Multilingual Information
Processing based on UTF-8
Character Encoding

Mario F. Gaul <mario.gaul@gmx.net>,
Timo Schmidt <timo@xomit.de>

October 18, 2002

Copyright (©) 2002 by Mario F. Gaul and Timo Schmidt. All rights reserved.

Contents Page 2 of 17

Contents

1 Introduction 4

2 Internationalization 5

3 Language Catalogs 6

4 Pre-Conditions 7

5 Implementation 9
5.1 Datastorage. Lo 9
5.2 Format of the language catalog 9
5.3 'The Converter: Converting Unicode to UTF-8 10
54 Handling user input00 11

6 An Example Application 12

Howto build a multilingual web-based application based on UTF-8 char-
acter encoding.

CHAPTER 1. INTRODUCTION Page 4 of 17

1 Introduction

This article gives an overview of how to use the universal character encoding
standard for representation of text (Unicode Standard) to build a multilin-
gual web-based application. Generally it’s about the visual presentation of
information on the client side: a common web browser.

A basic knowledge of various procedures, techniques and protocols (like
HTTP for example) is assumed, as the focus is on the practical implementa-
tion of a multilingual web-application.

For further informations about Unicode and UTF-8, please refer to the
“Unicode and UTF-8 FAQ” [4] of Markus Kuhn, “Alan Wood’s Unicode
Resources” [4] and - last but not least — “The Unicode Standard Version
3.0” [1].

CHAPTER 2. INTERNATIONALIZATION Page 5 of 17

2 Internationalization

Although international employment was one of the key requirements when
starting a software project for a german billing company, it soon became
clear that there are a couple of practical reasons why a web-application
should be capable of supporting different languages - irrespective of whether
used only in one or 10 countries with different languages.

The most important one is the fact that the application can be centrally
maintained: It’s only interface to the user is the language in its written
form. The Unicode Standard [1] provides the coding system which (theo-
retically) can represent over 65.000 characters, including the most common
ones like IS0-8859-1 (Latin-1), IS0-20022-JP or ASCII. Hence all you
need is a standardized character encoding which allows the use of those
characters in a web-application resp. their representation in a browser.

CHAPTER 3. LANGUAGE CATALOGS Page 6 of 17

3 Language Catalogs

The use of a catalog containing all (character-based) information to be dis-
played in a specific language - that is to say available in Unicode - is the
easiest way to make a web-application multilingual. Whenever you need a
new language, you just add a new catalog. After all you can leave it up
to the user which language he prefers to choose. But how does this work?
A short introduction to the technical problems: The 16-bit-Unicode rep-
resentation of a character is not 8-bit clean, so there has to be done some
encoding before the characters can savely be transfered by HTTP. UTF-8
encoding does the job - and preserves ASCII-compatibility which is impor-
tant for the use of the language catalogs as we will see later on. As we
are talking about a web-application, there might as well be some structural
or functional elements, like a button (image) used in a form saying “Bild-
schirmarbeitsplatzbrillenlagerbestand ” anzeigen”. It is no big effort to also
create graphics multilingual resp. according to the language chosen - just
add a few graphic libraries to your system and you’ll understand what the
button says (provided that the interpreter who translated the words has
ever heard of them...).

CHAPTER 4. PRE-CONDITIONS Page 7 of 17

4 Pre-Conditions

To develop a multilinugal, web-based application, the following pre-conditions
are required:

e Webserver (We all know the best one arround :-))

To serve the web-based application, a webserver is required. This
should not be a surprise, at least not at this conference. :-)

¢ PHP

PHP [3] comes with all features to create and manipulate the desired
UTF-8 sequences. If the usage of UTF-8-labeled images is desired,
PHP must support GD-, PNG- and FreeType-support (see below).

e A Unicode capable editor

To create and edit a Unicode file, you will need a Unicode capable
editor to create an Unicode language catalog. There are some quite
good Unicode capable editors available for this job. One of them is
“Yudit” [6] for the X-Window System which is supposed to run on
all unices (even a Win32 binary is available).

e A Unicode to UTF-8 converting library

Once the Unicode files are created, a Unicode to UTF-8 library [10]
converts the Unicode language catalogs to UTF-8 sequences to prepare
them for the journey through the net.

e Properly set HTML header

To ensure a correct representation on the client side, the HTML file
must contain the following header to handle the UTF-8 sequences

properly:

header("Content-Type:text/html; charset=UTF-8")

CHAPTER 4. PRE-CONDITIONS Page 8 of 17

Nearly all up-to-date browser are capable of handling Unicode and
UTF-8 and therefore fulfill the required pre-conditions to display the
characters accurate.

e UTF-8-labeled images

To create language specific buttons as GUI-elements, the following
freely available graphic libraries and tools are required in addition
the already mentioned pre-conditions:

— GD [7]

A graphic library to create JPEG and PNG images
— PNG [§]

Portable Network Graphics
— FreeType [9]

A TrueType Font Engine

CHAPTER 5. IMPLEMENTATION Page 9 of 17

5 Implementation

Our aim is to develop a web-based application which can be used worldwide.
Choose your language!

5.1 Data storage

Data in this context is static text information which represents the language
catalog. Data can be stored in files (e.g., XML) or in a database. It may
depend on the scale of the project to decide which solution is best.

Tip: If you decide to use a database to store the language cata-
logs, please keep in mind, that - depending on the choosen lan-
gugage - the data requires more space to be stored as UTF-8 se-
quences compared to the native character set as UTF-8 encoded
sequences may use up to four bytes to represent one character!

5.2 Format of the language catalog

The following short example describes a catalog which is stored in a file.
By means of a Unicode-capable editor (e.g., Yudit) with the desired font
for the language installed we create the catalog formatted like this:

IDENTIFIER_1 VALUE_1

IDENTIFIER_N VALUE_N

The identifiers, which function as keys during the subsequent proce-
dures, should only contain ASCII-characters. The converter used later on
will interpret a complete line as a key-value pair, i.e. linebreaks if desired

CHAPTER 5. IMPLEMENTATION Page 10 of 17

must be set explicitly in the value part (i.e. VALUE_N).

Let’s see how we use this catalog in a web application. We assume PHP
is at hand.

5.3 The Converter: Converting Unicode to
UTF-8

Although there are existing libraries (e.g., iconv) which somehow do encod-
ings on unices, we decided to write a new converter (to get more involved
in the encoding process). The converter gets the Unicode catalog file as
parameter and returns a PHP-file as result. It is written in C due to the
possibilty of using such mechanisms like make or autoconf, which especially
offer advantages when it comes to large scale projects. What it does: It
verifies that the Unicode language catalog provided contains Unicode and
reads it’s content line-by-line. Each Unicode character is converted to it’s
8-bit representation (this can be one or more 8-bit values, depending on
the character). The resulting bytes are transformed according to the UTF-8
Coding table, which can be found in “The Unicode Standard Version 3.0”

[1].

After each line was processed, the encoded character strings are written
to a PHP file. The key-value pairs in the Unicode encoded catalog already
give a hint on how they are used by PHP — as variables resp. arrays.

Below is an example of what the catalog will look like after converting
it to be PHP-conform, so that it can be included wherever needed:

<?php
$__TXT[’IDENTIFIER_1’] "VALUE_1\nLinebreak!";
$__TXT[’IDENTIFIER_2’] = "VALUE_2";

$__TXT[’IDENTIFIER_N’] "VALUE_N";

>

Keep in mind that the values now are ready-to-use UTF-8 strings.

CHAPTER 5. IMPLEMENTATION Page 11 of 17

5.4 Handling user input

Since we’re now able to display text defined within the catalogs, we’re at
the point to take care about the data entered by the user via HTML forms.

Defined by the right HTML header (please refer to section 4), we can
expect all data entered by the user as UTF-8 encoded sequences. These
sequences can be treated as normal strings. But keep in mind, that one
character could be represented by more than one byte. To determine e.g.
the string length, the PHP function strlen() will return a length of ten
characters where possibly only six characters are. The following function
will determine the right string length:

function utf8strlen($string)

{
$length = 0 ;
for ($i = 0; $i < strlen($string); ++3$i)
{

$testbit = ord(substr($string, $i, $i + 1));
if ($testbit & 128)

{
if ($testbit & 192 && ~“Ptestbit & 32)
++$1;
elseif ($testbit & 222 && ~“$testbit & 16)
$i += 2;
elseif ($testbit & 238 && ~“$testbit & 8)
$i += 3;
}
++$length;

}
return $length;

CHAPTER 6. AN EXAMPLE APPLICATION Page 12 of 17

6 An Example Application

Basically the application will work as follows. We create language specific
catalog files with a Unicode capable editor, convert the files to UTF-8 files
and include them in the application.

Let me guide you now step by step through the complete process.

1. Let’s assume, we're in the document root of the Apache Webserver.
We open a file main.uni with the Yudit Unicode editor and enter the
following:

% yudit main.uni

HEADLINE Welcome to the Address DB
INPUT_NAME Name:

INPUT_SURNAME Surname:

INPUT_ADDRESS Address:

INPUT_CITY City

INPUT_STATE State

INPUT_EMAIL E-Mail:

The words on the left side are the later used identifiers for the text lo-
cated on the right side. Identifier and text are seperated by a tab (\t).

Whether you choose such a simple structure as shown above or e.g.
an XML file depends on your personal taste. And remember: The
identifiers should be entirely written in ASCII characters as these iden-
tifier must be unique throughout our application and not converted
to UTF-8 sequences.

Tip: To ensure, that the file really contain Unicode char-
acters we can simply look at the hexadecimal representation

CHAPTER 6. AN EXAMPLE APPLICATION Page 13 of 17

of the file and check the first two bytes. On a UNIX like
operating system we might want to type

% hexdump main.uni | head -1
0000000 feff 0048 0045 0041 0044 004c 0049 004e

If the first bytes are Oxffef or Oxfffe everything is fine,
otherwise we have to controll the editor settings.

With apropriate fonts we can insert text in any langauge and can use
the characters of this certain language without restrictions. We’re not
stuck anymore on characters only supported by a certain language.

. The Unicode to UTF-8 converting library reads the Unicode file line-
by-line, converts the Unicode sequences on the right side of the tab
(\t) and converts them to the respective UTF-8 representations. For
this example, we’re going to save the UTF-8 representations as an
PHP array with the identifiers as indexes and write them to the file
main.utfs:

% cat main.utf8

<?php

$_MAIN[’HEADLINE’] = "Welcome to the Address DB";
$_MAIN[’INPUT_NAME’] = ’Name:’;
$_MAIN[’INPUT_SURNAME’] = ’Surname:’;
$_MAIN[’INPUT_ADDRESS’] = ’Address:’;
$_MAIN[’INPUT_CITY’] = ’City:’;
$_MAIN[’INPUT_STATE’] = ’State:’;
$_MAIN[’INPUT_EMAIL’] = ’E-Mail:’;

7>

. Just like we’ve created Unicode language catalogs we’re now going to
create a Unicode image catalog.

As the language catalog, the image catalog contains an identifier on
the left side and text on the right side seperated by the tab charachter
(\t). But this time, the identifier will be used as the later filename of
the image to generate. So let’s create the file main_images.uni with
the following content:

% yudit main_images.uni
submit Submit
cancel Cancel

CHAPTER 6. AN EXAMPLE APPLICATION Page 14 of 17

Processing the file main_images.uni will result in two PNG images
saved as files submit.png and cancel.png.

4. After converting the Unicode file to UTF-8 sequences saved in PHP
syntax in the file main.utf8 we can easily access the converted text.
To include the UTF-8 file in the file index.php, we type:

% vi index.php
<7php
/*
* Include language catalog
*/
require_once(’main.utf8’);
7>

And the UTF-8 sequences can be accessed by the given array $ MAIN:

<HTML>
<HEAD>
<TITLE><?php print $_MAIN[’HEADLINE’]; ?></title>
<META http-equiv="Content-Type"
content="text/html; charset=UTF-8">
</HEAD>
<BODY>
<H1><?php print $_MAIN[’HEADLINE’]; ?></H1>
<form name="enter_address"
action="index.php"
method="post">
<?php print $_MAIN[’INPUT_NAME’]; 7>
<input type="text" name='"name" size="20" />

<?php print $_MAIN[’INPUT_SURNAME’]; 7>
<input type="text" name="surname" size="20" />

<?php print $_MAIN[’INPUT_ADDRESS’]; 7>
<input type="text" name="address" size="20" />

<?php print $_MAIN[’INPUT_CITY’]; 7>
<input type="text" name="city" size="20" />

CHAPTER 6. AN EXAMPLE APPLICATION Page 15 of 17

<?php print $_MAIN[’INPUT_STATE’]; 7>
<input type="text" name='"state" size="20" />

<?php print $_MAIN[’INPUT_EMAIL’]; 7>
<input type="text" name="email" size="20" />

<input type="image" src="submit.png" name="submit" />
<input type="image" src="cancel.png" name='"cancel" />
</form>
</BODY>
<HTML>

At this point, we are ready to load the file index.php with a common
browser. To change a language, just replace the file main.utf8 with a
UTF-8 catalog in the language desired and generated as described in steps
1 to 3 and reload the file index.php.

Bibliography Page 16 of 17

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

The Unicode Standard 3.0
The Unicode Consortium (http://www.unicode.org/)
Copyright (© 1991 - 2002 Unicode Inc.

Apache HTTP Server
The Apache Software Foundation (http://www.apache.org/)
Copyright © 1999 - 2002 by The Apache Software Foundation

PHP
The PHP Project (http://wuw.php.net/)
Copyright (© 2001 - 2002 by The PHP Group

UTF-8 and Unicode FAQ for Unix/Linux
Markus Kuhn (http://www.cl.cam.ac.uk/ mgk25/unicode.html)

Alan Wood’s Unicode Resources
Alan Woods (http://www.alanwood.net/unicode/)
Copyright (©) 1999 - 2002 by Alan Wood

Yudit
Yudit.org (http://www.yudit.org/)

GD
Boutell.Com, Inc. (http://www.boutell.com/gd/)
Copyright (©) 1995 - 2002 by Boutell.Com, Inc.

PNG
Greg Roelofs (http://www.libpng.org/pub/png/libpng.html)
Copyright (© 2000 - 2002 by Greg Roelofs

FreeType
The FreeType Project (http://wuw.freetype.org/)

Bibliography Page 17 of 17

[10] Unicode to UTF-8 converting library !
Timo Schmidt
Copyright (©) 2000 - 2002 by Timo Schmidt

'For further information about the library, please contact the author at
<timo@xomit.de>

	Navigation
	Return to menu
	Search

