
Java and XML Parsing Using Standard APIs
Edwin Goei
Software Engineer edwingo@sun.com
Sun Microsystems September 11, 2000

Java and XML Parsing Using Standard APIs..1
Introduction..1
XML Overview..1
Well-formedness..3
SAX ...3
DOM ..5
JAXP..8
Constraining XML...8
JDOM...10
API Comparison ..10
Conclusions..11
References..11

Introduction
XML stands for eXtensible Markup Language. XML gives applications a portable way to
represent structured data across many types of computer systems. Java is the natural
complement to XML. Java enables code to be executed across different computer platforms.
This paper will introduce common Java APIs used to parse XML documents along with
example code. But first we will give an overview of XML. Note that each of the topics
described here can be covered in a separate paper by itself so we will only provide a general
flavor of each topic and refer readers to other documents for more information.

XML Overview
Before describing what XML is, let’s first look at a sample XML document.

 1 <?xml version="1.0"?>
 2 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"
 3 "http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">
 4
 5 <!-- The XML "document element" or "root" here is 'svg' -->
 6 <svg width="800" height="600">
 7 <!-- A green rectangle -->
 8 <rect x="200" y="50" width="200" height="150" style="fill: green"/>
 9
10 <!-- Some text -->
11 <text x="230" y="220" style="fill: red">
12 A Green Rectangle
13 </text>
14
15 <!-- An example of nested elements -->
16 <g transform="translate(50, -10)">
17 <circle cx="250" cy="300" r="30" style="fill: blue"/>
18 <text x="210" y="350" style="fill: red">A Blue Circle</text>
19 </g>

Java and XML Parsing Using Standard APIs

Edwin Goei Page 2 24/09/00

20 </svg>

Figure 1 Sample XML document

On the surface, XML looks like HTML but you can make up your own tags. It also has stricter
rules. Each start-tag must have a matching end-tag and they must also nest properly. (In XML,
<foo/> is equivalent to <foo></foo>.) Attribute values must also be quoted. In addition,
element tag names and attribute names are case-sensitive.

One fundamental difference, however, is that unlike HTML, XML is a framework used to
define other markup languages. XML is really a simplified version of SGML (Standardized
General Markup Language), which is another older framework used to describe other markup
languages such as HTML itself. Each application of XML may specify a particular set of
element tags and attributes in a DTD (Document Type Definition, described later). One reason
why HTML is not an application of XML is that HTML has tags like <hr>, which do not have
an end-tag required in XML. Such tags are allowed in SGML but not in XML.

So what are some applications of XML? One example is the document above, which is an SVG
(Scalable Vector Graphics) document. SVG is used to describe vector graphics. The example
above describes a rectangle and a circle along with two captions. When rendered, the image
appears as shown in Figure 2.

Figure 2 Sample document rendered as an image (colors may not appear properly on monochrome media)

Other example XML applications are WML or Wireless Markup Language, which is used to
web-enable cellular phones. Also, returning to the <hr> element in HTML missing an end tag,
there is a reformulation of HTML 4.0 in XML called XHTML. In XHTML, there is a </hr>
end tag defined to make it a proper application of XML, among other modifications.

What are some of the reasons to use XML? As we mentioned before, it is cross platform. This
means, for example, there is a uniform way to handle end-of-line terminators whether it’s a
newline on Unix, a CRLF on DOS, or a CR on an Apple. Also, XML defines a default
character set and encoding. ISO 10646 also known as UCS (Universal Character Set) is used of
which Unicode is a proper subset. Thus, another advantage is that documents can include script

Java and XML Parsing Using Standard APIs

Edwin Goei Page 3 24/09/00

from multiple languages simultaneously. Finally, it is a standard way of representing
hierarchical structured data.

Well-formedness
Before explaining well-formedness, we should make a note about terminology. Standards
documents use the term element type to refer to what many people call a “tag”. It is useful to
note equivalence of these two terms to avoid confusion. In this paper, we will use both terms
interchangeably.

Earlier we mentioned some rules for XML such as each start tag must have a matching end tag.
A document that conforms to these rules is said to be well-formed. It appears that in the
sample document above, not all start-tags have end-tags. Instead there are tags of the form
<foo/>. This is equivalent to <foo></foo> in XML and is called an empty element. Other
well-formedness constraints are that tags must be properly nested, attributes must be quoted by
a double or single quote, and exactly a single root document element is allowed.

Going back to the example in Figure 1, line 1 is an XML Declaration and it identifies this as an
XML file. It is optional in this particular case, but other attributes may be used to specify
alternate encodings, for example. Line 2 is optional for the non-validating case. Validation will
be covered later. Line 5 is a comment and is similar to HTML. Line 6 is the document
element or root. Exactly one document element is allowed. Its attributes are width and height
specifying the dimensions of the overall canvas. The tag on line 8 describes a rectangle at (200,
50) with dimensions 200x150. The style attribute specifies a green fill color. The element on
line 8 describes a text caption to be drawn in red. The <g> tag on line 16 groups several sub-
elements together.

SAX
SAX is the Simple API for XML. As of this writing, the current version is 2.0. SAX is an
event based API where the parser calls user-defined callbacks whenever it sees certain
constructs in the input document during parsing. An example is in order. The following SAX
program counts the number of times a particular tag occurs.

 1 import java.util.*;
 2 import java.io.*;
 3 import javax.xml.parsers.*;
 4 import org.xml.sax.*;
 5 import org.xml.sax.helpers.*;
 6
 7 public class SAXTagCount extends DefaultHandler {
 8 // A Hashtable with tag names as keys and Integers as values
 9 private Hashtable tags;
10
11 // Parser calls this once at the beginning of a document
12 public void startDocument() throws SAXException {
13 tags = new Hashtable();
14 }
15
16 // Parser calls this for each element in a document
17 public void startElement(String namespaceURI, String localName,
18 String rawName, Attributes atts)
19 throws SAXException
20 {
21 String key = localName;

Java and XML Parsing Using Standard APIs

Edwin Goei Page 4 24/09/00

22 Object value = tags.get(key);
23 if (value == null) {
24 // Add a new entry
25 tags.put(key, new Integer(1));
26 } else {
27 // Get the current count and increment it
28 int count = ((Integer)value).intValue();
29 count++;
30 tags.put(key, new Integer(count));
31 }
32 }
33
34 // Parser calls this once after parsing a document
35 public void endDocument() throws SAXException {
36 Enumeration e = tags.keys();
37 while (e.hasMoreElements()) {
38 String tag = (String)e.nextElement();
39 int count = ((Integer)tags.get(tag)).intValue();
40 System.out.println("Tag <" + tag + "> occurs " + count
41 + " times");
42 }
43 }
44
45 static public void main(String[] args) {
46 if (args.length == 0) {
47 System.out.println("Usage: SAXTagCount <filename>");
48 System.exit(1);
49 }
50 String filename = args[0];
51
52 try {
53 // Create a SAX XMLReader instance
54 XMLReader xmlReader = XMLReaderFactory.createXMLReader(
55 "org.apache.crimson.parser.XMLReaderImpl");
56
57 // Set the ContentHandler of the XMLReader
58 xmlReader.setContentHandler(new SAXTagCount());
59
60 // Tell the XMLReader to parse the XML document
61 xmlReader.parse(new File(filename).toURL().toString());
62 } catch (Exception e) {
63 e.printStackTrace();
64 }
65 }
66 }

Figure 3 Example SAX 2.0 program to count tag frequency in an XML document

The method main starting at line 53 performs three basic steps. First, it creates a new SAX
XMLReader instance. An XMLReader is supplied by the parser implementation. It is an object
that knows how to parse an XML document. SAX requires that the parser implementation class
be specified either as an argument to XMLReaderFactory.createXMLReader or with a system
property org.xml.sax.driver.

In line 58, method main then gives the new instance a ContentHandler instance. A
ContentHandler is a SAX interface, which the developer provides. The ContentHandler
interface defines callback methods that get invoked as the parser parses the XML document.
Example callbacks are the methods startDocument, startElement, and characters. Note

Java and XML Parsing Using Standard APIs

Edwin Goei Page 5 24/09/00

that the sample code does not implement ContentHandler directly, but instead extends the
class org.xml.sax.helpers.DefaultHandler, which implements ContentHandler.
DefaultHandler implements all of the ContentHandler callback methods with empty do-
nothing methods. Our SAX application class overrides a few of these empty methods with
application code.

The third step in method main, on line 61, is to tell the XMLReader instance to parse a
document. This is the method that causes the parser to invoke the callbacks in the
ContentHandler that was set in the second step. After calling the XMLReader.parse method,
the application exits.

Let’s look at the callbacks in our application since that is where all of the action occurs. The
parser invokes the startDocument method when it starts to parse a new XML document. Here
we use this method to create a Hashtable of tags. The keys of the Hashtable will be the tag
names, the values will be Integers holding a count of occurrences.

The parser calls the startElement method whenever it encounters a start-tag. The parameters
of this method specify the particular start-tag encountered as well as a list of attributes. To fully
describe the parameters of this method requires understanding Namespaces, which is beyond
the scope of this paper. Since our sample document does not use Namespaces, we are only
interested in the localName parameter, which specifies the name of the start-tag. The rest of
the method looks up the start-tag in the Hashtable and either increments the count or creates a
new entry initialized to 1.

After reaching the end of the document, the parser calls the endDocument method. In this
method, we dump the contents of the Hashtable. The following figure shows the output of the
program when run with our sample XML file in Figure 1.

Tag <circle> occurs 1 times
Tag <svg> occurs 1 times
Tag <text> occurs 2 times
Tag <g> occurs 1 times
Tag <rect> occurs 1 times
Figure 4 Output of SAXTagCount with XML of Figure 1 as input

DOM
DOM stands for Document Object Model. Many applications want a tree representation of an
XML document instead of a series of callbacks from the parser. One API that provides this is
DOM. DOM is a standard produced by the W3C. As of this writing, the current version is
DOM Level 1, but Level 2 is a Proposed REC and should soon be a full REC.

A DOM tree representation of the sample document from Figure 1 follows. To simplify this
example, we remove the doctypedecl, the statement beginning with <!DOCTYPE on lines 2 and
3. We will cover this statement later when we discuss validation.

Java and XML Parsing Using Standard APIs

Edwin Goei Page 6 24/09/00

 1 DOCUMENT:
 2 COMMENT: " The XML "document element" or "root" here is 'svg' "
 3 ELEMENT: "svg" ["width"="800", "height"="600"]
 4 TEXTNODE: WHITESPACE
 5 COMMENT: " A green rectangle "
 6 TEXTNODE: WHITESPACE
 7 ELEMENT: "rect" ["x"="200", "y"="50", "width"="200", "height"="150",
 8 "style"="fill: green"]
 9 TEXTNODE: WHITESPACE
10 COMMENT: " Some text "
11 TEXTNODE: WHITESPACE
12 ELEMENT: "text" ["x"="230", "y"="220", "style"="fill: red"]
13 TEXTNODE: "
14 A Green Rectangle
15 "
16 TEXTNODE: WHITESPACE
17 COMMENT: " An example of nested elements "
18 TEXTNODE: WHITESPACE
19 ELEMENT: "g" ["transform"="translate(50, -10)"]
20 TEXTNODE: WHITESPACE
21 ELEMENT: "circle" ["cx"="250", "cy"="300", "r"="30",
22 "style"="fill: blue"]
23 TEXTNODE: WHITESPACE
24 ELEMENT: "text" ["x"="210", "y"="350", "style"="fill: red"]
25 TEXTNODE: "A Blue Circle"
26 TEXTNODE: WHITESPACE
27 TEXTNODE: WHITESPACE

Figure 5 DOM tree representation of document in Figure 1

In DOM, each node type is represented by a Java interface in the package org.w3c.dom.
Examples are Element, Attribute, Comment, and Text. In Figure 5, each node in the tree
begins on a separate line and has a node type written in all upper case. For example, the tree
shows DOM Element nodes with the label “ELEMENT” to represent elements in the
document. Indentation signifies that a particular node is a child of a preceding non-indented
node.

Note that the attributes of an element are represented by DOM Attribute nodes, but do not
appear directly in the tree structure. Instead an Attribute node is associated with the element
itself and is accessed via its corresponding Element node. Therefore the tree shows attributes
with their associated elements between brackets.

One possible point of confusion in our SVG example is that SVG has an element type called
“text”, represented by a DOM Element with the name “text”, which should not be confused
with the DOM Text node type. In the tree, the DOM Text node type is labeled as “TEXTNODE”
to minimize confusion. Please be aware of this difference.

Notice that the DOM tree contains Text nodes containing only white space. This is because
XML requires all character data to be reported to the application. Thus if the input document
contains elements within an element and there is white space used for formatting between child
elements, such as for the <circle> and <text> child elements of the <g> element on line 16 of
Figure 1, white space Text nodes will appear in the DOM tree. Currently, the only standard
way of handling this is for the application to navigate around or filter out any unwanted white
space Text nodes.

Java and XML Parsing Using Standard APIs

Edwin Goei Page 7 24/09/00

The following example program shows how to access data from the DOM tree representing the
document from Figure 1.

 1 import java.io.*;
 2 import javax.xml.parsers.*;
 3 import org.w3c.dom.*;
 4
 5 public class DOMGetCharacters {
 6 static public void main(String[] args) {
 7 if (args.length == 0) {
 8 System.out.println("Usage: DOMGetCharacters <filename>");
 9 System.exit(1);
10 }
11 String filename = args[0];
12
13 try {
14 // Create a DOM Document object
15 DocumentBuilderFactory dbf =
16 DocumentBuilderFactory.newInstance();
17 DocumentBuilder db = dbf.newDocumentBuilder();
18 Document doc = db.parse(new File(filename));
19
20 // Get the contents of the second <text> node in our example
21 Element svgElement = doc.getDocumentElement();
22 NodeList nodeList = svgElement.getElementsByTagName("g");
23 // There is only a single "<g>" element in the document
24 Element gElement = (Element)nodeList.item(0);
25 // Get the "<text>" element in a similar fashion
26 Element textElement =
27 (Element)gElement.getElementsByTagName("text").item(0);
28 // The character data of the node is in a child TEXTNODE
29 Text contentNode = (Text)textElement.getFirstChild();
30 String content = contentNode.getData();
31
32 // Print out the character data content
33 System.out.println("Content of the second <text> node is '"
34 + content + "'");
35
36 // Get the value of the 'style' attribute
37 String attValue = textElement.getAttribute("y");
38 System.out.println("Its 'y' attribue is '" + attValue + "'");
39 } catch (Exception e) {
40 e.printStackTrace();
41 }
42 }
43 }

Figure 6 Example DOM program to access data from document in Figure 1

Suppose we want to access the character data content “A Blue Circle” shown on line 25 of
Figure 5. The first step would be to obtain a handle to the DOM Document object of line 1 in
Figure 5. Unfortunately, the current DOM level 2 specification does not provide a way to load
an existing XML document and return a DOM Document object. This feature is currently being
developed for DOM level 3. As a result, each parser implementation provides a different
implementation-dependent API to do this. Another alternative is to use JAXP, which we will
describe later and is used in our example program.

Java and XML Parsing Using Standard APIs

Edwin Goei Page 8 24/09/00

Once we obtain a handle to the DOM Document, we can traverse the tree to obtain our data.
This begins on line 20. Line 21 obtains the document element. Line 22 requests a list of all <g>
elements below the document element of which there is only one. Line 24 gets the <g>
Element node. Line 26 obtains the <text> Element. Line 29 obtains the single Text node
child, which contains the character data contain within the <text> Element. Finally, line 36
shows an example of accessing an attribute of the <text> Element. Note that the code avoids
the white space Text nodes in the tree by calling the getElementsByTagName method rather
than obtaining a list of child nodes and then filtering out unwanted nodes.

The output of the program is shown below.

Content of the second <text> node is 'A Blue Circle'
Its 'y' attribue is '350'

Figure 7 Output of DOMGetCharacters when supplied with document from Figure 1

JAXP
JAXP stands for Java API for XML Parsing and its current version is 1.0 with a version 1.1 in
development and to be released soon. JAXP 1.0 is composed of a few classes along with
standard Java APIs such as SAX and DOM and was designed to be parser independent and to
simplify XML application development in Java.

In JAXP, a DOM document can be loaded with the following code repeated from Figure 6.

14 // Create a DOM Document object
15 DocumentBuilderFactory dbf =
16 DocumentBuilderFactory.newInstance();
17 DocumentBuilder db = dbf.newDocumentBuilder();
18 Document doc = db.parse(new File(filename));

Figure 8 Code fragment to load an XML document and return a DOM Document

In a similar manner, JAXP 1.0 supports SAX 1.0 (abbreviated SAX1) parsers, however, the
current version of SAX is 2.0, which will not be supported until JAXP 1.1. JAXP 1.1 should be
released soon. However, SAX2 contains a class that adapts a SAX1 parser into a SAX2
XMLReader. It is possible to use JAXP 1.0 to create a SAX1 Parser and then wrap it in a
SAX2 ParserAdapter object to yield an XMLReader, although it does have some limitations.
See the SAX documentation on org.xml.sax.helpers.ParserAdapter for more information.

Another feature that JAXP provides is a method to control validation. We cover validation in
the next section.

Constraining XML
As mentioned before, XML is a framework for defining specific markup languages such as
SVG, WML, and XHTML. Each of these specific markup languages has specific element types
and attribute names. In addition, each also has constraints as to what elements can contain other
elements and what attributes can be used with each element. These constraints are specified
traditionally in a DTD or Document Type Definition.

Java and XML Parsing Using Standard APIs

Edwin Goei Page 9 24/09/00

DTDs originally came from SGML and use a different syntax, which is not XML. In addition,
the constraints that can be expressed with DTDs are limited. As a result, new proposals for
constraining XML have emerged. One such proposal is XML Schema, which is being
developed by the W3C. One note of caution about confusing terminology, many people refer to
“schema” in a more general sense to mean a method of constraining XML rather than a specific
constraint scheme. Using this terminology, both XML Schema and DTDs are schemas. There
are other schema frameworks as well such as Relax, SOX, and XDR (XML Data Reduced).
The specification for the DTD syntax is contained in the XML specification itself. A separate
specification covers XML Schema.

In this paper, we will only discuss DTDs as a means for constraining XML. The doctypedecl
on lines 2 and 3 of Figure 1 refers to an external DTD subset located at the URL on line 3.
Describing DTD syntax is beyond the scope of this paper. Instead we will assume that a DTD
already exists for a document as in this example.

In XML, the term validation refers to checking that an XML document conforms to a DTD.
SAX1 did not provide a standard way to control whether a parser validated a document. JAXP
1.0 provided such a mechanism. However, the newer SAX2 specification does provide a
method to control validation. Thus, there are two standard ways to specify validation for SAX.
For DOM, the only common method to specify validation is via JAXP.

To validate a document, three things must happen:

1. The XML document must have a doctypedecl.
2. The application must set a SAX ErrorHandler.
3. The application must turn on validation.

Line 2 in Figure 1 shows a doctypedecl, simplified versions look like

<!DOCTYPE root-element SYSTEM system-id>

or

<!DOCTYPE root-element PUBLIC public-id system-id>

where root-element, public-id, and system-id depend on the specific markup language
being used. The example in Figure 1 shows these values for a particular version of SVG.

A SAX ErrorHandler is an interface with three methods. The parser calls the fatalError
method when there is a well-formedness error. The default implementation for this method is to
throw an exception. The parser calls the error method when there is a validation error. The
default implementation does nothing so the application must implement this method to get
notified of validation errors. For example, the application may print out an error message
indicating the problem and return, allowing further errors to be reported. Finally, the parser
calls the warning method for less severe problems. The default implementation for this method
does nothing so an application may instead want to print out a warning message.

The third step is to tell the parser to validate. SAX 2.0 provides a standard way to do this as
well as JAXP 1.0.

 1 XMLReader xmlReader = XMLReaderFactory.createXMLReader(driver);
 2 String validation = "http://xml.org/sax/features/validation";
 3 xmlReader.setFeature(validation, true);

Java and XML Parsing Using Standard APIs

Edwin Goei Page 10 24/09/00

 4 // Set the new error handler
 5 xmlReader.setErrorHandler(new MyErrorHandler());
 6 // Parse the input
 7 xmlReader.parse(url);

Figure 9 Code excerpt to turn on validation using SAX2

Figure 9 shows some code to do this using SAX2. Line 3 turns on validation and line 5 sets the
error handler. The code for JAXP is similar to the DOM case so we will just provide an
example of the DOM case. The following code excerpt shows example code for DOM using
JAXP.

 1 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 2 dbf.setValidating(true);
 3 DocumentBuilder db = dbf.newDocumentBuilder();
 4 db.setErrorHandler(new MyErrorHandler());
 5 doc = db.parse(new File(args[0]));

Figure 10 Code excerpt to turn on validation for DOM

In Figure 10, line 2 turns on validation and line 4 sets the error handler.

JDOM
JDOM stands for Java Document Object Model. It is a newer API that was recently introduced
within the past year in spring of 2000. Unlike SAX it provides a tree representation of a
document but it is also different from DOM. JDOM is a Java-only API and seeks to provide a
simpler tree model to Java applications than DOM. Currently, no parsers directly support
JDOM by packaging it with their parsers, however, a JDOM tree can be built from a parser that
produces SAX events or from a DOM tree. See http://www.jdom.org for more information
about this API and how to download an implementation that can be used with other parsers.
JDOM is also open sourced.

API Comparison
How does one choose which API to use between the three main Java APIs mentioned: SAX,
DOM, and JDOM? The choice between SAX and the two other APIs is easiest. Many
applications will probably require a tree representation of their document so this makes SAX
more difficult to use because it will require the application to create appropriate data structures
while listening to events. Also, applications that need to write out XML will not use SAX since
writing XML output is not covered. However, SAX is also a lightweight, non-memory
intensive API, which is also fast, so some applications will prefer this API. In fact, some DOM
implementations are layered on top of the SAX API.

The virtues of DOM versus JDOM are currently under much debate so developers should
investigate each API in more detail before making a decision. For example, if the application
wants to write out XML text, DOM does not yet define a standard way to do this (load/save is
slated for DOM3) so you must rely on parser specific APIs. JDOM does define an output API,
which can be used with at least three different parsers. Also, since JDOM only has a Java API,
it uses familiar Java2 classes to represent objects such as lists instead of special cross-language
classes defined by DOM. Because of this some developers claim that JDOM is easier to use

http://www.jdom.org/

Java and XML Parsing Using Standard APIs

Edwin Goei Page 11 24/09/00

with Java. JDOM also can make white space handling easier in some cases. However, other
developers claim that it trades off usability at the cost of being less XML standards compliant.

Conclusions
In this paper we presented an overview of XML and skimmed the surface of several Java XML
parsing APIs. XML is a large topic and there are many areas to cover. Hopefully this
introductory paper has given you a flavor for what the common APIs look like as well as given
you pointers to new areas to explore.

References
The following is a list of references to specifications and to related topics not all of which are
covered in this paper. There are also some books that may explain some of these topics better
than the specifications do. Also, many areas in the XML space change frequently so details
contained in books may not be current depending on the topic. Refer to the specifications,
which are usually available on the web for detailed information.

• XML spec and DTDs, see http://www.w3.org/TR/REC-xml
• SAX, see http://www.megginson.com/SAX/index.html
• DOM, see http://www.w3.org/TR/DOM-Level-2/
• JAXP, see http://java.sun.com/xml/docs/api/
• JDOM, see http://www.jdom.org/
• Namespaces, see http://www.w3.org/TR/REC-xml-names/
• XML Schema, see http://www.w3.org/TR/xmlschema-0/
• XSLT, see http://www.w3.org/TR/xslt
• XML data binding, see

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.html

The following is a list of XML parsers.

• Xerces, see http://xml.apache.org/
• Crimson, currently at http://xml.apache.org/cvs in /xml-contrib repository
• Aelfred2, see http://xmlconf.sourceforge.net/?selected=java
• Oracle (not open sourced), see http://www.oracle.com/xml/
• XP, see http://www.jclark.com/xml/xp/

http://www.w3.org/TR/REC-xml
http://www.megginson.com/SAX/index.html
http://www.w3.org/TR/DOM-Level-2/
http://java.sun.com/xml/docs/api/
http://www.jdom.org/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xslt
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.html
http://xml.apache.org/
http://xml.apache.org/
http://xmlconf.sourceforge.net/?selected=java
http://www.oracle.com/xml/
http://www.jclark.com/xml/xp/

	Java and XML Parsing Using Standard APIs
	Introduction
	XML Overview
	Well-formedness
	SAX
	DOM
	JAXP
	Constraining XML
	JDOM
	API Comparison
	Conclusions
	References

