one of two ways. You can either install
the module file manually, or, for a module built in a standard way, you can run the installation script (sort
of) that comes with it. Of course, if you are writing your own handler module, you will need to know how
to generate this installation program yourself.

7.1 Installing a Perl module manually

As described above, a Perl module is located somewhere in your Perl module path, in a location corresponding
to its name. Typically, the site_perl directory is reserved for modules that are installed on your system
after the initial installation of Perl - as opposed to modules that came with Perl when it was initially installed.

So, for a module Apache: :Example, we’ll put it at /usr/1ib/perl5/site_perl/5.6.0/Apache/Example.pm,
for example. If you want to use the example module shown above, then, type in that file, and put it in this
location so that Perl can find it when we use the module.

7.2 Installing a Perl module the right way

Most Perl modules (ie, those you get off of CPAN) install with:

perl Makefile.PL
make

make test

make install

If you are writing a real module, for distribution beyond a single machine on which you are writing it, yours
should also install with this procedure.

Fortunately, you don’t need to know anything about how to write makefiles in order to make this happen.
Perl comes with a wonderful module called ExtUtils: :MakeMaker which handles all of this stuff for you.

Makefile.PL is a simple script that describes some of the basic information about your module, and, when
it is run, it generates a full-blown makefile which can be used to build and install your module.

The contents of Makefile.PL are really simple (or at least they can be). Here’s an example Makefile.PL:

use ExtUtils::MakeMaker;

WriteMakefile(

’NAME’ => ’Apache: :Example’,

’VERSION_FROM’ => ’lib/Apache/Example.pm’, # finds $VERSION
);

Yes, that’s all there is to it.
S0, now, what does it mean? Well, since there’s not much to it, it’s simple to explain.

The first line loads the Extutils: :MakeMaker module, which knows how to build makefiles from the simple
hash provided in your Makefile.PL

Next, we have a call to the WriteMakeFile function, to which we can pass a number of arguments describing
your module. We've passed a very minimal list of arguments. You should see the documentation for
Extutils: :Makemaker for a more complete list of arguments that you can pass.

The NAME argument specifies the name of the package. This is used when a distribution is built with the
make dist command.

The VERSION_FROM argument specifies which file contains the variable $VERSION, which will determine the
version number put on a distribution.

That’s really all there is to it. You may also want to have a file called MANIFEST which contains a listing
of all files that are to be distributed with your module. This will generally consist of the module itself, the
Makiefile.PL, perhaps a README file, and perhaps some tests.

7.3 Auto-generating this stuff

While it is nice to know how to write these things from scratch, it is often very convenient to be able to
automatically generate a skeleton from which you can work. This is helpful so that you don’t forget anything,
and also makes sure that you get the syntax correct.

There are a variety of ways to generate these things. The most widely advocated one is a utility called h2xs
which gets installed when you install Perl. You can find out more about h2sx by looking at its documentation,
and I won’t say much more about it here, because I don’t recommend that you use it.

By far the best way to generate Perl modules is ExtUtils: :ModuleMaker, by Geoff Avery. In its simplest
incarnation, you can generate a module distribution by running the following command:

perl -MExtUtils::ModuleMaker -e ’Quick Module("Apache::Example");’

This command generates all of the necessary files for a Perl module, including the module itself, the
Makefile.PL, stub documentation, and some basic tests. The directory structure created is much more
conducive to growth than is that generated by h2xs, and there are a large number of additional arguments
that you can pass to it to generate a more complex module tree.

For example, the following script is what I use to generate modules for internal use at my company:

#!/usr/bin/perl
use ExtUtils::ModuleMaker;

Generate_Module_Files (

NAME => ’Acme: :Time: :Asparagus’,
ABSTRACT => ’Time on the vegetable clock’,
AUTHOR =>
NAME => ’Rich Bowen’,
EMAIL => ’rbowen@CooperMcGregor.com’,
CPANID => ’RBOW’,
WEBSITE => ’http://www.CooperMcGregor.com/’,

VERSION => 1.10,
LICENSE => ’perl’,
)

And, once you have generated the module distribution, your module can be installed using the standard
incantation:

perl Makefile.PL && make && make install

Note that this module (ExtUtils::ModuleMaker is not (yet) a standard part of Perl, and needs to be
installed from CPAN before you can use it. So go to your favorite CPAN mirror, or to CPAN.org, and
download the latest version.

8 Apache configuration

Once you have the module installed, you then need to tell Apache to use it as a handler. This is usually a
simple matter of a <Location> section and a few directives.

<Location /url_goes_here>
SetHandler perl-script

PerlModule Your: :Module
PerlHander Your: :Module
</Location>

The SetHandler directive tells Apache that all requests for this url are to be handled by a mod_perl handler.

The PerlModule directive loads the module. This directive may not actually be required, but it is a good
practice to have it in there. This directive can be used to load any other modules that may be needed also.

And the PerlHandler directive specifies that the url is to be handled using the methods in this module. If
your handler method is not called handler, you may specify a particular method name in this directive:

PerlHandler Your::Module: :othermethod

There are a plethora of other directives that may be used, if you wish to specify that something else is to
be done using a Perl module. For example, if you want to do the authentication using a Perl module, this
would be specified using the PerlAuthenHandler directive.

9 Actual useful handlers

Handlers that print “Hello World” are not particularly useful for anything other than demonstrating basic
concepts. If we want a web handler that is even marginally useful, we need to be able to read in form content,
or input from the URL QUERY_STRING, and do something useful with that.

Fortunately, mod_perl offers a simple way to do this.

sub handler
my $r = shift;

if ($r->method eq ’POST’)
%form = $r->content;
else
%form = $r->args;

$r->send http_header(’text/html’);
$r->print("Name = " . $formname);

The method above would, of course, be contained in a module, which would in turn be loaded using the
PerlHandler directive, as demonstrated in the section above.

The method method determines the HTTP method used (GET or POST in this case).

If the request was a POST request, then the form content will be available via STDIN, which is retrieved, and
split into its component parts, using the content method. Otherwise, it is Epresumed that the request was
a GET request, and the form contents are read out of the QUERY_STRING variable, using the args method.

In either case, we get a return value of a hash. This hash is composed of name and value pairs, corresponding
to the fields that were in the HTML form that is being sent to us. The last lines of the handler return the
content-type header, and display the value of the form fiend name, if there was such a field.

10 What next?

Well, once you've gotten this far, there’s not much more to say. Particularly if you are used to writing
CGI programs. After the first dozen or so CGI programs, they are all pretty much the same. You get form
content, you do something with it, and you return a document to the client. The variations are minor.

The same is mostly true of mod_perl content generation handlers. There are, however, a few additional
things that you might want to know.

11 Apache::DBI

As you may already be aware, the Perl DBI module facilitates connections to your favorite database. Most
databases in common use have a DBD (database driver) that can be used with the DBI so that the database
is accessible from Perl.

One of the big performance problems with CGI is that you have to reestabilsh your connection to the
database with every request for the CGI resource. And something that mod_perl gives you is persistent
database connections, to remove this limitation, and give a substantial performance boost.

This persistence is provided through the module Apache: :DBI, which hijacks all calls to the DBI module, and
subverts them slightly. In particular, it maintains a pool of database connections, and gives you one of these
when you attempt to connect to the database. Also, when you call the disconnect method, Apache: :DBI
politely ignores you, maintaining the open database handle to be used the next time.

Additionally, you can tell Apache to connect to the database as soon as a child process is launched, and save
even the overhead of the initial connection.

This, and other initialization steps, can be performed using the PerlRequire directive, and an initialization
script. As this is not a mod_perl introduction, I’ll assume that you already know basically how that works.

In httpd.conf, put:

PerlRequire /path/to/apache_preload.pl

Then, in apache_preload.pl:

use Apache::DBI ();
use DBI ();

Apache: :DBI->connect_on_init (
$odatabase, $DBI_username, $DBI_password,
AutoCommit => 1,

)

Note that Apache: :DBI should get loaded before DBI. Apache: :DBI will create the database connection each
time a new child process is started. Then, in your code, you just use DBI as you would ordinarily.

12 Things not to do

When you are writing your handler modules, there are several things that you want to avoid doing.

12.1 exit

In Perl, the exit command is used to terminate a running program. It is often used in scripts to cause a
program to end abruptly.

Don’t use this function when writing mod_perl handlers. It does Bad Things. In particular, it causes the
Perl interpeter to exit. Since one of the primary functions of mod_perl is to keep a Perl interpreter running
in the Apache process, this causes a problem. You end up with an Apache process that thinks it has a Perl
interpreter, but which doesn’t.

This can cause a number of unpleasant symptoms. In one incarnation, a request will be sent to mod_perl,
which is unable to respond, and then Apache will return to the client whatever happened to be in the send
buffer from the last time. In other words, you can get in a situation where every request gets served the
same content, regardless of what the request was for. Clearly this is a bad thing, and may even result in a
security problem whereby sensitive documents are distributed to unauthorized users.

So, don’t use the exit function, ever.

12.2 Global variables

Don’t use global variables. Of course, you should not use global variables anyway. It’s a really bad practice,
and leads to unexpected results. However, this is particularly true with mod_perl applications. Remember
that the Perl interpreter does not exit between accesses, and your Perl code also does not get reloaded or
purged between accesses. Thus, and global variable set within one access may persist until the next user
comes to the web site, with unpleasant side effects.

In one anecdote, variabes $username and $password were set as global variables, causing anyone coming
to the site and not providing a valid username and password to be admitted with the authentication of the
previous visitor to the site. You can imagine that this would cause problems.

12.3 Other random tips

use strict; and use warnings; at the start of every piece of Perl you write. It will make your life better.

Use my on every one of your variables.

Of course, you should already be doing these things anyway, right?

