
Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

1

The Backhand Project:

load-balancing and monitoring Apache Web clusters
Introduction... 1

Problem... 2

Solution ... 3

Implementation ... 5

Built-in Candidacy Functions and Writing Your Own... 9

Advantages/Disadvantages of mod_backhand ... 10

mod_log_spread as a new approach to distributed logging and monitoring 12

Future Directions .. 14

Acknowledgements... 14

Introduction
The Backhand Project was started at The Johns Hopkins University in the Center for
Networking and Distributed Systems. Its main goal is to tackle some of the more
pressing difficulties in the area of high-performance replication systems. Some of
these areas include distributed databases, distributed file systems, resource allocation
on both the local area and wide area clusters, and tools to allow seamless clustering.

 The first and most prominent component of the Backhand Project is
mod_backhand. mod_backhand is a dynamically loadable module for the Apache
web server that aims to seamlessly allow for load-balancing within a cluster of
machines. This cluster is not limited to a local area grouping of webservers. The
purpose of mod_backhand, specifically, is to provide the infrastructure to reallocate
HTTP requests to any machine within a cluster and the framework for effective and
flexible decision-making.

 The concept behind mod_backhand is the amalgamation of several important
deviations from "standard" practice. Many network appliances used for balancing
web clusters have their foundations in the networking world. This leads to a design
drawn in the image of a router. This approach was purposely avoided in an attempt to
avoid bottlenecks and single points of failure. The approach we use allows for
maximum utilization of a network's egress points and survives link failures extremely

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

2

well. The flexibility of the implementation provides a tool that can be used to build
both a single and a multiple entry point cluster.

 mod_backhand, in its current form, attempts to solve resource allocation and
management issues within a cluster of machines on both relatively low latency, high-
throughput networks and wide-area, high-latency networks.

 Monitoring and analyzing specific performance metrics can be difficult on a
single machine and near impossible on a cluster of machines. The problem is directly
related to the inability to watch individual events happen in real-time on all machines
in one central place. This motivation along with the effort involved recombining http
log files from multiple machines led to the development of the mod_log_spread
Apache module.

 mod_log_spread is an augmentation of the core Apache mod_log_config that
uses the Spread group communication system as a messaging bus to publish events
instead of writing directly to a file or pipe. The advantage of using Spread is
efficiency, simplicity (of use) and the ability to have multiple subscribers without
increasing the network utilization.

 In this paper, we will introduce the concepts behind load-balancing,
monitoring clusters for performance, and two modules for Apache that will make
these tasks easy.

Problem
There are many complicated problems involved in load balancing a web cluster. Just
a few of the major issues include: administration complications, centralized logging,
monitoring, regular file consistency amongst servers, algorithms for balancing load,
and the actual mechanism for balancing load. mod_backhand does not attempt to deal
with centralized logging or information consistency of regular file systems or
databases. They are out of the scope of this module. The issues that mod_backhand
does attempt to cope with are those of mechanics and algorithms.

 Currently, most available tools for analyzing clusters of webservers are either
offline or based on low-level network metrics. These tools are all useful, but the
looking at events after they happen doesn't allow you to perform online, proactive
performance tuning because the event has long since ended. Network metrics are
very useful for finding networking problems, but they are at a disadvantage without
knowledge of what is happening on an application level. An efficient, high-
performance, scalable architecture for announcing events in real-time adds the
missing component. mod_log_spread attempts to cope with all of the obstacles
involved in centralized logging and monitoring of local area clusters.

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

3

Solution
We will attack the problems of load-balancing and distributed logging in this paper,
but the implementations that provide the solutions are individual and separable.
mod_backhand and mod_log_spread are completely independent in operation and are
fully functional when used individually. The reason for their joint presentation in this
solution is because, more often than not, when multiple servers are required to drive a
web real estate, both load-balancing and distributed log handling are required.

 First, we must clarify a common misunderstanding. The terms "load-
balancing" and "high-availability" are often used interchangeably to mean both.
However, they are two completely separate and fundamentally different problems.
However, in most situations, technologies must be employed to handle both problems.
For this reason, industry attempts to tackle both problems with a single black-box
product. Some examples include "load-balancing" products from Cisco, Arrowpoint,
Alteon, Foundry, and F5. They all tackle the problems with varying methods. All of
these products advertise themselves as load-balancing solutions, but they each handle
high-availability much better.

 High-availability assures an incoming request will be delivered to a server that
is capable of responding. Load-balancing means that at any given point in time, the
next request delivered to the system will be delivered to a machine such that the
overall resources of the cluster are efficiently allocated. mod_backhand does not
claim nor attempt to provide high-availability for a cluster of Apache servers.

 This immediately leads to the question: "Product X gives me high-availability
and load-balancing while mod_backhand only provides load-balancing. Why would I
use mod_backhand?" The tone of this question implies that you can use product X or
mod_backhand, but not both -- wrong. As discussed, product X provides high-
availability, which is absolutely necessary in your architecture. But, how well does it
perform load-balancing? Load-balancing and. more directly, online algorithms for
resource allocation are academically hard problem. mod_backhand can work in
conjunction with product X to correct inappropriately allocated requests.

 mod_backhand attempts to compensate for the weaknesses in earlier
architectures through simple, selective combination. On top of previous architectures
a flexible framework for decision making is used to intelligently reallocate requests.

 One of the fundamental advantages that mod_backhand has over other TCP/IP
based solutions is the understanding and processing of streamed HTTP requests.
Even solutions that have the ability to "look into" the HTTP request enough to make
"more intelligent" decisions (via 3-way TCP handshakes or other mechanisms) still
make there decision for the TCP sessions. HTTP/1.0 and later specify the ability to
pipeline HTTP requests over a single TCP sessions. The decision made for a TCP
session based on the first HTTP request in the pipeline will also be made for the n
HTTP requests following it without regard for the requests themselves or the currently
available cluster resources.

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

4

 The serious issue that mod_backhand attempts to tackle is a resource
allocation problem. No web load balancing infrastructure, other than mod_backhand,
uses both request content and resource utilization information to make decisions on a
request-by-request basis.

 When looking at the overall concept of web server, we see that by servicing a
request, we dedicate resources on the network and on the server that responds. Once
the transaction is complete, those resources become available. The more resources a
server has, the more quickly it can respond to any given request. So, assigning
requests to machines on the basis of information other than resource utilization
information seems a bit confused.

 Knowing the request and resources of every machine in a cluster, which
machine is "best" to service a request? This is an open area of research, and we are
still investigating various algorithms. We realized that mod_backhand would be the
first web cluster load balancing solution to use resource utilization information in the
decision making process, so we accounted for this in the decision making framework.
This framework is vital for the ongoing research in the area of online resource
allocation of HTTP requests.

 As mod_backhand uses actual resource utilization metrics, there are several
complications that arise. One specifically challenging problem is the handling of stale
resource information. For example, if resource utilization information is shared once
every second and there is more than a single request per second then all subsequent
requests (after the first) will be based on the same, now stale, resource information.
So, in an extreme case, if you choose the least loaded machine and receive 1,000
requests in a single second, then all 1,000 requests will be delivered to the same
machine. On the other hand, if you simply assign each request to the next machine in
line (round-robin) then requests are being assigned to a machine without regard to its
capacity.

 Other methods include weighted round-robin, least connections, fastest
response time and random. All of these methods have nothing to do with the request
itself and nothing to do with the resource available on the various machines in the
cluster. Though they use some metric that in some fashion reflects available
resources, they do not account for individual available resources on the machines like
memory and system load.

 We need resource utilization information available on the same time scale as
our request times. Resource allocation techniques for scheduling jobs on clustered
servers have been researched for many years. Though the same theory applies
directly to the problem at hand, the short job length makes previous practical solutions
inapplicable. In particular, handling requests as dynamically migrateable entities is
not appealing due to the short duration of the requests. On the other hand, the ability
of mod_backhand to analyze the requests before they execute seem to allow a better
use of profiling techniques. This, among other things, is an on going research.

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

5

 This delivers us to our next fundamental problem. Are things working right?
Are all servers in the cluster serving pages? Are any of the machines serving error
pages more? Are they pushing equal bandwidth? All of these questions are very hard
to answer without a real-time, distributed logging mechanism.

 A distributed logging mechanism requires an efficient, high-throughput, and
reliable messaging bus. If one wishes to log the events that are announced as well as
monitor various aspects in real-time, then a system that uses publish/subscribe
semantics is required. Also, it is very important that multiple subscriptions to the
same event stream do not incur severe overhead. For this reason, Spread was chosen
as the underlying messaging system for mod_log_spread. Spread is a high-
performance and robust group communication system with strict semantics developed
at The Center for Networking and Distributed Systems at The Johns Hopkins
University.

 mod_log_spread is a set of patches to mod_log_config that will allow the
writing of apache log messages to Spread groups in addition to standard files, syslog
and pipes. This allows any number of utilities to simply connect to the local Spread
cluster and subscribe to the Apache logging events that are being published by the
web servers running mod_log_spread. The programs can be as simple as log writer
that writes what it hears to disk producing a unified, time-sequential log for the entire
cluster or more complicated monitoring suites that analyze the actual information to
calculate real-time metrics.

 Reliability and ordering are both of vital importance to companies that rely on
their logs for revenue and analysis. Syslog is not sufficient for this purpose as
guarantees neither reliability nor ordering. As web architectures become more
complicated, understanding the order of events is vital when tracking down
bottlenecks and bugs. In a clustered configuration, one request will be satisfied by
one machine and the next request will be satisfied by another machine. This can
make it impossible to determine the exact order of events.

 mod_backhand and mod_log_spread provide an infrastructure to enable
clusters of Apache web servers to operate as a clean and efficient distributed system.
In addition, they both work as compliments to other web replication tools.

Implementation
The implementation of mod_backhand can easily be split into several components:

• The resource information manager (RIM),

• The resource maintenance assistant (RMA),

• The diagnostic tool (DT),

• The decision maker (DM),

• The reallocation mechanism.

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

6

Each of the components interacts closely with the others to provide a framework for
informed resource allocation decisions. A technical overview follows; for more
detailed information see mod_backhand: A load balancing modules for the Apache
web server in the ApacheCon 2000 (Orlando, FL) conference proceedings.

 The resource information manner is responsible for acquiring the platform
specific system resource utilization information and multicasting it to other machines
within the cluster. The method of multicasting the information is done via unreliable
UDP IP broadcast or IP multicast. The various announcements from machines in the
cluster are combined by the resource maintenance assistant into a resource utilization
matrix on each machine. This matrix should be close to identical on all of the
machines participating in the mod_backhand load-balancing. The RMA is also
responsible for maintaining a pool of active connections to other web servers in the
cluster. With an active pool of connections, the overhead of establishing a TCP/IP
connection to a web server to proxy a request is avoided by reusing active
connections.

 Both of these components coexist in a single daemon process that is separate
from the main Apache process. This process is started at module initialization time
when the web server started. The resource utilization matrix is stored in shared
memory in the same fashion that the Apache scoreboard is stored. This allows for
seamless read-only access to this information to the child Apache processes during the
decision making phase. The connection pool is maintained in this separate process so
that the majority of available file descriptors can be used for inter-server connections.
The connections "loaned" to Apache children processes via IPC and then returned to
the RMA once single HTTP transaction is handled.

 The diagnostic tool is an Apache content handler. It acts in a similar fashion
to the server-status content handler that is provided as a module in the Apache
distribution. When activated as a URL within a <Location> directive, it will yield an
HTMLized matrix detailing the current resource utilization matrix being maintained
by the RIM. This URL is extremely useful for monitoring complete systems resource
availability for your entire cluster -- at a glance.

 When the Apache web server processes an HTTP request, it cycles through all
of the modules at various stages. In the first possible stage, mod_backhand
determines whether or not load-balancing is desired, administratively, for this URL.
After that it passes the request information through a chain of decision making
functions. We call these functions candidacy functions. These functions are
responsible for weaning the set of available servers into an ordered set of the "best"
servers. The candidacy functions have access to the request_rec structure for the
current request as well as the shared memory segment that holds the resource
utilization information maintained by the RMA. The functions in this chain are
defined in the Apache configuration file and can be different for different directory or
extensions. The candidacy functions can also chose the method of request
reallocation to be used.

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

7

 Because the framework for decision making was designed to be extremely
flexible, candidacy functions can be compiled outside of mod_backhand and loaded
dynamically at run-time. This make for extremely simple development and
deployment of customized decision making functions.

 Once the chain of candidacy functions has executed on a given request, we are
left with a list of servers. The mod_backhand redirection handler is called and
executes the actual request reallocation to another server. There are currently two
methods of request reallocation supported: HTTP redirection and HTTP proxying.

 When using HTTP redirection, the appropriate hostname is composed and the
client browser is issued an HTTP 302 temporarily moved response, which directs
them to contact the other server for their information. The built in function that
provides HTTP redirection will, for example, redirect and incoming request to
www.example.com, that arrives at www-3.example.com to www-5.example.com, but
will not redirect requests to www-3.example.com as they have been delivered to this
specific server.

 When using HTTP proxying, mod_backhand does much more work. First, it
requests an active connection to the first machine in the candidacy list that was
returned from our chain candidacy functions. The request goes to the RMA and the
RMA responds by handing the Apache child an open file descriptor to that machine
(establishing one first if no active, unused connection exist in the pool.) The child
then upgrades the request incoming request to use HTTP keepalives. If the request is
already requesting keepalives, then no augmentation is made. The request is then
proxying to the new server and the result is passed back to the client. Once complete,
the client connection is closed if the original request did not request keepalives. The
connection between the servers is still active, as the HTTP protocol used requested
keepalives, and is thus returned to the RMA to be held in the connection pool.

 Keepalives are commonly disabled on large Internet web sites and the Apache
1.3.x architecture requires one child per active connection. Assuming keepalives
were disabled; if 10,000 requests were made over a 5 second period and each request
took approximately 30ms, then 60 Apache children would be required. On the other
hand, if keepalives were enabled the same transaction set could require up to 10,000
Apache children. This is a worst case scenario, but then again, 10,000 concurrent
processes are not feasible on most modern operating systems. For this reason,
keepalives are often disabled in Apache for large sites expecting extremely heavy
traffic arrival rates.

 As mod_backhand greatly benefits from keepalives being enabled (at least
between the servers,) there is a small patch available for the 1.3.x source tree that will
override the disabling of keepalives for connections that are being proxying internally
via mod_backhand. The can tremendously reduce the overhead incurred by
reestablishing TCP/IP connections between the servers for each and every proxied
request.

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

8

Syntax for Apache mod_backhand Configuration

Directive for broadcasting on the 10.0.5.0/24 on port 4445:
MulticastStats 10.0.5.255:4445

or the same but explicitly binding to the 10.0.5.10 interface
MulticastStats 10.0.5.10 10.0.5.255:4445

Directive for multicasting to 240.220.221.20 port 4445 with a time to live of 3 hops.
MulticastStats 240.220.221.20:4445,3

or the same but explicitly binding to the 10.0.5.10 interface
MulticastStats 10.0.5.10 240.220.221.20:4445,3

Directive for accepting statistics from 10.0.5.1:
AcceptStats 10.0.5.1

Directive for accepting statistics from all IPs from 10.0.5.128 through 10.0.5.255:
AcceptStats 10.0.5.128/25

Directive for specifying the directory for unix domain sockets:
UnixSocketDir /opt/apache/backhand

Directive for activating the diagnostic handler for the /backhand/ URL:
<Location /backhand/>
 SetHandler backhand-handler
</Location>

Directive for randomly assigning requests to all active servers for the /data/docs directory:
<Directory /data/docs>

 [... normal Apache configuration here ...]

 Backhand byAge

 Backhand byRandom

</Directory>

Directive for assigned perl scripts (.pl extension) and PHP scripts (.php extension) the
application servers (called app-{1,2,3,4,5,6,7,8,9}.example.com) with the loadest system load in
a random log-sized window of machines (to reduce contention):

<Files ~ \.(pl|php)$>

 Backhand byAge

 BackhandFromSO libexec/byHostname.so byHostname app

 Backhnad byRandom

 Backhand byLogWindow

 Backhand byLoad

</Files>

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

9

Built-in Candidacy Functions and Writing Your Own
They are as follows, in the order introduced above:

• byAge [#seconds] (removes all servers with resource information older than
#seconds from the candidacy set. 5 is used if #seconds is not specified)

• byRandom (reorders the entire candidacy set not effecting its cardinality)

• byLogWindow (removes all candidates except for the first log base 2 of
cardinality of the candidacy set.

• byCPU (reorders the entire candidacy set, placing those with the lowest CPU
utilization first)

• byLoad (reorders the entire candidacy set, placing those with the lowest one
minutes average system load first)

• addPrediction (predicts the load that redirecting a request would incur on a given
server and adds that to the load seen in the shard serverstats structure. This
specified last, so as to only add the predictive load to the machine being selected.)

• byCost (reorders the entire candidacy set placing those with the lowest cost first.
Cost is based on the cost-benefit framework as described in "A Cost-Benefit
Framework for Online Management of a Metacomputing System", by Amir,
Awerbuch and Borgstrom.)

If mod_backhand changes, every server in the cluster needs to be updated and
restarted. This is not effective or even feasible in large clusters. The ability to create
a candidacy function outside of mod_backhand and dynamically load it in at run time
alleviates the need to restart servers. An attempt was made to make this as straight
forward as possible by introducing an API with a single function prototype. It simply
requires writing a function and compiling it as a dynamically shared object. A sample
byHostname is provided with the mod_backhand distribution. The function prototype
is as follows:

int function_name(request_rec *r, int *servers, int *n, char *arg);

r is the request structure for decision making purposes. servers is the array or
candidates and n is a pointer the number of viable candidates. The new cardinality of
the candidacy set (servers) should be placed in *n as well as returned. During the
decision making, there is serverstat *serverstats variable (global) that contains all of
the resource utilization information about each machine in the cluster. The definition
of the serverstats structure is as follows:

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

10

Directive for choosing the least loaded server with fresh information:
Backhand byAge
Backhand byLoad

Directive for choosing the least loaded server in a random log sized window of servers with
names that match the regex /alpha/ and have information recent to within 2 seconds:
Backhand byAge 2
BackhandFromSO libexec/byHostname.so byHostname alpha
Backhand byRandom
Backhand byLogWindow
Backhand byLoad

typedef struct {

 /* General information concerning the server and this structure */
 char hostname[40]; /* or truncated hostname as the case may be */
 time_t mtime; /* last modification of this stat structure */
 struct sockaddr_in contact; /* the associated inet addr + port */

 /* Actual statistics for decision making */
 int arriba; /* How fast is THIS machine */
 int aservers; /* Number of available servers */
 int nservers; /* Number of running servers */
 int load; /* load times 1000 (keep floats off network) */
 int load_hwm; /* The supremim integral power of 2 of the load seen thus far */
 int cpu; /* cpu idle time 1000 */
 int ncpu; /* number of CPUs (load doesn't mean too much otherwise) */
 int tmem; /* total memory installed (in bytes) */
 int amem; /* available memory */
} serverstat;

Advantages/Disadvantages of mod_backhand
The advantages and disadvantages of using mod_backhand are difficult to quantify
without directly comparing it to another scenario. We will attempt to discuss where it
sits in the field of web clustering solutions by comparing it to several prominent load
balancing set ups. The easiest way to begin a comparative analysis is to describe the
advantages of other products and/or methods.

 The most common method of balancing sites on the Internet today is the use of
multiple A entries in a DNS record. This method is commonly called DNS round
robin. This provides a naïve distribution of incoming clients over a set of servers.
However, other than providing a simplistic method of distributing incoming requests,
it only has drawbacks.

 Due to the nature of DNS, caching name servers, and the variety of DNS
servers that are not RFC compliant, the time to live attribute on a DNS record often is
not obeyed. Though this removes a single point of failure found in proxied set ups,
this makes updating the DNS to take a downed server out of rotation extremely
ineffective. Also, due to the nature of caching and the uneven utilization of name
servers across the Internet make for poor load balancing. Resources within the cluster
are not utilized effectively.

 There exist two types of proxied set ups, one is on layer 4/5 and the other is on
layer 3 of the OSI network model. Both suffer from the single point of failure
problem as well as network topology restrictions. The layer 4/5 designs functions

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

11

very similarly to mod_proxy combined with internal round-robin request assignment.
It has the single point of failure problem that all proxy based solutions have. It does
have one main advantage; as it is processing requests on layer four, it is privy to the
actual URL and headers that are being transmitted and could feasibly make more
intelligent decisions on where to allocate requests.

 The layer 3 model is implemented in products like BIG/ip, Alteon,
Arrowpoint, and ServerIron. It doesn't process requests, but rather it processes
TCP/IP sessions. It redirects the TCP/IP session, most commonly using IP
masquerading, to a backend server. Most of the processing is done inside the kernel
or is embedded in hardware and is thus very fast. The algorithms that it uses for
assigning requests to servers are limited to the information to which it is privy. This
includes average connect times, average turn around times on a session and other
layer 3 statistics. Some of these products also offer "layer 5 switch" which allows it
to look 100 to 1000 bytes into the HTTP request and make decisions based on
information there. But, as HTTP requests are serialized, it only looks into the first
one. This poses problems if all of the content doesn't exist on all of the servers. The
concept of IP masquerading for multiple machines and attempting to allocate TCP/IP
sessions intelligently across them is an excellent one. However, the more complicated
it becomes (by attempting to operate outside its layer), the more difficult it become to
adapt to new services. Another disadvantage is the new capital investment on these
blackbox hardware solutions. As they are single point proxies, you will need two for
failover!

 The proxied approach does provide the ability to easily down a production
server without the worry of a service interruption. The point of failure is now in the
load balancing proxy instead of the web servers.

 The mod_backhand approach is a mixture of the two and can be combined
with any of the above solutions to solve specific problems. One of the major
advantages of mod_backhand is that no dedicated proxying hardware is required to
balance your cluster. Now, if you are currently using a server to balance a cluster in a
proxy configuration, you can now use its resources to actually service HTTP requests.

 The main advantage over a proxied approach is that all of your hosts can be
accessible from the Internet. There is no single point of failure (other than your
connectivity itself) sitting between your cluster and your clients. If one or more host
is accessible from the Internet, then the cluster is accessible. The common method of
placing more than one host in rotation is by using DNS round robin. To compensate
for the slowness of DNS updates/propagation an operation system level fault tolerance
solution can be implemented. During the event of a downed server, another
accessible server will make itself available from the IP address of the downed server.

 Using operation system level fault tolerance with simple DNS round robin is a
good mechanism for maintaining availability, but it can make a poor load balancing
scheme even worse. When three servers are present and one goes down, another will
assume its IP and its load.

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

12

 mod_backhand redirects requests to the best server in the cluster, so even
under poor mechanisms of balancing incoming connections (like DNS round robin)
mod_backhand will compensate by reallocating individual requests.

 We have not yet touched on the two main advantage that mod_backhand has
over all other available solutions:

• It requires no change in the current cluster configuration. It will drop in an
existing standalone web server as well as in both DNS round robin and proxy
configurations.

• It is smarter! It is has available a wealth of information about the request and the
resources available within the cluster and it can redirect individual requests in a
single HTTP session to different servers.

The combination of the those two advantages with the fact that it incurs no overhead
when it does not reallocate requests, means that it works well as a full-on
implementation and as a correctional facility for existing load balanced clusters.

 As an additional perk, it provides and excellent tool (the DT) for monitoring
resource utilization within a large cluster. And with resource utilization information
being multicasted on your network, other applications that could benefit from such
knowledge could be augment to do so.

 Concerns have been raised about the performance of an application level
proxy with mod_backhand's architecture. The proxying implementation respects
HTTP/1.0 and 1.1 keep alive semantics, so it is much more efficient than Apache
1.3.x mod_proxy. And it has been used under relatively heavy real-world load
handling roughly 15 million requests per day.

mod_log_spread as a new approach to distributed
logging and monitoring

Handling access logs on a larger cluster can be a painful process. You either
have to go through the effort of recombining web server logs or find and alternative
method of log collection. There are several black box products that sniff network
traffic and reconstruct web logs from the transactions it witnesses. However, if your
revenue stream is based on the validity of logs, these will not do as they lose
messages.

 A robust, reliable, ordered and efficient transport for access logs is needed.
That is a hefty requirement for such a seemingly simple task. After careful
investigation of the requirements, we find that group communication systems provide
those exact semantics (and more.) Spread (www.spread.org) is an example of such a
group communications system.

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

13

 mod_log_spread is a set of patches to the core Apache mod_log_config that
add the ability to log access logs to Spread a group as an alternative to files and pipes.
The Spread system provides a flexible messaging facility, with open group semantics,
to process groups that can guarantee reliability and ordering. It uses cutting-edge
network protocols that are both robust and efficient. This allows multiple clients to
publish information to groups and multiple clients to receive messages from groups.
The protocols within Spread implement efficient reliable multicasting of information.
When compared (grossly simplified) to TCP/IP:

Bandwidth B available to data

 1 publisher ->
1 subscriber

1 publisher ->
m subscribers

n publishers ->
1 subscriber

n publishers ->
m subscribers

TCP/IP B B/m B/n B/(nm)

Spread B B B/n B/n

 As the entire purpose of "distributed" logging is to handle a cluster of
machines, we see that the first two columns do not apply. The third column requires a
single subscriber to the log stream, which prohibits any additional, separate analysis
tools from attaching to the stream. Rather, they must all feed of the incremental
additions to the log file being generated by the single subscriber.

 So, under normal circumstances, the system will be operating as described by
column four. This clearly shows that a distributed logging system must be built atop a
message bus that uses efficient, reliable multicast protocols.

 The other outstanding benefit of using a group communication system over an
O(n2) TCP/IP connection mesh, other than simplicity and efficiency, is the ability to
rely on the ordering of messages. Spread can ensure that all messages that enter the
system will be delivered to each subscriber in the same ordering. In a cluster set up,
load balancing may deliver one request to one server and the next to another server.
In order, to preserve cause and effect, ordering of messages is a necessity.

 Though mod_backhand's DT provides a nice interface for monitoring a
cluster's resources in real time, when things go wrong this doesn't give you fine
grained information you need. You would like to know how many requests per
second each server is satisfying, the number Mbits/sec each server is serving, or
perhaps the rate of serving various response codes from each server. All of this is
possible by analyzing the access logs in real time. With the simplistic C, Java, and
Perl API's provided with Spread, it is trivial to write custom monitoring tools that can
be used in conjunction with mod_log_spread.

 mod_log_spread has been tested rigorously under heavy load with an Apache
cluster serving approximately 40 million hits (log lines) per day.

Theo Schlossnagle

jesus@cnds.jhu.edu

http://www.cnds.jhu.edu/~jesus/

14

Syntax for Apache mod_log_spread Configuration

We will assume that our spread daemon runs on the default port of 4803.
Directive to set the global spread daemon to spread running locally (via UNIX domain socket):
SpreadDaemon 4803

Directive to set the global spread daemon to a remote spread instance (via TCP):
SpreadDaemon 4802@remotemachine

Directive to log to a spread group named "site4" in common log format instead of a file or pipe:
LogFormat "%h %l %u %t \"%r\" %>s %b" common
Custom_Log $site4 common

Future Directions
Several technical design and implementation issues that must be tackled before any
major augmentations are done. The first is to design more elegant support for SSL
enabled connections. The second is to eliminate the need for an entire Apache child
process to be blocked while proxying a request. One or more RMA type processes
should be created that normal child processes can hand requests to for proxying. Each
of these dedicated proxying processes can handle a multiplicity of active requests
using select()/poll() semantics and asynchronous I/O. A mechanism for handing a
client back to a normal child process must be investigated.

 There are a few places we would like to see the mod_backhand project go in
the bigger picture. The first is back into the research stage from whence it came.
Analysis on the effectiveness of the decision making and reallocation of requests is
necessary for any major improvement.

 Our vision for mod_log_spread is mass adoption and a comprehensive suite of
community developed open-sourced monitoring tools.

Acknowledgements
The Backhand project was started at the Center for Networks and Distributed Systems at The
Johns Hopkins University. This project would not have been possible with out the excellent
collaborative environment for research and development found at CNDS. Many thanks to my
advisor, Yair Amir (yairamir@cnds.jhu.edu), for constantly nudging me in the right direction.
Also, many of the design and implementation details inside mod_backhand's architecture are
the product of collaborative work with Alec Peterson (ahp@hilander.com) and Jonathan
Stanton (jonathan@cnds.jhu.edu). The implementation and integration of the cost-benefit
framework were done by Ryan Borgstrom (rsean@cs.jhu.edu); the specific tunings and
adaptations to web server were a collaborative effort from Amir, Borgstrom, and myself.

 mod_log_spread was written and is maintained by George Schlossnagle
(george@omniti.com). It is an externally developed and maintained component of the
Backhand project. mod_log_spread relies on the Spread (www.spread.org) group
communication system and would not be what it is without it. Thank you to the creators and
developers of Spread.

 Many thanks go out to all of those who have written in with bugs, congratulations and
success stories.

	Introduction	1
	Problem
	Solution
	Implementation
	Built-in Candidacy Functions and Writing Your Own
	Advantages/Disadvantages of mod_backhand
	mod_log_spread as a new approach to distributed logging and monitoring
	Future Directions
	Acknowledgements

