

Performance—tuning Apache

Thomas Wouters <thomas@xs4all.net>
XS4ALL

Performance—-tuning Apache

Table of Contents

1 PerformanCe—tUNING ADACKIE. bbb e bt se st ss e ssss s s s s ss s s s e s s s s s s s e s s e s s s e e sseeseessaeeaneeaeeeeeeeeeees 1
O Lo Yo [Tox 1o Yo TR

0 1Y o 7= Lo 122 O PR EPTRSUSSUPPRSRR 1
O T (0] = L o=t (0111 Ao PSP 1

1.3 TweakingAPAChECONTIQUIALIONuuuuiuriiiiiiiiiiiiitiieiieeieee aesesessaesseessesseeeseesseeeseeeeseseeeseeerereeaeeaaeaaeeaaeeees 2
1.3.1mod_StatUBNAEXIENAEASTATUS eeeee ettt et e et e et e e e e e e r e e e e eenanees 2
1.3.2HOStNAMELOOKUDS.coi i 2

SRSV 0] 0] PSPPI Z
1.3.4AllowOQOverride

oY anTo o I Ta ol (6o < TR 3

1.3.6MaxClientsandMaX/MINSPAIESEIVELScvviiiiiiieiieiieeeeeee ettt ee et a e e e e e e e aa s 3
N ST ALY 2O [T 01 ST 3

1.3.6.2MaxSpareServerandMIiNSParE@SEIVELS........cccooeieeiiiii e, 4
R GG I = 1 =T Y= €= 4
R T YN o= Lo =2 O PSPPI 4
1.3.7More PerformManCAWEAKINGuuuuuuruurrerrrrrterrerrrresrrearrerrseeresresersssrsesseesaeeseeerreererrerrrrrrrrrreee 4
1.4ReducingnetWOrkIOAd...........coooiiiiiiiii e, 5

oo o AT o PSPPSR E
1.4.2mod_bandwidth

IS oT=T=To [TaTo Ul o X @ Yol] o) £ PSPPI 8
T =1 (O 1 TR RTTRTTR £

1.6.2mM0d <IaNQUAGE= —————— 8
IS TRC TN 1= Y 7= T (

AN o Yo T 1 d A TEX o [0 Yod Ul 1A 1< o | AU RPTRPR 0

Performance-tuning Apache

1.3 Tweaking Apache Configuration

In general it can be said that features cost speed. The fewer features that are actually enabled, the more quickl
Apache can handle requests. In some situations, however, it is hard to figure out whether you need a specific
feature or not, or how hard it would be to do without it. The following section covers some optional modules and
configuration directives that can positively and negatively affect speed. Most of these, and some more, can alsc
found in the_Performance Notes section of the Apache manual.

1.3.1 mod_status and ExtendedStatus

The standard Apache module mod_status enables a configuration directive ExtendedStatus, which causes
Apache to maintain extra information on the requests Apache is handling and the performance of it. While this
information can be useful for benchmarking or locating bottlenecks, it also takes extra effort to gather it, and thu
reduces performance.

ExtendedStatus is off by default, and can be switched on or off using the server—global ExtendedStatus
directive.

1.3.2 Hosthame Lookups

Apache has the ability to do a DNS lookup for each request that comes in, in order to log the hostname of the
remote host rather than the ipaddress, and to pass it to any CGl script that gets executed. DNS lookups can be
guite time—consuming, however, especially if the name—servers for the ipaddress fail to respond. For the logfile
hostname lookups are better done by a separate logfile—parser. For CGl scripts, as far as they really need the
resolved hostname, most programming languages have a way to resolve it themselves.

Apache also allows turning hostname lookups on or off selectively, by including the HosthameLookup
directive in File or Directory statements. Note that there is no real performance benefit in making CGI scripts do
the resolving themselves, except by reducing the number of lookups done.

1.3.3 Symlinks

In order to improve security, Apache has specific checks to avoid being fooled by UNIX symbolink links. If these
precautions are not taken, it is possible to fool the Apache server to serve files it is not supposed to serve, such
files containing password—data for restricted directories. Denying Apache access to those files is often impossit
because they are needed by the mod_auth modules, or by CGI scripts which execute with the same permissior
Apache. In absence of such sensitive data or malicious users, or when using mod_disallow_uid to deny access
those files, turning off symlink security can be considered.

Apache's symlink handling is handled by two mutually exclusive options, FollowSymlinks and
SymlinkslfOwnerMatch, which can be included in any Options directive, except one contained in a

Location directive. FollowSymlinks disables the symlink checks, while SymlinkslfOwnerMatch enables symlinks
only if the owners of the source directory and the target file or directory match. SymlinkslfOwnerMatch
considered if speed is not an issue, but security and the ability to use symlinks inside documentroots are, as
SymlinksIfOwnerMatch still has to examine each path element.

The symlink checking requires an extra filesystem lookup (via the Istat() systemcall) for each path element in

the location being opened, resulting in several such lookups per request. None of these lookups are cached by
Apache. Filesystem lookups can be relatively slow, and when using a remote file storage such as an NFS serve
can be quite taxing for the NFS server as well as the webserver. A busy webserver with several deep documen

1.3 Tweaking Apache Configuration 2

http://httpd.apache.org/docs/misc/perf-tuning.html
http://httpd.apache.org/docs/

Performance-tuning Apache

trees and symlink—checking enabled can easily bring down a heavier NFS server by the number of Istat()
calls and their network traffic. It is possible to enable symlink checks only for specific directories (and their
subdirectories), disabling it for safe paths, but with deep directory trees this can still be a burden.

1.3.4 AllowOverride

The Apache directive AllowOverride is one of the most powerful and versatile directives in the Apache

arsenal. It allows for the runtime reconfiguration of Apache for a specific directory (and all its subdirectories.) If
AllowOverride is enabled, Apache checks for a specific file (configurable, but the default of .htaccess is
practically never changed) in each directory that it visits, and parses it for configuration directives. This feature i
most commonly used to limit access to directories (ask for a password), but the .htaccess file can contain
almost all Apache directives.

Unfortunately, this level of flexibility comes at a price. In order to see the .htaccess files, Apache has to scan
for it in every directory, resulting in the same number of filesystem lookups as the symlinks case previously
discussed. It should be noted that checking for .htaccess and symlinks has to be done in two separate and
different stat() systemcalls, so disabling only one of the two still reduces the number of lookups significantly.

AllowOverride can be set to multiple values. Only setting it to None will turn off the checking for

.htaccess files altogether. Like the FollowSymlinks and SymlinkslfOwnerMatch directives,

AllowOverride can be specified on a per—directory basis. Even if the VirtualHosts want or might want to use
the .htaccess functionality, it is a good idea to turn off AllowOverride for directories that will never

contain .htaccess files. The default Apache configuration does this for the system root directory, only
enabling AllowOverride for the server's DocumentRoot.

1.3.5 mod_include

mod_include is the Apache module that parses Server-Side Includes files (generally .shtml files.) On some site
mostly those based on old NCSA Webserver configuration files, the mod_include module gets invoked on ever)
.htm(l) file, causing an extra pass over each such request. In general, this is not necessary, though a check to r
sure no .htm(l) files contain SSI statements might be required to make sure.

1.3.6 MaxClients and Max/MinSpareServers

Apache has several statements to configure the number of clients being handled and the number of
child—processes it forks off to deal with those requests. If the machine running the Apache installation is not
intended for anything but running Apache, it is generally a good idea to make these numbers as high as possibl
but not so high that the machine starts paging memory out to its swap space.

1.3.6.1 MaxcClients

MaxClients limits the number of children Apache creates to handle requests, and because each child only
accepts one connection at a time, the total number of concurrent connections. Setting this too low has a disastr
effect on performance. While all clients are busy handling connections, new connections will be put in the TCP
gueue and eventually timeout, while the machine itself will seem perfectly responsive and fast. It is generally a
good idea to set MaxClients as high as the machine can handle in terms of memory. Setting it too high will caus
the machine to swap needlessly, which effectively kills performance. If the machine can handle the number of
processes in memory, but can't handle the sheer number of requests, it is often not useful to lower MaxClients.
Instead, tuning Apache elsewhere, throttling one or more virtualhosts or simply sharing the load with more or
bigger servers is the way to go.

1.3.4 AllowOverride 3

Performance-tuning Apache

1.3.6.2 MaxSpareServers and MinSpareServers

MaxSpareServers and MinSpareServers control how many spare (unused) child—processes Apache will

keep alive while waiting for more requests to put them to use. Each child-process consumes resources, so hav
MaxSpareServers set too high can cause resource problems. On the other hand, if the number of unused serve
drops below MinSpareServers, Apache will fork new child—processes (at a variable rate with a maximum of 32
forks per second) until MinSpareServers is satisfied. Forking a new child can be an relatively expensive
operation, depending on the underlying operating system, and if a sudden burst of requests use up all the spare
servers, the clients will be waiting for this. And new requests will pile up in the mean time.

The best values for these are highly system specific, and can change frequently even for specific sites. Fortuna
it is usually not critical to get them exactly right. MinSpareServers should be a number high enough to satisfy
sudden bursts of requests, to give Apache enough time to create new children. MaxSpareServers should be a
number high enough to cover the normal fluctuation in numbers of requests, but not the daily fluctuations.

1.3.6.3 StartServers

StartServers controls the number of child—processes that Apache forks before starting to accept connections.

If this number is lower than MinSpareServers, Apache will start forking off children while accepting connections
until the number of idle servers is at least MinSpareServers (but starts killing them off if the number exceeds
MaxSpareServers.) It is a good idea to set StartServers to the minimum amount of servers you need active to s
requests. When frequently restarting Apache during peak hours it might be prudent to raise this number to an
average peak number, as killing off children while the server is not busy is less of a performance hit than creatir
children while busy.

1.3.6.4 Apache 2.0

Apache 2.0 has a more modular setup where the actual handling of connections is handled by Multi—-Processin
Modules (MPMs). The traditional pre—forking model of Apache 1.3 is available as an MPM, as is a
multi-threaded variant. Which MPM is optimal for any particular system depends on a number of things, such a
the efficiency of threads versus the efficiency of processes. For some platforms the choice is made simple by th
available platform—specific MPMs, such as for Windows.

1.3.7 More performance tweaking
The Performance Notes of the Apache manual contains some more hints on performance-tuning, but most of

those, especially the Serialized Accept section, are very low level and beyond the scope of this paper. See the
Apache manual for more information.

1.3.6.2 MaxSpareServers and MinSpareServers 4

Performance—tuning Apache

1.4 Reducing network load

The following three modules can be used to reduce the network load generated by Apache. Of these, only
mod_gzip will have any effect if the bandwidth bottleneck is outside of your control, like the user's modem
connection.

1.4.1 mod_gzip

The mod_gzip module attempts to reduce bandwidth use by compressing data that is being sent out. If the brov
claims to accept 'gzip' encoding, files can get compressed using the Lempel-Ziv coding (LZ77), the same
algorithm used by the UNIX 'gzip' command. This compression comes at a cost of processing time on both the
server and the client, however. The modules allows specifying which files are eligible for compression, so that
files that are already (partially) compressed, and which would have little to gain by compression (like .gz files,
.Jjpeg files, etc.) can be skipped.

The module is especially effective when using it to compress text—files (and thus HTML files) which are easily
compressible. The mod_gzip module and the accompanying documentation can be found at

http://www.remotecommunications.com/apache/mod_gzip/.

In Apache 2.0, mod_gzip's functionality is replaced by a new standard module, mod_deflate, which is
documented in the standard documentation.

1.4.2 mod_bandwidth

Mod_bandwidth is a bandwidth throttling module, useful for keeping the traffic of a whole Apache installation or
of specific VirtualHosts or directories in check. It allows for two rates, one for general data and one for files
larger than a specified value, making it convenient for quenching file—downloads so the rest of the site is still
responsive.

Throttling can also be done at the OS level, rather than the application level. For throttling entire Apache
installations or IP-based virtualhosts this is often more efficient. However, throttling a name-based virtualhost «
a directory within a virtualhost is not possible that way.

The throttling comes at a price of extra calculations on every packet send, and a local scratchboard to keep trac
of bandwidth usage. It is a good example of non—-speed oriented optimizations. Mod_bandwidth can be found a
http://www.cohprog.com/mod_bandwidth.html. Documentation is included in the C source file.

1.4.3 mod_proxy

Another method to reduce traffic for a specific server and increase the speed with which pages are served is by
using a front proxy. The standard Apache module mod_proxy can serve as a front proxy. A front proxy keeps a
cache of recently requested pages and returns the page from that cache if at all possible. Front proxies are only
useful if the real storage of the data is slower than the cache of the proxy. For example, frequently requested dc
that resides on a remote NFS server or on a slow disk or CD can be significantly sped up by a front proxy.

Another common use of mod_proxy (with the help of mod_rewrite) is to split up requests to several servers, bas

on the URL, so that static content is taken from one server while auto—generated and server—intensive pages a
taken from another.

1.4 Reducing network load 5

http://www.remotecommunications.com/apache/mod_gzip/
http://www.cohprog.com/mod_bandwidth.html

Performance-tuning Apache

Mod_proxy is useful for more than just playing front proxy, but it is not suited for every task. Since it was
designed to proxy for other servers, not the server it is loaded into, it can be tricky to incorporate into existing
setups. And since mod_proxy is a cache, the logdfiles of the actual server no longer contains information of hits
that were satisfied in the proxy. Furthermore, since all requests have to pass through the proxy server, it is still :
bandwidth and speed bottleneck. Both mod_proxy and the documentation for it (which includes examples of
configuring it as a front proxy) are part of the standard Apache distribution, though the module is not compiled il
by default.

1.5 Customizing Apache for better performance

1.5.1 Site specific modules

While Apache is a great piece of software that is both very flexible and very efficient, it can't always be both at
the same time. hard—coding site—specific information, thereby avoiding the sometimes complicated task of
figuring it out at run—time, can in some situations provide a big performance boost. An example of this is the
mod_userdir module. This module translates URLs in the form of http://host/~<user>/ into a

user—specific path on the filesystem, allowing users to have a homepage with its documentroot inside their own
UNIX homedirectory. Its typical use is simply like this:

UserDir WWW

Designating the directory 'WWW' in a users homedirectory to be the documentroot for the above URL. But in
order to find the homedirectory, mod_userdir has to query the system's password file. This can be a very slow
operation, especially when that information is stored on a NIS or LDAP server. mod_userdir allows for this, by
giving a template for the full path, with the username as wildcard:

UserDir /usr/home/*/WWW

This avoids any lookups and simply does regular filesystem checks. But not all homedirectory structures fit in
such a restricted template, and mod_userdir does not sport a full reqular—expression rewriting engine such as
mod_rewrite does. For instance, XS4ALL divides homedirectories into one-letter subdirectories, the first letter ¢
the username. This is not uncommon when dealing with a large number of homedirectories, as filesystem limits
and directory—access times quickly become important.

To still avoid slow NIS lookups, which XS4ALL also uses, mod_userdir was locally modified to simply hardcode
a users homedirectory to /home/u/username. A solution using mod_rewrite, or extending mod_userdirs syntax
would also have been possible, but would have cost more effort for no apparent gain. With the number of hits o
user homepages XS4ALL gets, it should be noted that avoiding NIS lookups is important for the performance of
the NIS servers as much as the performance of the website.

1.5.2 Mass Virtualhosting

One possible problem with Apache performance comes from large configuration files, especially many
<Directory>, <Location> or <VirtualHost> blocks. Even though Apache uses hash-tables to optimize

most of the lookups, these can still become large data—structures to wade through, and a lot of information to re
in and parse at every restart. The actual impact is very system dependent, however.

The modules and directives in this section allow for more generic configuration. The main problem with these
modules is that they require your server configuration to be very homogeneous.

1.5 Customizing Apache for better performance 6

Performance-tuning Apache

1.5.2.1 Using regular expressions in Directives

The <Directory>, <Location> and <Files> directives can all take an extended regular expression instead

of a regular directory, location or filename. While this takes some extra processing on each request, collapsing
large lists of such statements into a single regexed statement can be well worth it. Reduced startup time and
reduced process size can easily negate the added regexp match, especially when keeping the regular expressi
simple.

1.5.2.2 mod_vhost_alias

The mod_vhost_alias module is specifically intended to Apache to handle many VirtualHosts with just a few line
in the config file. Instead of specifying a <VirtualHost> block for each VirtualHost, each VirtualHosts'
documentroot is calculated from the hostname passed in with the request, using a mod_rewrite—like rewrite—rul
Adding a new VirtualHost is then as simple as creating the directory for it. A common way to use this module is
by mapping each request to /usr/local/WWW/www.domain.com/page where www.domain.com is taken

from the 'Host:' header and page from the actual page requested.

The price paid is again that of loss of flexibility. VirtualHosts can no longer be configured with specific options
(other than through .htaccess) and creating aliases for VirtualHosts has to be done using symlinks on the
filesystem level (if symlinks are enabled in the Apache config.) The directory structure also has to be catered to
the needs of this module, making it somewhat tricky to incorporate into existing installations.

1.5.2.3 mod_rewrite

A more generic approach to mass virtual hosting is mod_rewrite. Though this module has many, many uses, ar
is probably the most difficult to configure and understand modules in the standard Apache distribution, it can be
an efficient replacement for situations where mod_vhost_alias is not versatile enough. The RewriteMap feature
of mod_rewrite can use a mapping to calculate which directory to extract the files out of. A mapping can be a
text—file of "<hostname> <WITESPACE> <Rewrite-to>" values, or a DBM hash containing

<hostname> values as the keys and <Rewrite—to> values as the resulting values, or even an external

program. (Though the latter is not likely to improve performance.)

As an incomplete example, here are some of the rewrite rules for doing mass virtualhosting using mod_rewrite:

RewriteMap vhost txt:/usr/local/apache/conf/ivhost.map
RewriteCond ${vhost:%1} ~(/.*)$
RewriteRule M(*)$ %1/$1

Note: this example will not work properly, and is only intended to give an example of mod_rewrite's syntax. A
complete example can be found in_the URL Rewriting Guide which is part of the Apache manual.

Aside from the more extensive rewriting possibilities of mod_rewrite, it suffers the same problem as
mod_vhost_alias: it is rigid in its configuration, disallowing per—VirtualHost customization except as part of
rewrite rules. In addition, to activate a VirtualHost, the extra step of adding the server to the rewrite map has to
taken. And to define Virtualhost aliases, extra RewriteRules and a RewriteMap have to be added. Lastly, the
syntax is clearly a downside, requiring very good inline documentation to be maintainable. Fortunately, the URL
Rewriting Guide sets a good example in that, too.

1.5.2.1 Using regular expressions in Directives 7

http://httpd.apache.org/docs/misc/rewriteguide.html

Performance—tuning Apache

1.6 Speeding up CGI scripts

CGl scripts are any program that gets executed on—demand by the webserver, and that uses the Common Gat
Interface to transfer information from and to the webserver and the browser that did the original request. Even
though compiled C programs that use CGl are not technically scripts, they are often referred to as CGI scripts a
well. A large portion of today's web programs are actually CGI scripts, though with the advent of PHP and other
HTML-embedded server-side languages, those are getting more popular.

This section gives some hints on how to speed up the execution of CGI scripts. mod_fastcgi is a general FastCl
module, which uses FastCGlI rather than normal CGI to connect to the CGI scripts. FastCGl uses some tricks tc
reduce the fork/exec overhead of a CGI script, but is not entirely backward compatible with normal CGlI.
mod_php and other such language-specific modules use language-specific information to speed up the execu
process.

1.6.1 FastCGl

FastCGl is a slightly more complex alternative to normal CGIl. With normal CGI, the webserver communicates
with the CGI script through environment variables, and the client browser with the CGI script through its
standard input. With FastCGl, each script acts as a daemon, being started once and handling multiple requests
Instead of environment variables, the server passes all information about the request through standard input,
allowing FastCGl scripts to even be executed on different servers, over extra TCP connections.

The FastCGl interface allows for far more efficient use of resources, especially for oft-requested scripts, but
might require a rewrite of the script in question to work properly. There are FastCGI API libraries for most
popular languages, most of which allow a script to be used both though CGI and FastCGI without the need for
modifications, but scripts that do not (yet) use these APIs do need to be modified, if not rewritten. FastCGl is be
explained on its website. www.fastcgi.com, which also contains the Apache module and the API libraries for ma
languages.

1.6.2 mod_<language>

For several scripting languages (including Perl, Python, PHP, Tcl and Ruby) there are separate interpreter
modules that give the language more control over Apache, as well as a performance boost. In general this is dc
by using specific knowledge about the language, and by keeping the language's Interpreter or Virtual Machine
hanging around, passing it scripts as they get invoked. This avoids the execution overhead, and in some languc
the compiling phase.

Each of these modules defines a Handler, to which specific file extensions and mime-types can be mapped, so
that files of that type automatically get parsed by the right module. Because the interface to the scripts is far mo
like CGI than FastCGl, CGl scripts often need no or little modification to work properly.

The modules generally also allow embedding the language directly in HTML, using special tags to indicate the
start and end of such embedded code. PHP started this trend by being specifically designed for the task. Thoug
the resulting file looks like a HTML page, it should not be thought of as such: it is a script. The performance of
the resulting script is often somewhat worse than a normal script that outputs HTML, because the HTML file ha:
to undergo extra parsing to extract the HTML snippets.

The Perl module, mod_perl, can be found at: perl.apache.org.

For Python there are two competing modules, mod_snake and mod_python. mod_snake was originally written 1
Apache 2.0, has been ported to Apache 1.3 but is currently not being maintained. mod_python provides less

1.6 Speeding up CGI scripts 8

http://www.fastcgi.com
http://perl.apache.org

Performance-tuning Apache

functionality, but is also more lightweight because of it.

For Tcl there are actually several modules, each with their own special focus. They can all be found under
tcl.apache.org.

PHP is a language that got popular mainly because it was easily embeddable in HTML. It is currently in its fourt
incarnation and is still undergoing improvements and expansions. PHP can be found at www.php.net

Ruby is another OO scripting language that is growing in popularity, with its own language module. mod_ruby
can be found at www.modruby.net.

1.6.3 Java

Though the Java support could have been listed in the mod_<language> section, it is currently a special case ir
Apache. A separate Apache project, Jakarta, covers all Apache/Java integrations, to provide an open-source,
portable platform for JavaServlets. The author of this document is insufficiently educated in Java and Jakarta to
say anything about it at all, let alone about its performance. For more information, see jakarta.apache.org

1.7 About this document

This document is intended as companion to the Performance-tuning Apache ApacheCon presentation, and is
written and maintained by Thomas Wouters. The latest version can be downloaded from
http://www.xs4all.nl/~thomas/apachecon/. The author can be reached at thomas@xs4all.net.

1.6.3 Java 9

http://tcl.apache.org
http://www.php.net
http://www.modruby.net
http://jakarta.apache.org
http://www.xs4all.nl/~thomas/apachecon/
mailto:thomas@xs4all.net

	Table of Contents
	1 Performance-tuning Apache
	1.1 Introduction
	1.1.1 Apache 2.0

	1.2 Performance-tuning
	1.3 Tweaking Apache Configuration
	1.3.1 mod_status and ExtendedStatus
	1.3.2 Hostname Lookups
	1.3.3 Symlinks
	1.3.4 AllowOverride
	1.3.5 mod_include
	1.3.6 MaxClients and Max/MinSpareServers
	1.3.6.1 MaxClients
	1.3.6.2 MaxSpareServers and MinSpareServers
	1.3.6.3 StartServers
	1.3.6.4 Apache 2.0

	1.3.7 More performance tweaking

	1.4 Reducing network load
	1.4.1 mod_gzip
	1.4.2 mod_bandwidth
	1.4.3 mod_proxy

	1.5 Customizing Apache for better performance
	1.5.1 Site specific modules
	1.5.2 Mass Virtualhosting
	1.5.2.1 Using regular expressions in Directives
	1.5.2.2 mod_vhost_alias
	1.5.2.3 mod_rewrite

	1.6 Speeding up CGI scripts
	1.6.1 FastCGI
	1.6.2 mod_<language>
	1.6.3 Java

	1.7 About this document

	Navigation
	Return to menu
	Search

