

October 23-25, 2000 1

C++ and Apache:
Using C++ Server

Christian Gross
CTO Tredix AG
cgross@tredix.com

Bio: Christian Gross
u Author

l Book APress:
A Programmers Introduction to Windows
DNA

l Upcoming APress :
From Windows Programming to Linux
Programming

l Articles: MIND, BasicPro

u Conferences
l TechEd, Visual C++ DevCon, SD, DevDays

How to approach Apache development
u Need to understand (UNIX derivatives)

l Shell scripting (mainly for reading)
l Makefiles (reading and writing)

u Tools that can be used
l Code Fusion AKA Source Navigator, now

Open Source Toolkit for Linux RedHat (5
stars)

l C-Forge Development Environment
l C++, C, Java, HTML, etc (5 stars)

l XWPE
l C source (3.5 stars)

l Visual C++
l Windows development (5 stars)

Agenda
u Outline of the why‘s of C++ Server
u Refresher of Apache Modules
u Outline of C++ server

What is the objective?

u Use Apache as a foundation for Internet
Applications

u Build applications using another
technology that realizes some higher
level task

u Notice the differentiation between lower
level and higher level applications
l Each level requires different programming

techniques and styles

Application Types

u Apache: Low level plumbing
l Needs to be stable, fast and efficient
l Hacks not tolerated
l “Do it right!”

u Business Application
l Easy to create, maintainable, easy to catch

errors
l Sometimes need hacks
l “Get it done!”

October 23-25, 2000 2

Business Application Architecture

Process
XHTTP

Server

Database

Request is
made

HTTP is
converted
to some
request

Database
query is
executed

Why C++?

u Because the really powerful and fast
applications need it
l HotMail -> ISAPI
l Tredix AG (Apache and C++ Server)

u C++ is more effective than C as a
business application language
l Easy to write fast, maintainable, error

proof applications

u Could use Perl, or PHP…
l But the power is still with C++

What is C++ Server

u A set of classes that make it simpler to
write HTTP Request Handlers
l Includes a page compiler that converts

“ASP” code to C++

u Makes it simpler to write applications
that perform specific business tasks

u Allows for easy integration of multi -
processing, threading and database

u Includes a user defined persistence
framework

Apache modules
u Make it possible to hook in

l without “breaking” the HTTP server

u Can hook in various locations
l Perform single tasks or multiple tasks

u Is geared towards performance
l So long as your module is well written

l Will not hang server, but process

u More powerful and flexible than any
other external API
l CGI, NSAPI, ISAPI, etc

u Can be static or dynamic DSO

Apache modules

CGI

Apache
HTTP
Server

Database
Handler
PHP

Handler
Perl

Handler
CGI

Handler
Custom

Apache API

Module
defintion

typedef struct module_struct {
int version; int minor_version;
int module_index; const char *name;
void *dynamic_load_handle; struct module_struct *next;
unsigned long magic;

void (*init) (server_rec *, pool *);
void *(*create_dir_config) (pool *p, char *dir);
void *(*merge_dir_config) (pool *p, void *base_conf, void *new_conf);
void *(*create_server_config) (pool *p, server_rec *s);
void *(*merge_server_config) (pool *p, void *base_conf, void *new_conf);

const command_rec *cmds;
const handler_rec *handlers;

int (*translate_handler) (request_rec *);
int (*ap_check_user_id) (request_rec *);
int (*auth_checker) (request_rec *);
int (*access_checker) (request_rec *);
int (*type_checker) (request_rec *);
int (*fixer_upper) (request_rec *);
int (*logger) (request_rec *);
int (*header_parser) (request_rec *);
void (*child_init) (server_rec *, pool *);
void (*child_exit) (server_rec *, pool *);
int (*post_read_request) (request_rec *);

} module;

October 23-25, 2000 3

Module development

u Fill in the structure with appropriate
values
u NULL defines not implemented

u To send straight content based on
some server configuration minimum
structure requires

l command_rec structure
l handler_rec structure

Phases outlined

u There are three module phases
l Configuration
l Instantiation / Exit
l Request handling

Configuration Phases

u Events
l Create per server configuration
l Create per directory configuration
l Per server merger
l Per directory merger

l Command handlers

u Is called for the main server and the
various virtual servers

Instantiation / Exit

u Events
l Module instantiation
l Child instantiation
l Child exit

u There are global events and per child
events

u Child events are called whenever the
child processes are started and
stopped

External Apache modules
Design considerations
u Hook into the HTTP request

l Post read request
l URL translation
l Header parsing
l Access control (access control, authentication,

authorization)
l Type checking
l Apache handler
l Fixups
l Logging of the request

u Can hook into one or all steps
u Reply with

l Success, abort and decline

Module
Structure

module config_log_module = {
STANDARD_MODULE_STUFF,
NULL, /* initializer * /
NULL, /* create per-dir config * /
NULL, /* merge per -dir config*/
NULL, /* server config*/
NULL, /* merge server config*/
helloCmds, /* command table */
helloHandlers, /* content handlers */
NULL, /* URL to filename translation */
NULL, /* check user_id is valid */
NULL, /* check auth */
NULL, /* check access */
NULL, /* type_checker */
NULL, /* fixups */
NULL, /* logger */
NULL, /* process initialization*/
NULL, /* process exit/cleanup */
NULL /* post read_request handling*/

};

October 23-25, 2000 4

static command_rec helloCmds[] = {
{ “HelloPhrase”,

helloPhraseCmd
NULL,
OR_ALL,
TAKE1
“What we will say”

},
{ NULL}

};

Configuration
Directive

Extra data ptr

Configuration
location

Arguments
for function

Error string
(eg. error logging)

Command structures
Definition

Function Callback

Command structures
Implementation

char *helloPhraseCmd(
cmd_params *cmd,
void *configDir,
char *phrase) {
/* do something*/
return NULL;

};

Server
configuration
information

Local configuration
information

Arguments
generated

during parsing

Handler structures
Definition

static handler_rec helloHandlers[] = {
{ “*/*”,

helloHandler
},
{ NULL}

};
Function that

handles request

Handler string

Handler structures
Implementation

int helloHandler(
request_rec *r) {
/* do something */
return OK;

}

Request structure
that contains information
about the request, server

variables, access, etc

APR (Apache Runtime)

u A neutral programming layer that is
embedded on top of the operating
system

u Makes it simpler to port native code
modules to other platforms

u Typically most function calls are
defined with ap_

u Before careful how you use the API with
Dynamic (DLL or DSO) Libraries

Apache memory pools

u Memory is managed in pools in Apache
l Makes it simpler to clear memory
l Ensures that nothing is leaked
l And it can be faster

u When a request is sent to the module it
has a handle to the pool via the
request_rec structure

u Example
foo = (foo *)ap_malloc(r->pool,
sizeof(foo))

October 23-25, 2000 5

C++ Server Design Concepts
u Do not reinvent modPerl or PHP
u Convert as much dynamic content to

static
l Compiled is faster than scripted

u Ensure that it is possible to associate
“session” data with a server side object

u Make it easily possible to do multi-
threading, multi-processing

u Do not hinder C++, complement it
u Handle only HTTP request phase

l Leave Apache Server configuration as is

Problem 1: Static functions
u In Apache 1.3.x series need static

functions that are associated with a
structure

u In Apache 2.x series still need a static
function that can be dynamically
associated

u Static functions and C++ do not easily
mix

u Solution is to create a static class
member and hand off the request to an
instantiated class

Static Function Handoff
(Concept)

static int staticHandler(request_rec *r) {

baseClass *cls;

int retval;

cls = new baseClass;

retval = cls->handleRequest();

delete cls;

return retval;

}

Static Function Handoff
(Concept) cont…
u Each request allocates a new class

l While it would seem to optimize by pooling
objects, it is not better
l Adds overhead and complexity

l Cost is not in instantiating the objects, but
the memory that the object manages

l Two solutions: Trust heap manager, or
use Apache Pooled memory manager
l Using APR makes it simpler for

object clean-up
l Ownerless pointers solved by APR

C++ Server SFH Implementation

u For module level calls header
processing, fixup, etc
l Static global class

l Need thread synchronization

u For an individual Apache Handler
l Newly instantiated class for each request

l Does not need thread synchronization
l Bulk of application server work done in the

handler

C++ Server For the Impatient

u The simplest C++ Server class is
“sessionless”

u Steps to create a simple C++ server
l Copy file mod_cpp.cpp to your module

directory and rename the file
l In top of your “mod_cpp.cpp” redefine the

macros:
l MOD_NAME: Apache LoadModule name
l MOD_INSTANTIATE: Apache

Configuration Item used in HTTP.CONF
to activate your C++ Server extension

l MOD_BASE_CLASS: Name of Module

October 23-25, 2000 6

C++ Server For the Impatient
cont…
u Implement the class defined by the

macro MOD_BASE_CLASS
l Ensure class is derived from class

ApacheModule

u Implement an Apache handler by
defining a class derived from template
ApacheSessionlessHandler

u Implement the virtual function
handleRequest

u In handleRequest use APR to send
output
l rec is Apache request_rec class

C++ Server For the Impatient
cont…
u For ApacheSessionlessHandler derived

class add macro IDENTIFIER with an
Apache Handler String

u In ApacheModule derived class add

BEGIN_HANDLER_MAP()
HANDLER_ENTRY([My Handler])

END_HANDLER_MAP()
u Add IDENTIFIER String to HTTP.CONF
u Compile
u Run Apache

C++ Server example

u Actually build the sessionless handler
to output hello world

What is happening…

u When Apache Module is loaded using
the macro MOD_INSTANTIATE the
various handlers are wired into Apache
like a dynamic module
l See function InstantiateModCPP

u Once wired the IDENTIFIER string maps
the Apache Handler request to a static
function of ApacheSessionlessHandler

u Request is then handled

Problem 2: State

u When a browser visits your module
multiple times you may want to build
some state
l eg shopping cart, stock tracking, etc

u ApacheHandler template class is like
ApacheSessionlessHandler, but has an
extra data member ApacheSession

u ApacheSession is a class that you
derive from to load and save state
regarding a session managed with a
cookie

State Handler Demo

u Extend the sessionless handler to
include state
l The state counts the number of times that

the user visits the web page

October 23-25, 2000 7

“Printf”s for output
u Do we really want yet another series of

printf’s to display output?
u One solution is to use a library that

builds the HTML on the fly
l Not good because it makes it very hard for

“normal” website designers to modify the
page

u Better solution is to convert dynamic
pages into static pages
l ASP (Active Server Pages) is a defacto

standard

C++ Server ASP compiler

u A page compiler that translates ASP
pages into a series of C++ modules that
are compiled into a module
l More robust
l Makes it possible to distribute your

application, without need to distribute
many files

l Faster, unless of course your write some
REALLY BAD C++

C++ Server ASP Compiler

u Concept is to generate look in ASP, but
derive functionality from a C++
business class

u PCOMP (ASP Compiler) generates a
class that derives from a C++ business
class
l Web designers only need “interfaces” to

your various business classes

ASP Compiler Demo

u Extending Hello world to use ASP
pages

C++ Server Details

u Is Open Source using the Apache
license

u Is available from www.devspace.com
u I will accept bug reports mail me at

cgross@devspace.com
u Is used in the Tredix WebSite

Reference

u Apache Web site www.apache.org
l Modules development mailing list

l Modules registry list
l Web site module.apache.org
l ASP support is available
l PHP support is also available

u O’Reilly Website / Books
l Apache the definitive guide

(administrative)
l Writing Apache modules with Perl and C

October 23-25, 2000 8

Thanks!

Questions?

