An Introduction to the Bean Scripting
Framework

Victor J. Orlikowski

orlikowski@apache.org

ApacheCon US - Las Vegas
November 20, 2002

What is BSF?

The Bean Scripting Framework (or, as it will be referred to for the remainder of
this paper, BSF) is a set of Java classes that enables the use of scripting lan-
guages, such as Javascript and Tcl, within Java applications and that permits
the use of Java objects and functions within supported scripting languages. The
function provided by BSF makes it possible to write JSPs using scripting lan-
guages rather than Java (while losing none of the extensive capabilities afforded
by the Java class library), as well permitting any Java application to be imple-
mented in part (or dynamically extended) by a language that is embedded within
it. This is achieved through providing an API that permits calling scripting lan-
guage engines from within Java, as well as an object registry that exposes Java
objects to these scripting language engines.

History

BSF began life in 1999 as a research project of Sanjiva Weerawarana at IBM’s
T.J. Watson research labs. The initial intent had been to provide access to Java
Beans from scripting language environments (though there is nothing limiting
access only to Java Beans). It was soon moved to IBM’s AlphaWorks developer
site, where significant interest (both internal and external to IBM) led to its being
moved to IBM’s developerWorks site, where BSF could operate as an Open Source
project. During this time, significant development was done by Matt Duftler and
Sam Ruby, and BSF was incorporated into both IBM products (Websphere) and
Apache projects (Xalan). It was this interest on the part of the Apache Software
Foundation that ultimately led to BSF’s acceptance as a subproject of Jakarta in
2002.

During the process of moving BSF to Jakarta, development continued within
IBM, with further improvements to BSF’s integration with Jasper being made by

1



John Shin and the addition of debugging support for the Javascript language
(a team effort, resulting from the work of IBM researchers Olivier Gruber, Ja-
son Crawford, and John Ponzo and IBM software developers Chuck Murcko and
Victor Orlikowski).

It is the current version, 2.3, that has been released to Apache from IBM.

Supported Languages

BSF supports several scripting languages within the standard distribution.
These are:

e Javascript (provided via the Rhino engine from the Mozilla project),

e Python (provided via either the current Jython or previous JPython en-
gines),

e Tcl (provided via the Jacl engine),

¢ NetRexx (a Java-based extension of the IBM REXX scripting language), and
e XSLT Stylesheets (via Jakarta’s own Xalan and Xerces)

Languages that have been targeted to be added soon include:

¢ Ruby (provided via the JRuby engine),

e BeanShell

e JudoScript

e Perl (is often requested, but would be somewhat difficult to integrate na-
tively - though it has been done by a project called the Perl-dava Connector)

Languages that are no longer actively maintained in this release are those us-
ing the ActiveScript engine. These include VBScript, LotusScript, and PerlScript.

Architecture

The two primary features of BSF’s architecture are the BSFManager and the
BSFEngine.

The BSFManager provides the overarching management of all scripting execu-
tion engines running beneath it, and maintains the object registry that permits
scripts access to Java objects. Only by creating an instance of the BSFManager
class does a Java application gain access to scripting services.

The BSFEngine provides an interface that must be implemented for a lan-
guage to be used by BSF. This interface provides an abstraction of the scripting



language’s capabilities that permits generic handling of script execution and ob-
ject registration within the execution context of the scripting language engine.

In this model, an application could instantiate a single BSFManager, and
access several different scripting languages in an identical manner via the BS-
FEngine interface. Furthermore, all of the scripting languages managed by the
BSFManager are aware of the objects registered with that BSFManager, and the
execution state of those scripting languages is maintained for the lifetime of the
BSFManager.

Installation

BSF can be used either as a standalone system, as a class library, or as part
of an application server. In order to be used as a class library or as a stan-
dalone system, one must simply download the bsf.jar file from the BSF web-
site (http://jakarta.apache.org/bsf/index.html) and include it in their classpath,
along with any required classes or jar files implementing the desired languages.

In order to use BSF as part of the Tomcat servlet engine, one must cur-
rently download patches from the BSF website that permit Jasper to call BSF.
Instructions for this are posted on the website, and may soon be accompanied by
pre-built binaries. It is intended that these changes will be merged into Tomcat
in the near future.

Version 5 of IBM’s Websphere Application Server already contains version 2.3
of BSF, while versions 3 and 4 of Websphere contain earlier versions.

Usage

JSPs and BSF

Upon having set up an application server that is BSF enabled, one can write
JSPs using any of the supported scripting languages. JSPs that use scripting
languages differ only slightly from those using Java.

To begin with, one must set the language attribute of the page directive in the
JSP to the desired language. For example,

<%@ page language="javascript” %>

sets the language used for the JSP to Javascript; any scriptlets or expressions
within the JSP will be handed off to BSF, which will in turn hand the code over
to Rhino for execution.

Within these JSPs, the standard set of JSP implicit objects is available. These
implicit objects must be used for input and output with respect to the generated
page, since the scripting languages do not have any awareness of having been
called within a JSP. For example, in order to print a line of text into the page



generated by the JSP, one must use the printin() method of the out implicit
object.

Multiple languages can be supported within a given JSP; this is accomplished
by using the BSF taglibs, which are available from the Jakarta Taglibs project at
http://jakarta.apache.org/taglibs/index.html. Two tags are provided: scriptlet
and expression . Both of these have a required language attribute, which is used
to specify the language used on a per scriptlet or expression basis.

Servlets and Applications

Using BSF in servlets or applications is also remarkably simple. In order to pro-
vide an application with scripting support, one simply needs to import the BSF
class hierarchy and instantiate a BSFManager object. After having instantiated
the BSFManager, one registers or declares any Java objects that one would like
to make available within the scripting engine. One then calls either one of the
eval() or exec() BSFManager methods (depending on whether one would like
to evaluate a script and have the value of the evaluation returned, or simply ex-
ecute a script). Alternatively, one can call the loadScriptingEngine() method
in order to get an object implementing the BSFEngine interface for the desired
scripting language. One can then call the exec() or eval() methods of the
BSFEngine to run the script.

Furthermore, within any scripting engine’s execution context, BSF declares
an object named bsf , which represents the BSFManager that is associated with
the scripting engine. This object provides all of the methods and properties
associated with the BSF manager to the script. However, the most used method
within scripts is usually lookupBean() , which is used to access objects that
have been placed in BSF’s object registry.

Hence, the most important methods within the BSFManager are:

e BSFManager() - the BSFManager constructor
e eval() - used to evaluate a script and return its value
e exec() - used to simply execute a script

e |loadScriptingEngine() - used to return a BSFEngine for the desired
scripting language

e registerBean() - adds an object to BSF’s object registry
e lookupBean() - retrieves an object from BSF’s object registry

e declareBean() - creates an implicit object in the context of any loaded
scripting language, which does not have to be accessed via lookupBean()

Other, less often used methods within the BSFManager are:

e apply() - used to call anonymous functions

4



e compileExpr() - used to compile an expression into a CodeBuffer object

e compileScript() - similar to compile expression, used to compile scripts
into CodeButffer objects

e compileApply() - similar to both of the above’ used to compile anonymous
functions into CodeBulffer objects

For those that are curious, the CodeBuffer is a class provided by BSF for the
storage of generated Java code.

The BSFManager exec() , eval() and apply() methods (as well as their
compile counterparts) are simply wrappers over the equivalent methods pre-
sented by the BSFEngine interface. If one follows the path of explicitly loading
a particular scripting engine via loadScriptingEngine() , one simply uses the
exec() oreval() methods of the resulting BSFEngine as appropriate.

Incorporating Your Own Scripting Language

In order to incorporate your own scripting language into BSF, you must first
write a class implementing the BSFEngine interface for your language; examples
are available in the BSF source distribution.

Usually, a scripting language author simply extends the BSFEnginelmpl class,
which implements BSFEngine, and only requires the scripting language author
to implement the eval() method; however, the following methods specified by
the BSFEngine interface are the most commonly implemented:

e initialize() - used to set up the underlying scripting language engine
e call) - used to call functions or methods within the scripting engine
e eval() - used to evaluate a script

e exec() - used to execute a script

e declareBean() - used to create an implicit object within the scripting lan-
guage

e undeclareBean() - used to remove an implicit object from the scripting
language

Once you have implemented the wrapper for your language engine, you simply
instantiate a BSFManager in your application, and register your engine with it
via the registerScriptingEngine() method. Afterward, you may use your
language within the application through the usual BSF semantics.



Standalone Scripts
BSF provides a facility for running scripting languages itself. Simply running
java com.ibm.bsf.Main

will produce a help message, with instructions on how to run these scripts.

Debugging

Debugging support has been added to BSF over the last year. In its current form,
only debugging of Javascript in JSPs is supported. The focus has been to design
an API that would permit a generic debugging framework for multiple scripting
engines; however, this has remained an elusive goal. Included in the debugging
support for BSF 2.3 is a rudimentary command-line debugger named jsdb, which
acts as a client to a debugging server that is managed by the BSFManager. A
more friendly debugger for Javascript in BSF is available as a plugin to Eclipse
in IBM’s Websphere Applications Developer product.



	Navigation
	Return to menu
	Search




