

ApacheCon Europe
October 25, 2000

London, UK

Overview of mod_perl version 2.0

by Doug MacEachern
<dougm@covalent.net>
Covalent Technologies

117 Sep 2000

Tutorial: Overview of mod_perl version 2.0

This document is originally written in POD, converted to HTML , PostScript and PDF by
Pod::HtmlPsPdf Perl module.

(you will find a Table of Contents at the end of the Tutorial)

17 Sep 20002

Doug MacEachern

1 Introduction

317 Sep 2000

1 Introductionmod_perl Tutorial: Introduction

1.1 Apache 2.0 Summary
Note: This section will give you a brief overview of the changes in Apache 2.0, just enough to understand
where mod_perl will fit in. For more details on Apache 2.0 consult the papers by Ryan Bloom.

1.1.1 MPMs - Multi-Processing Model Modules

In Apache 1.3.x concurrent requests were handled by multiple processes, and the logic to manage these
processes lived in one place, http_main.c, 7200 some odd lines of code. If Apache 1.3.x is compiled on a
Win32 system large parts of this source file are redefined to handle requests using threads. Now suppose
you want to change the way Apache 1.3.x processes requests, say, into a DCE RPC listener. This is
possible only by slicing and dicing http_main.c into more pieces or by redefining the standalone_main
function, with a -DSTANDALONE_MAIN=your_function compile time flag. Neither of which is a
clean, modular mechanism.

Apache-2.0 solves this problem by intoducing Multi Processing Model modules, better known as MPMs.
The task of managing incoming requests is left to the MPMs, shrinking http_main.c to less than 500 lines
of code. Several MPMs are included with Apache 2.0 in the src/modules/mpm directory:

prefork

The prefork module emulates 1.3.x’s preforking model, where each request is handled by a different
process.

pthread/dexter

These two MPMs implement a hybrid multi-process multi-threaded approach based on the pthreads
standard, but each offers different fine-tuning configuration.

os2/winnt/beos

These MPMs also implement the hybrid multi-process/multi-threaded model, with each based on
native OS thread implementations.

perchild

The perchild MPM is based on the dexter MPM, but is extended with a mechanism which allows
mapping of requests to virtual hosts to a process running under the user id and group configured for
that host. This provides a robust replacement for the suexec mechanism.

1.1.2 APR - Apache Portable Runtime

Apache 1.3.x has been ported to a very large number of platforms including various flavors of unix,
win32, os/2, the list goes on. However, in 1.3.x there was no clear-cut, pre-designed portability layer for
third-party modules to take advantage of. APR provides this API layer in a very clean way. For mod_perl,
APR will assist a great deal with portability. Combined with the portablity of Perl, mod_perl-2.0 needs
only to implement a portable build system, the rest comes ‘‘for free’’. A Perl interface will be provided for

17 Sep 20004

Doug MacEachern1.1 Apache 2.0 Summary

certain areas of APR, such as the shared memory abstraction, but the majority of APR will be used by
mod_perl ‘‘under the covers’’.

1.1.3 New Hook Scheme

In Apache 1.3, modules were registered using the module structure, normally static to mod_foo.c. This
structure contains pointers to the command table, config create/merge functions, response handler table
and function pointers for all of the other hooks, such as child_init and check_user_id. In 2.0, this structure
has been pruned down to the first three items mention and a new function pointer added called
register_hooks. It is the job of register_hooks to register functions for all other hooks (such as child_init
and check_user_id). Not only is hook registration now dynamic, it is also possible for modules to register
more than one function per hook, unlike 1.3. The new hook mechanism also makes it possible to sort
registered functions, unlike 1.3 with function pointers hardwired into the module structure, and each
module structure into a linked list. Order in 1.3 depended on this list, which was possible to order using
compile-time and configuration-time configuration, but that was left to the user. Whereas in 2.0, the
add_hook functions accept an order preference parameter, those commonly used are:

FIRST

MIDDLE

LAST

For mod_perl, dynamic registration provides a cleaner way to bypass the Perl*Handler configuration. By
simply adding this configuration:

 PerlModule Apache::Foo

Apache/Foo.pm can register hooks itself at server startup:

 Apache::Hook->add(PerlAuthenHandler => \&authenticate, Apache::Hook::MIDDLE);
 Apache::Hook->add(PerlLogHandler => \&logger, Apache::Hook::LAST);

However, this means that Perl subroutines registered via this mechanism will be called for *every*
request. It will be left to that subroutine to decide if it was to handle or decline the given phase. As there is
overhead in entering the Perl runtime, it will most likely be to your advantage to continue using
Perl*Handler configuration to reduce this overhead. If it is the case that your Perl*Handler should be
invoked for every request, the hook registration mechanism will save some configuration keystrokes.

1.1.4 Configuration Tree

When configuration files are read by Apache 1.3, it hands off the parsed text to module configuration
directive handlers and discards that text afterwards. With Apache 2.0, the configuration files are first
parsed into a tree structure, which is then walked to pass data down to the modules. This tree is then left in
memory with an API for accessing it at request time. The tree can be quite useful for other modules. For
example, in 1.3, mod_info has it’s own configuration parser and parses the configuration files each time

517 Sep 2000

1.1.3 New Hook Schememod_perl Tutorial: Introduction

you access it. With 2.0 there is already a parse tree in memory, which mod_info can then walk to output
it’s information.

If a mod_perl 1.xx module wants access to configuration information, there are two approaches. A module
can ‘‘subclass’’ directive handlers, saving a copy of the data for itself, then returning DECLINE_CMD
so the other modules are also handed the info. Or, the $Apache::Server::SaveConfig variable
can be set to save <Perl> configuration in the %Apache::ReadConfig:: namespace. Both methods
are rather kludgy, version 2.0 will provide a Perl interface to the Apache configuration tree.

1.1.5 I/O Filtering

Filtering of Perl modules output has been possible for years since tied filehandle support was added to
Perl. There are several modules, such as Apache::Filter and Apache::OutputChain which have been
written to provide mechanisms for filtering the STDOUT ‘‘stream’’. There are several of these modules
because no one approach has quite been able to offer the ease of use one would expect, which is due
simply to limitations of the Perl tied filehandle design. Another problem is that these filters can only filter
the output of other Perl modules. C modules in Apache 1.3 send data directly to the client and there is no
clean way to capture this stream. Apache 2.0 has solved this problem by introducing a filtering API. With
the baseline i/o stream tied to this filter mechansim, any module can filter the output of any other module,
with any number of filters in between.

1.1.6 Protocol Modules

Apache 1.3 is hardwired to speak only one protocol, HTTP. Apache 2.0 has moved to more of a ‘‘server
framework’’ architecture making it possible to plugin handlers for protocols other than HTTP. The
protocol module design also abstracts the transport layer so protocols such as SSL can be hooked into the
server without requiring modifications to the Apache source code. This allows Apache to be extended
much further than in the past, making it possible to add support for protocols such as FTP, SMTP, RPC
flavors and the like. The main advantage being that protocol plugins can take advantage of Apache’s
portability, process/thread management, configuration mechanism and plugin API.

1.2 mod_perl and Threaded MPMs

1.2.1 Perl 5.6

Thread safe Perl interpreters, also known as ‘‘ithreads’’ (Intepreter Threads) provide the mechanism need
for mod_perl to adapt to the Apache 2.0 thread architecture. This mechanism is a compile time option
which encapsulates the Perl runtime inside of a single PerlInterpreter structure. With each interpreter
instance containing its own symbol tables, stacks and other Perl runtime mechanisms, it is possible for any
number of threads in the same process to concurrently callback into Perl. This of course requires each
thread to have it’s own PerlInterpreter object, or at least that each instance is only access by one thread at
any given time.

17 Sep 20006

Doug MacEachern1.2 mod_perl and Threaded MPMs

mod_perl-1.xx has only a single PerlInterpreter, which is contructed by the parent process, then inherited
across the forks to child processes. mod_perl-2.0 has a configurable number of PerlInterpreters and two
classes of interpreters, parent and clone. A parent is like that in 1.xx, the main interpreter created at
startup time which compiles any pre-loaded Perl code. A clone is created from the parent using the Perl
API perl_clone() function. At request time, parent interpreters are only used for making more clones, as
they are the interpreters which actually handle requests. Care is taken by Perl to copy only mutable data,
which means that no runtime locking is required and read-only data such as the syntax tree is shared from
the parent.

1.2.2 New mod_perl Directives for Threaded MPMs

Rather than create a PerlInterperter per-thread by default, mod_perl creates a pool of interpreters. The
pool mechanism helps cut down memory usage a great deal. As already mentioned, the syntax tree is
shared between all cloned interpreters. If your server is serving more than mod_perl requests, having a
smaller number of PerlInterpreters than the number of threads will clearly cut down on memory usage.
Finally and perhaps the biggest win is memory reuse. That is, as calls are made into Perl subroutines,
memory allocations are made for variables when they are used for the first time. Subsequent use of
variables may allocate more memory, e.g. if the string needs to hold a larger than it did before, or an array
more elements than in the past. As an optimization, Perl hangs onto these allocations, even though their
values ‘‘go out of scope’’. With the 1.xx model, random children would be hit with these allocations.
With 2.0, mod_perl has much better control over which PerlInterpreters are used for incoming requests.
The intepreters are stored in two linked lists, one for available interpreters one for busy. When needed to
handle a request, one is taken from the head of the available list and put back into the head of the list when
done. This means if you have, say, 10 interpreters configured to be cloned at startup time, but no more
than 5 are ever used concurrently, those 5 continue to reuse Perls allocations, while the other 5 remain
much smaller, but ready to go if the need arises.

Various attributes of the pools are configurable with the following configuration directives:

PerlInterpStart

The number of intepreters to clone at startup time.

PerlInterpMax

If all running interpreters are in use, mod_perl will clone new interpreters to handle the request, up
until this number of interpreters is reached. When Max is reached, mod_perl will block until one
becomes available.

PerlInterpMinSpare

The minimum number of available interpreters this parameter will clone interpreters up to Max,
before a request comes in.

PerlInterpMaxSpare

717 Sep 2000

1.2.2 New mod_perl Directives for Threaded MPMsmod_perl Tutorial: Introduction

mod_perl will throttle down the number of interpreters to this number as those in use become
available.

PerlInterpMaxRequests

The maximum number of requests an interpreter should serve, the interpreter is destroyed when the
number is reached and replaced with a fresh clone.

1.2.3 Issues with Threading

The Perl ‘‘ithreads’’ implementation ensures that Perl code is thread safe, at least with respect to the
Apache threads in which it is running. However, it does not ensure that extensions which call into
third-party C/C++ libraries are thread safe. In the case of non-threadsafe extensions, if it is not possible to
fix those routines, care will need to be taken to serialize calls into such functions (either at the xs or Perl
level).

1.3 Thread Item Pool API
As we discussed, mod_perl implements a pool mechanism to manage PerlInterpreters between threads.
This mechanism has been abstracted into an API known as ‘‘tipool’’, Thread Item Pool. This pool can be
used to manage any data structure, in which you wish to have a smaller number than the number of
configured threads. A good example of such a data structure is a database connection handle. The
Apache::DBI module implements persisent connections for 1.xx, but may result in each child maintaining
its own connection, when it is most often the case that number of connections is never needed
concurrently. The TIPool API provides a mechanism to solve this problem, consisting of the following
methods:

new

Create a new thread item pool. This constructor is passed an Apache::Pool object, a hash reference to
pool configuration parameters, a hash reference to pool callbacks and an optional userdata variable
which is passed to callbacks:

 my $tip = Apache::TIPool->new($p,
 {Start => 3, Max => 6},
 {grow => \&new_connection,
 shrink => \&close_connection},
 \%my_config);

The configuration parameters, Start, Max, MinSpare, MaxSpare and MaxRequests configure the pool
for your items, just as the PerlInterp* directives do for PerlInterpreters.

The grow callback is called to create new items to be added to the pool, shrink is called when an item
is removed from the pool.

17 Sep 20008

Doug MacEachern1.3 Thread Item Pool API

pop

This method will return an item from the pool, from the head of the available list. If the current
number of items are all busy, and that number is less than the configured maximum, a new item will
be created by calling the configured grow callback. Otherwise, the pop method will block until an
item is available.

 my $item = $tip->pop;

putback

This method gives an item (returned from pop) back to the pool, which is pushed into the head of the
available list:

 $tip->putback($item);

Future improvements will be made to the TIPool API, such as the ability to sort the available and busy
lists and specify if items should be popped and putback to/from the head or tail of the list.

1.3.1 Apache::DBIPool

Now we will take a look at how to make DBI take advantage of TIPool API with the Apache::DBIPool
module. The module configuration in httpd.conf will look something like so:

 PerlModule Apache::DBIPool

 <DBIPool dbi:mysql:db_name>
 DBIPoolStart 10
 DBIPoolMax 20
 DBIPoolMaxSpare 10
 DBIPoolMinSpare 5
 DBIUserName dougm
 DBIPassWord XxXx
 </DBIPool>

The module is loaded using the PerlModule directive just as with other modules. TIPools are then
configured using DBIPool configuration sections. The argument given to the container is the dsn and
within are the pool directives Start, Max, MaxSpare and MinSpare. The UserName and PassWord
directives will be passed to the DBI connect method. There can be any number of DBIPool containers,
provided each dsn is different, and/or each container is inside a different VirtualHost container.

Now let’s examine the source code, keeping in mind this module contains the basics and the official
release (tbd) will likely contain more details, such as how it hooks into DBI.pm to provide transparency
the way Apache::DBI currently does.

917 Sep 2000

1.3.1 Apache::DBIPoolmod_perl Tutorial: Introduction

After pulling in the modules needed Apache::TIPool, Apache::ModuleConfig and DBI, we setup a
callback table. The new_connection function will be called with the TIP needs to add a new item and
close_connection when an item is being removed from the pool. The Apache::Hook add method registers
a PerlPostConfigHandler which will be called after Apache has read the configuration files.

This handler (our init function) is passed 3 Apache::Pool objects and one Apache::Server object. Each
Apache::Pool has a different lifetime, the first will be alive until configuration is read again, such as
during restarts. The second will be alive until logs are re-opened and the third is a temporary pool which is
cleared before Apache starts serving requests. Since the DBI connection pool is associated with
configuration in httpd.conf, we will use that pool.

The Apache::ModuleConfig get method is called with the Apache::Server object to give us the
configuration associated with the given server. Next is a while loop which iterates over the configuration
parsed by the DBIPool directive handler. The keys of this hash are the configured dsn, of which there is
one per DBIPool configuration section. The values will be a hash reference to the pool configuration,
Start, Max, MinSpare, MaxSpare and MaxRequests.

A new Apache::TIPool is then contructed, passing it the $pconf Apache::Pool, configuration $params ,
the $callbacks table and $conn hash ref. The TIPool is then saved into the $cfg object, indexed by the
dsn.

At the time Apache::TIPool::new is called, the new_connection callback will be called the number of time
to which Start is configured. This callback localizes Apache::DBIPool::connect to a code reference which
makes the real database connection.

At request time Apache::DBIPool::connect will fetch a database handle from the TIPool. It does so by
digging into the configuration object associated with the current virtual host to obtain a reference to the
TIPool object. It then calls the pop method, which will immediatly return a database handle if one is
available. If all opened connection are in used and the current number of connections is less than the
configured Max, the call to pop will result in a call to new_connection. If Max has already been reached,
then pop will block until a handle is putback into the pool.

Finally, the handle is blessed into the Apache::DBIPool::db class which will override the dbd class
disconnect method. The overridden disconnect method obtains a reference to the TIPool object and passes
it to the putback method, making it available for use by other threads. Should the Perl code using this
handle neglect to call the disconnect method, the overridden connect method has already registered a
cleanup function to make sure it is putback.

1.3.2 Apache::DBIPool Source

 package Apache::DBIPool;

 use strict;
 use Apache::TIPool ();
 use Apache::ModuleConfig ();
 use DBI ();

17 Sep 200010

Doug MacEachern1.3.2 Apache::DBIPool Source

 my $callbacks = {
 grow => \&new_connection, #add new connection to the pool
 shrink => \&close_connection, #handle removed connection from pool
 };

 Apache::Hook->add(PerlPostConfigHandler => \&init); #called at startup

 sub init {
 my($pconf, $plog, $ptemp, $s) = @_;

 my $cfg = Apache::ModuleConfig->get($s, __PACKAGE__);

 #create a TIPool for each dsn
 while (my($conn, $params) = each %{ $cfg->{DBIPool} }) {
 my $tip = Apache::TIPool->new($pconf, $params, $callbacks, $conn);
 $cfg->{TIPool}->{ $conn->{dsn} } = $tip;
 }
 }

 sub new_connection {
 my($tip, $conn) = @_;

 #make actual connection to the database
 local *Apache::DBIPool::connect = sub {
 my($class, $drh) = (shift, shift);
 $drh->connect($dbname, @_);
 };

 return DBI->connect(@{$conn}{qw(dsn username password attr)});
 }

 sub close_connection {
 my($tip, $conn, $dbh) = @_;
 my $driver = (split $conn->{dsn}, ’:’)[1];
 my $method = join ’::’, ’DBD’, $driver, ’db’, ’disconnect’;
 $dbh->$method(); #call the real disconnect method
 }

 my $EndToken = ’</DBIPool>’;

 #parse <DBIPool dbi:mysql:...>...

1117 Sep 2000

1.3.2 Apache::DBIPool Sourcemod_perl Tutorial: Introduction

 sub DBIPool ($$$;*) {
 my($cfg, $parms, $dsn, $cfg_fh) = @_;
 $dsn =~ s/>$//;

 $cfg->{DBIPool}->{$dsn}->{dsn} = $dsn;

 while((my $line = <$cfg_fh>) !~ m:^$EndToken:o) {
 my($name, $value) = split $line, /\s+/, 2;
 $name =~ s/^DBIPool(\w+)/lc $1/ei;
 $cfg->{DBIPool}->{$dsn}->{$name} = $value;
 }
 }

 sub config {
 my $r = Apache->request;
 return Apache::ModuleConfig->get($r, __PACKAGE__);
 }

 #called from DBI::connect
 sub connect {
 my($class, $drh) = (shift, shift);

 $drh->{DSN} = join ’:’, ’dbi’, $drh->{Name}, $_[0];
 my $cfg = config();

 my $tip = $cfg->{TIPool}->{ $drh->{DSN} };

 unless ($tip) {
 #XXX: do a real connect or fallback to Apache::DBI
 }

 my $item = $tip->pop; #select a connection from the pool

 $r->register_cleanup(sub { #incase disconnect() is not called
 $tip->putback($item);
 });

 return bless ’Apache::DBIPool::db’, $item->data; #the dbh
 }

 package Apache::DBIPool::db;

17 Sep 200012

Doug MacEachern1.3.2 Apache::DBIPool Source

 our @ISA = qw(DBI::db);

 #override disconnect, puts database handle back in the pool
 sub disconnect {
 my $dbh = shift;
 my $tip = config()->{TIPool}->{ $dbh->{DSN} };
 $tip->putback($dbh);
 1;
 }

 1;
 __END__

1.4 PerlOptions Directive
A new configuration directive to mod_perl-2.0, PerlOptions, provides fine-grained configuration for what
were compile-time only options in mod_perl-1.xx. In addition, this directive provides control over what
class of PerlInterpreter is used for a VirtualHost or location configured with Location, Directory, etc.

These are all best explained with examples, first here’s how to disable mod_perl for a certain host:

 <VirtualHost ...>
 PerlOptions -Enable
 </VirtualHost>

Suppose a one of the hosts does not want to allow users to configure PerlAuthenHandler,
PerlAuthzHandler or PerlAccessHandler or <Perl> sections:

 <VirtualHost ...>
 PerlOptions -Authen -Authz -Access -Sections
 </VirtualHost>

Or maybe everything but the response handler:

 <VirtualHost ...>
 PerlOptions None +Response
 </VirtualHost>

A common problem with mod_perl-1.xx was the shared namespace between all code within the process.
Consider two developers using the same server and each which to run a different version of a module with
the same name. This example will create two parent Perls, one for each VirtualHost, each with its own
namespace and pointing to a different paths in @INC:

1317 Sep 2000

1.4 PerlOptions Directivemod_perl Tutorial: Introduction

 <VirtualHost ...>
 ServerName dev1
 PerlOptions +Parent
 PerlSwitches -Mblib=/home/dev1/lib/perl
 </VirtualHost>

 <VirtualHost ...>
 ServerName dev2
 PerlOptions +Parent
 PerlSwitches -Mblib=/home/dev2/lib/perl
 </VirtualHost>

Or even for a given location, for something like ‘‘dirty’’ cgi scripts:

 <Location /cgi-bin>
 PerlOptions +Parent
 PerlInterpMaxRequests 1
 PerlInterpStart 1
 PerlInterpMax 1
 PerlHandler Apache::Registry
 </Location>

Will use a fresh interpreter with its own namespace to handle each request.

Should you wish to fine tune Interpreter pools for a given host:

 <VirtualHost ...>
 PerlOptions +Clone
 PerlInterpStart 2
 PerlInterpMax 2
 </VirtualHost>

This might be worthwhile in the case where certain hosts have their own sets of large-ish modules, used
only in each host. By tuning each host to have it’s own pool, that host will continue to reuse the Perl
allocations in their specific modules.

1.5 Integration with 2.0 Filtering
The mod_perl-2.0 interface to the Apache filter API is much simpler than the C API, hiding most of the
details underneath. Perl filters are configured using the PerlFilterHandler directive, for example:

 PerlFilterHandler Apache::ReverseFilter

This simply registers the filter, which can then be turned on using the core AddFilter directive:

17 Sep 200014

Doug MacEachern1.5 Integration with 2.0 Filtering

 <Location /foo>
 AddFilter Apache::ReverseFilter
 </Location>

The Apache::ReverseFilter handler will now be called for anything accessed in the /foo url space. The
AddFilter directive takes any number of filters, for example, this configuration will first send the output to
mod_include, which will in turn pass its output down to Apache::ReverseFilter:

 AddFilter INCLUDE Apache::ReverseFilter

For our example, Apache::ReverseFilter simply reverses all of the output characters and then sends them
downstream. The first argument to a filter handler is an Apache::Filter object, which at the moment
provides two methods read and write. The read method pulls down a chunk of the output stream into the
given buffer, returning the length read into the buffer. An optional size argument may be given to specify
the maximum size to read into the buffer. If omitted, an arbitrary size will fill the buffer, depending on the
upstream filter. The write method passes data down to the next filter. In our case scalar reverse
takes advantage of Perl’s builtins to reverse the upstream buffer:

 package Apache::ReverseFilter;

 use strict;

 sub handler {
 my $filter = shift;

 while ($filter->read(my $buffer, 1024)) {
 $filter->write(scalar reverse $buffer);
 }

 return Apache::OK;
 }

 1;

1.6 Protocol Modules with mod_perl-2.0

1.6.1 Apache::Echo

Apache 2.0 ships with an example protocol module, mod_echo, which simply reads data from the client
and echos it right back. Here we’ll take a look at a Perl version of that module, called Apache::Echo. A
protocol handler is configured using the PerlProcessConnectionHandler directive and we’ll use an
IfDefine section so it’s only enabled via the command line and binds to a different Port 8084:

1517 Sep 2000

1.6 Protocol Modules with mod_perl-2.0mod_perl Tutorial: Introduction

 <IfDefine Apache::Echo>
 Port 8084
 PerlProcessConnectionHandler Apache::Echo
 </IfDefine>

Apache::Echo is then enabled by starting Apache like so:

 % httpd -DApache::Echo

And we give it a whirl:

 % telnet localhost 8084
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 hello apachecon
 hello apachecon
 ^]

The code is just a few lines of code, with the standard package declaration and of course, use
strict; . As with all Perl*Handlers, the subroutine name defaults to handler. However, in the case of a
protocol handler, the first argument is not a request_rec, but a conn_rec blessed into the
Apache::Connection class. Right away we enter the echo loop, stopping if the eof method returns true,
indicating that the client has disconnected. Next the read method is called with a maximum of 1024 bytes
placed in $buff and returns the actual length read into $rlen . If no bytes were read we break out of the
while loop. Otherwise, attempt to echo the data back using the write method. The flush method is called so
the buffer is flushed to the client right away, otherwise the client would not see any data until the buffer
was full (with around 8k or so worth). Once the client has disconnected, the module returns OK , telling
Apache we have handled the connection:

 package Apache::Echo;

 use strict;

 sub handler {
 my Apache::Connection $c = shift;

 while (!$c->eof) {
 my $rlen = $c->read(my $buff, 1024);

 last unless $rlen > 0 and $c->write($buff);

17 Sep 200016

Doug MacEachern1.6.1 Apache::Echo

 $c->flush;
 }

 return Apache::OK;
 }

 1;
 __END__

1.6.2 Apache::CommandServer

Our first protocol handler example took advange of Apache’s server framework, but did not tap into any
other modules. The next example is based on the example in the ‘‘TCP Servers with IO::Socket’’ section
of perlipc. Of course, we don’t need IO::Socket since Apache takes care of those details for us. The rest of
that example can still be used to illustrate implementing a simple text protocol. In this case, one where a
command is sent by the client to be executed on the server side, with results sent back to the client.

The Apache::CommandServer handler will support four commands: motd, date, who and quit. These are
probably not commands which can be exploited, but should we add such commands, we’ll want to limit
access based on ip address/hostname, authentication and authorization. Protocol handlers need to take care
of these tasks themselves, since we bypass the HTTP protocol handler.

As with all PerlProcessConnectionHandlers, we are passed an Apache::Connection object as the first
argument. After every call to the write method we want the client to see the data right away, so first
autoflush is turned on to take care of that for us. Next, the login subroutine is called to check if access by
this client should be allowed. This routine makes up for what we lost with the core HTTP protocol handler
bypassed. First we call the fake_request method, which returns a request_rec object, just like that which is
passed into request time Perl*Handlers and returned by the subrequest API methods, lookup_uri and
lookup_file. However, this ‘‘fake request’’ does not run handlers for any of the phases, it simply returns an
object which we can use to do that ourselves. The __PACKAGE__ argument is given as our ‘‘location’’
for this request, mainly used for looking up configuration. For example, should we only wish to allow
access to this server from certain locations:

 <Location Apache::CommandServer>
 deny from all
 allow from 10.*
 </Location>

The fake_request method only looks up the configuration, we still need to apply it. This is done in for
loop, iterating over three methods: check_access, check_user_id and check_authz. These methods will call
directly into the Apache functions that invoke module handlers for these phases and will return an integer
status code, such as OK , DECLINED or FORBIDDEN . If check_access returns something other than
OK or DECLINED , that status will be propagated up to the handler routine and then back up to Apache.
Otherwise the access check passed and the loop will break unless some_auth_required returns true. This
would be false given the previous configuration example, but would be true in the presense of a require
directive, such as:

1717 Sep 2000

1.6.2 Apache::CommandServermod_perl Tutorial: Introduction

 <Location Apache::CommandServer>
 deny from all
 allow from 10.*
 require user dougm
 </Location>

Given this configuration, some_auth_required will return true. The user method is then called, which will
return false if we have not yet authenticated. A prompt utility is called to read the username and password,
which are then injected into the headers_in table using the set_basic_credentials method. The
Authenticate field in this table is set to a base64 encoded value of the username:password pair, exactly the
same format a browser would send for Basic authentication. Next time through the loop check_user_id is
called, which will in turn invoke any authentication handlers, such as mod_auth. When mod_auth calls the
ap_get_basic_auth_pw() API function (as all Basic auth modules do), it will get back the username and
password we injected. If we fail authentication a 401 status code is returned which we propagate up.
Otherwise, authorization handlers are run via check_authz. Authorization handlers normally need the user
field of the request_rec for its checks and that field was filled in when mod_auth called
ap_get_basic_auth_pw().

Provided login is a success, a welcome message is printed and main request loop entered. Inside the loop
the getline method returns just one line of data, with newline characters stripped. If the string sent by the
client is in our command table, the command is then invoked, otherwise a usage message is sent. If the
command does not return a true value, we break out of the loop. Let’s give it a try with this configuration:

 <IfDefine Apache::CommandServer>
 Port 8085
 PerlProcessConnectionHandler Apache::CommandServer

 <Location Apache::CommandServer>
 allow from 127.0.0.1
 require user dougm
 satisfy any
 AuthUserFile /tmp/basic-auth
 </Location>
 </IfDefine>

17 Sep 200018

Doug MacEachern1.6.2 Apache::CommandServer

 % telnet localhost 8085
 Trying 127.0.0.1...
 Connected to localhost (127.0.0.1).
 Escape character is ’^]’.
 Login: dougm
 Password: foo
 Welcome to Apache::CommandServer
 Available commands: motd date who quit
 motd
 Have a lot of fun...
 date
 Wed Sep 13 23:47:26 2000
 who
 dougm tty1 Sep 7 11:40
 dougm ttyp0 Sep 12 11:38 (:0.0)
 dougm ttyp1 Sep 12 15:50 (:0.0)
 quit
 Connection closed by foreign host.

1.6.3 Apache::CommandServer Source

 package Apache::CommandServer;

 use strict;

 my @cmds = qw(motd date who quit);
 my %commands = map { $_, \&{$_} } @cmds;

 sub handler {
 my Apache::Connection $c = shift;

 $c->autoflush(1);

 if ((my $rc = login($c)) != Apache::OK) {
 $c->write("Access Denied\n");
 return $rc;
 }

 $c->write("Welcome to ", __PACKAGE__,
 "\nAvailable commands: @cmds\n");

 while (!$c->eof) {
 my $cmd;
 next unless $cmd = $c->getline;

1917 Sep 2000

1.6.3 Apache::CommandServer Sourcemod_perl Tutorial: Introduction

 if (my $sub = $commands{$cmd}) {
 last unless $sub->($c);
 }
 else {
 $c->write("Commands: @cmds\n");
 }
 }

 return Apache::OK;
 }

 sub login {
 my $c = shift;

 my $r = $c->fake_request(__PACKAGE__);

 for my $method (qw(check_access check_user_id check_authz)) {
 my $rc = $r->$method();

 if ($rc != Apache::OK and $rc != Apache::DECLINED) {
 return $rc;
 }

 last unless $r->some_auth_required;

 unless ($r->user) {
 my $username = prompt($c, "Login");
 my $password = prompt($c, "Password");

 $r->set_basic_credentials($username, $password);
 }
 }

 return Apache::OK;
 }

 sub prompt {
 my($c, $msg) = @_;
 $c->write("$msg: ");
 $c->getline;
 }

17 Sep 200020

Doug MacEachern1.6.3 Apache::CommandServer Source

 sub motd {
 my $c = shift;
 open my $fh, ’/etc/motd’ or return;
 local $/;
 $c->write(<$fh>);
 close $fh;
 }

 sub date {
 my $c = shift;
 $c->write(scalar localtime, "\n");
 }

 sub who {
 my $c = shift;
 $c->write(‘who‘);
 }

 sub quit {0}

 1;
 __END__

1.7 mod_perl-2.0 Optimizations
As mentioned in the introduction, the rewrite of mod_perl gives us the chances to build a smarter, stronger
and faster implementation based on lessons learned over the 4.5 years since mod_perl was introduced.
There are optimizations which can be made in the mod_perl source code, some which can be made in the
Perl space by optimizing its syntax tree and some a combination of both. In this section we’ll take a brief
look at some of the optimizations that are being considered.

The details of these optimizations will from the most part be hidden from mod_perl users, the exeception
being that some will only be turned on with configuration directives. The explanation of these
optimization ideas are best left for the live talk, a few which will be overviewed then include:

"Compiled" Perl*Handlers

Method calls faster than subroutine calls!

‘print’ enhancements

Inlined Apache::*.xs calls

Use of Apache Pools for memory allocations

2117 Sep 2000

1.7 mod_perl-2.0 Optimizationsmod_perl Tutorial: Introduction

Copy-on-write strings

1.8 References
http://perl.apache.org/

The mod_perl homepage will announce mod_perl-2.0 developments as they become available.

17 Sep 200022

Doug MacEachern1.8 References

Table of Contents:
............ 1Tutorial: Overview of mod_perl version 2.0
............... 3mod_perl Tutorial: Introduction
.................. 31 Introduction
................ 41.1 Apache 2.0 Summary
.......... 41.1.1 MPMs - Multi-Processing Model Modules
............ 41.1.2 APR - Apache Portable Runtime
............... 51.1.3 New Hook Scheme
............... 51.1.4 Configuration Tree
................. 61.1.5 I/O Filtering
................ 61.1.6 Protocol Modules
.............. 61.2 mod_perl and Threaded MPMs
.................. 61.2.1 Perl 5.6
......... 71.2.2 New mod_perl Directives for Threaded MPMs
............... 81.2.3 Issues with Threading
................ 81.3 Thread Item Pool API
................ 91.3.1 Apache::DBIPool
.............. 101.3.2 Apache::DBIPool Source
................ 131.4 PerlOptions Directive
.............. 141.5 Integration with 2.0 Filtering
............ 151.6 Protocol Modules with mod_perl-2.0
................ 151.6.1 Apache::Echo
.............. 171.6.2 Apache::CommandServer
............ 191.6.3 Apache::CommandServer Source
.............. 211.7 mod_perl-2.0 Optimizations
.................. 221.8 References

i17 Sep 2000

	1€€Introduction
	1.1€€Apache 2.0 Summary
	1.1.1€€MPMs - Multi-Processing Model Modules
	1.1.2€€APR - Apache Portable Runtime
	1.1.3€€New Hook Scheme
	1.1.4€€Configuration Tree
	1.1.5€€I/O Filtering
	1.1.6€€Protocol Modules

	1.2€€mod_perl and Threaded MPMs
	1.2.1€€Perl 5.6
	1.2.2€€New mod_perl Directives for Threaded MPMs
	1.2.3€€Issues with Threading

	1.3€€Thread Item Pool API
	1.3.1€€Apache::DBIPool
	1.3.2€€Apache::DBIPool Source

	1.4€€PerlOptions Directive
	1.5€€Integration with 2.0 Filtering
	1.6€€Protocol Modules with mod_perl-2.0
	1.6.1€€Apache::Echo
	1.6.2€€Apache::CommandServer
	1.6.3€€Apache::CommandServer Source

	1.7€€mod_perl-2.0 Optimizations
	1.8€€References

