Tutorial: Getting Started with mod_perl

ApacheConEurope
October 24, 2000
London, UK

Tutorial : Getting Started with mod_ perl

by StasBekman
http://stason.org/
<stas@stason.org>
JazzVaey.com, CTO

Master Copy URL.: http://perl.apache.org/guide/

2 Sep 2000

Stas Bekman

This documentis originally written inPOD, converted tdtHTML , PostScriptandPDF by
Pod::HtmIP sPdf Perl module.

You candowrloadall the HTML files, POD sources and build scripts from
[http:/iwww.perl.com/CPAN-local/authors/id/S/ST/STAS/at the samdireaory from one of your
favorite CPAN mirrors.

The latest CVSnashotis availablefrom|http://www.stason.org/quide-sretmptg
The PDF version of the Guideasailablefromhttp://perl.apache.org/quide/

Copyright © 1998-2000 Stas Bekman. All rights reserved.(Distributed under GPL license)

(you will find a Table of Contents at the end of Theorial)

2 Sep 2000

http://perl.apache.org/guide/
http://www.stason.org/guide-snapshots/
http://www.perl.com/CPAN-local/authors/id/S/ST/STAS/

Tutorial: Getting Started with mod_perl

Your corrections of the technical and grammatical errors are very welcome. You
are encouragedto help me improve the guide theutorial is based on.

If you have somehing to contribute please send it directly to me. Thank you!

If it's a small fix, just remember to tell me the chapter and the name of the section
you are talking about.

If it includes big text modifications pleasedownload the POD sources of the Guide
from CPAN ttp://www.perl.com/CPAN-local/authors/id/S/ST/STAS| edit them
directly and send the patched file to me. There is no need to send me patches, send
the POD filesthemselves

Thank you!

2 Sep 2000 3

http://www.perl.com/CPAN-local/authors/id/S/ST/STAS/

1 Agenda Stas Bekman

1 Agenda

4 2 Sep 2000

mod_perl Tutorial: Agenda 1.1 Agenda

1.1 Agenda

| will start thepresetation with a very basiéentrodudion into mod_perl, 10 linemstalation instruc
tions a simpleconfiguration and a few codexanples These should help you get your feet wet if
you are really new to mod_perl.

Afterwardsl’ll talk about the machine setups most popular servers use. I'll explainadives for

having the light Apache and the heavy mod_perl servers satiffagentkinds of requests. We will

see the two major setups, one using squid as a front-end machine, and the other plain Apache server
with mod_proxy.

Finally we will see some mod_perecdiarities you should know about, will talk about the modules
which allows you to run your CGI scripisatered

The are two more sections left for thest-confeencereading. The first one is a Pegference It's
talking about Perl stuff which is veiynportantto know when coding for mod_perl. And the other
one includeaddtional information about mod_perl and relatpdoductsresources. You should use it
to find your way to find the answer to theesions that you might need to get answered, on your
way tobeconing a mod_perl guru or when you need some general help.

;0)

2 Sep 2000 5

2 mod_perl in Four Slides Stas Bekman

2 mod_perl in Four Slides

6 2 Sep 2000

mod_perl Tutorial: mod_perl in Four Slides 2.1 mod_perl in Four Slides

2.1 mod_perlin Four Slides

Eachtutorial will concetrate on different aspects of running a mod_perl server and mod gregram
ming. In case you don't know how to get started with it, or you think itddffacult task, these slides will
take away any worries you might have had when you came ttrisl.

In just four slides you will be able to install aooinfigure a mod_perl server. And, of course, to write new
code and reuse tlexising code under mod_perl.

The four slides (sections) are:
® |nstalation
e Configuration
® The “mod_perl rules” Apache::Registi§cripts

® The “mod_perl rules” Apache Pellodule

2.2 What ismod_perl?

But before we go any further, there is a chance that you don’t know what mod_perl is. So let's make a
little introdudion to mod_perl.

Evenybody knows that Perl scripts running under mod_cgi hawmeousshortomngs There are many
of them, but codeeconpilation and Perintempreterloadingovetheadat each request is the hardest one to
overcome

Among various attempts to improve on mod_cgi®rcomngs mod_perl has proved to be one of the
better ones and has been widely adopted by C@dvebpers Accordng to the
[http://perl.apache.org/netcratis of March 2000 about 612425 hosts use mod_perl. MaafEackern
fathered the core code of this Apache module and licensed it under the SpdiezeLicense.

mod_perl does away with mod_cgi’s forking by reusingédkising child processes. In this new model,
the child process doesn't exit anymore when it has processed a request. TiterPexieris loaded only
once, when the process is started. Sincerttegpreteris persisent throughout the processlifetime, all
code is loaded and compiled only once, the first time it is seen. This makebsuentrequests run
much faster becausaenthing is already loaded and compiled. RespomsEesig is now reduced to
running your code. This improves response times by a factor of 10 tald@nihg on the code being
executed.

Doug didn't stop here, he went and extended mod_#grigionality by adding a complete Perl API to
the Apache core. This makespibssble to write a complete Apache module in Perl, a feat that used to
require coding in C. From then on mod_perl enabledptiogramrmer to handle all phases of request
procesBg in Perl.

2 Sep 2000 7

http://perl.apache.org/netcraft/

2.3 Installation Stas Bekman

The new Perl API also allows complete sergenfiguration in Perl. This has which made the lives of
many serveradmiristrators much easier, as they could now benefit frdgmamically geneating the
configuration, freed from hunting for bugs in hugenfiguration files full of similar diredives for virtual
hosts and the like.

To providebackwvardscompatbility for plain CGI scripts that used to be run under mod_cgi, while still
benditing from a preloaded perl and modules, a few special handlers were writtealeaaty a differ-
entlevel of proximity to pure mod_perunctionality. Some take fuladvanageof mod_perl, while others
only a partial one.

mod_perl embeds a copy of the Piaterpreterinto the Apache httpd executabfgovidng complete
access to Pefunctionality within Apache. This enables a set of mod_perl-specdtitfiguration direc
tives all of which start with the string Perl*. Most, but not all, of thdgedives are used to specify
handlers for various phases of the request.

It might occur to you thadticking a large executable (Perl) into another large executable (Apache) makes

a very, very large program. mod_perl certainly makes rsigificantly bigger and you will need more

RAM on yourprodudion server to be able to run many mod_perl processes, but in realgifudien is

different Since mod_perl processes requests much faster, the number of the processes needed to handle
the same request rate is much loneddive to the mod_cgi approactkeneally you need slightly more
memoryavailable and the speeinprovanentsyou will see are well worth every megabyte of memory

you can add.

Now let's get back to thAll-In-Four-Slides..

2.3 Installation

Did you know that it takes about 10 minutes to build and install a mod_perl enabled Apache server on a
computer with a pretty averageocesorand a decent amount of system memory? It goes like this:

% cd /usr/src
% lwp-download http://www.apache.org/dist/apache x.x.x.tar.gz |
% lwp-download http://perl.apache.org/dist/mod _perl-x.xx.tar.qz |
% tar xzvf apache_x.x.x.tar.gz
% tar xzvf mod_perl-x.xx.tar.gz
% cd mod_perl-x.xx
% perl Makefile.PL APACHE_SRC-=../apache_x.x.x/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
% make && make test && make install
% cd ../apache_x.x.x
% make install

That's all!

® Of course you must replacex.x with the actual version numbers of the mod_perl and Apache
releases that youse.

) 2 Sep 2000

http://perl.apache.org/dist/mod_perl-x.xx.tar.gz
http://www.apache.org/dist/apache_x.x.x.tar.gz

mod_perl Tutorial: mod_perl in Four Slides 2.4 Configuration

e The GNUtar utility knows how tounconpressa gzipped tar archive (use th@ption).

All that's left is to add a feveonfiguration lines to ahttpd.conf an Apacheconfiguration file, start the
server and enjoy mod_perl.

2.4 Configuration

Add thefollowing to theconfiguration file httpd.conf

for Apache::Registry mode
Alias /perl/ /home/httpd/perl/

PerlIModule Apache::Registry
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
allow from all
PerlSendHeader On
</Location>

This configuration causes every URdtartng with /perl to be handled by the Apache mod_perl module. It
will use the handler from the Perl modélpache::Registry

2.5 The "mod_perl rules" Apache::Registry Scripts

You can write plain perl/CGI scripts just as under mod_cgi:

mod_perl_rulesl.pl

print "Content-type: text/plain\r\n\r\n";
print "mod_perl rules'\n";

Of course you can write them in the Apache Perl API:

mod_perl_rules2.pl

my $r = shift;
$r->send_http_header(text/plain’);
$r->print("mod_perl rules\n");

Save both files under thbome/httpd/pertiredory, make them executable anshdible by server, and
issue these requests using your favorite browser:

[http:/Mocalhost/perlfmod perl rules2.pl

l [nttp://localhost/perl/mod perl rulesl.pl

2 Sep 2000 9

http://localhost/perl/mod_perl_rules2.pl
http://localhost/perl/mod_perl_rules1.pl

2.6 The "mod_perl rules" Apache Perl Module Stas Bekman

In both cases you will see on tfidlowing response:

. mod_perl rules!

2.6 The "mod_perl rules" Apache Perl Module

To create an Apache Perl module, all you have to do is to wrap the codénartdlar subrouine and
return the status to the server.

ModPerl/Rules.pm

package ModPerl::Rules;
use Apache::Constants;

sub handler{
my $r = shift;
$r->send_http_header(text/plain’);
print "mod_perl rules\n";
return OK;

}
1

Create airedory calledModPerl under one of théiredories in @ING and putRules.pminto it. Then
add thefollowing snippet tchttpd.conf

PerIModule ModPerl::Rules
<Location /mod_perl_rules>
SetHandler perl-script
PerlHandler ModPerl::Rules
</Location>

Now you can issue a request to:

. |nttp://localhost/mod perl rules

and just as with ounod_perl_rules.pscripts you will see:

. mod_perl rules!

as the response.

10 2 Sep 2000

http://localhost/mod_perl_rules

mod_perl Tutorial: mod_perl in Four Slides 2.7 Is That All I Need To Know About mod_perl?

2.7 Is That All | Need To Know About mod_ perl?

Definitely not!

These slides are intended to show you that you can install and start using a mod_perl server within 30
minutes ofdownloadng the sources.

There is much more to mod_perl than this, you will need to plan your study around the projects you want
to implement Fortunately, there are many resources and lots of help fraedjlableto you.

At the end of thigitorial you will find a chaptedescriting theavailableresources angointersto them.

;0)

2 Sep 2000 11

3 Server Setup Strategies Stas Bekman

3 Server SetupStrategies

12 2 Sep 2000

mod_perl Tutorial: Server Setup Strategies 3.1 What we will learn in this chapter

3.1 What we will learn in this chapter

e mod_perlDeploymentOverview

Stardalonemod_perl Enabled Apacl&erver

One Plain Apache and One mod_perl-enabled Ap&elneers

Adding a Proxy Server in htticcelerator Mode

Implemertations of ProxyServers

3.2 mod_perl Deployment Overview

There are severdifferentways to build,configure and deploy your mod_perl enabled server. Some of
them are:

1. Having one binary and ore®nfiguration file (one big binary for mod_perl).

2. Having twobinaries and twoconfiguration files (one big binary for mod_perl and one small binary
for static objects like images.)

3. Any of the above plus a reverse proxy server in dttgeerator mode.

If you are a newbie, | woulctecommendthat you start with the first option and work on getting your feet

wet with apache and mod_perl. Later, you can decide whether to move to the second one which allows
better tuning at the expense of mammplicatedadmiristration, or to the third option which gives you

even more power.

1. The first option will kill yourprodudion site if you serve a lot of static data from large (4 to 15MB)
webserver processes. On the other hand, while testing you will have no otherirgeragion to
mask or add to your errors.

2. This option allows you to tune the two serviadividually, for maximumperformance

However, you need to choose between running the two servensiliple ports,multiple IPs, etc.,
and you have the burden afimiristering more than one server. You have to deal \pitbixying or
fancy site design to keep the two serversyinchraization.

3. The third option (proxy in httpcceerator mode), once correctlgonfiguredand tuned, improves the
performanceof any of the above three options by cachinglauftering page results.

3.3 Standalone mod_perl Enabled ApacheServer

The first approach is tonplementa straighforward mod_perl server. Just take your plain apache server
and add mod_perl, like you add any other apache module. You continue to run it at the port it was running
before. Youprobably want to try this before you proceed to msophisicatedand complexechiques

2 Sep 2000 13

3.3 Standalone mod_perl Enabled Apache Server Stas Bekman

Theadvartages

e Simpliaty. You just follow theinstalation instrudions configure it, restart the server and you are
done.

® No network changes. You do not have to worry about wsildgional ports as we will see later.

® Speed. You get a very fast server, you seerammousspeedup from the first moment you start to
use it.

Thedisad/artages

® The process size of a mod_perl-enabled Apache server is huge (maybe 4Mb at startup and growing to
10Mb and moredepenihg on how you use it) compared to the typical plain Apache. Of course if
memory sharing is in place, RAMquiranentswill be smaller.

You probably have a few tens of child processes. Haeiional memoryrequirenentsadd up in
directrelaion to the number of child processes. Your memory demands are growing by an order of
magniude but this is the price you pay for tlldtional perfomanceboost of mod_perl. With
memory prices so cheapwadays the addiional cost is low --espeially when you consider the
dramaticperformanceboost mod_perl gives to your services with every 100Mb of RAM you add.

While you will be happy to have these monster processes serving your scripts with monster speed,
you should be very worried about having them serve static objects such as images and html files.
Each static request served by a mod_perl-enabled server means another large process running,
compeing for system resources such as memory and CPU cycles. Theveda¢addepends on

static objects request ratBemenber that if your mod_perl code produces HTML code which
includes images, each one will turn into another static object request. Having another plain webserver
to serve the static objects solves thigpleaant obstale. Having a proxy server as a front end,
caching the static objects and freeing the mod_perl processes from this burden issmhdibter

We will discuss both below.

e Anotherdrawbackof this approach is that when serving output to a client with asbonedion, the
huge mod_perl-enabled server process (with all of its system resources) will be tied up until the
response is completely written to the client. While it might take anféliisecondsfor your script to
complete the request, there is a chance it will be still busy for some number of seconds or even
minutes if the request is from a sl@annedion client. As in thepreviousdrawback a proxysoluion
can solve this problem. More on proxies later.

Proxying dynamic content is not going to help much if all the clients are on a fast local net (for
example, if you aredminstering an Intranet.) On the contrary, it can decreasdomance Still,
remenbperthat some of your Intranet users might work from home through slow modem links.

If you are new to mod_ perl, thisfgsobably the best way to ggburself started.

And of course, if your site is serving only mod_perl scripts (close to zero static objects, like images), this
might be the perfect choice for you!

14 2 Sep 2000

mod_perl Tutorial: Server Setup Strategies 3.4 One Plain Apache and One mod_perl-enabled Apache Servers

3.4 One Plain Apache and One mod_perl-enabled Apache
Servers

As | have mentioned before, when running scripts under mod_perl, you will notice that the httpd processes
consume a huge amount of virtual memory, from 5Mb to 15Mb and even more. That is the price you pay
for the enomousspeedmprovementsunder mod_perl. (Again -- shared memory keeps the real memory
that is being used much smaller :)

Using these large processes to serve static objects like images ardbbiméntsis overkill. A better
approach is to run two servers: a very light, plain apache server to serve static objects and a heavier
mod_perl-enabled apache server to serve requests for dyfigmented objects (aka CGlI).

From here on, | will refer to these two servershtipd_docs (vanilla apache) ankttpd_perl (mod_perl
enabled apache).

Theadvariages

® The heavy mod_perl processes serve only dynamic requests, which allayeplinenent of fewer
of these large servers.

e MaxClients , MaxReguestsPer Child and relategparangters can now beoptimally tuned for
bothhttpd_docs andhttpd_perl serverssomehing we could not do before. This allows us to
fine tune the memory usage and get a better sperésmance

Now we can run many lightweightttpd_docs servers and just a few heawtpd_perl
servers.

An important note: When a user browses static pages and the base URLLiocti®mn window points

to the static server, for exampletp://www.nowhere.com/index.html -- all relgive URLs
(e.9.) are being served by the light plain apache server. But
this is not the case witttynamcally geneatedpages. For example when the base URL inLibheation
window points to the dynamic server -- (e.g.

http://www.nowhere.com:8080/perl/index.pl) all relative URLs in thedynamcally gener
atedHTML will be served by the heavy mod_perl processes. You must usejtidified URLs and not
relgive ones! http://www.nowhere.com/icons/arrow.gif is a full URL, while
/icons/arrow.gif is arelaive one. Using<cBASE HREF="http://www.nowhere.com/" >in
thegeneatedHTML is another way to handle this problem. Also titgd_perl server could rewrite
the requests back tatpd_docs (much slower) and you still need th#ertion of the heavy servers.
This is not an issue if you hide tletemal port implemertations, so the client sees only one server
running on porg0.

Thedisadiartages

® An adminstration ovethead

2 Sep 2000 15

3.5 Adding a Proxy Server in http Accelerator Mode Stas Bekman

O The need for twdalifferent sets ofconfiguration, log and other files. We need a spediatdory
layout to manage these. While sodieedories can be shared between the two servers (like the
include diredory, contairing the apache include files assunng that both are built from the
same sourcdistribution), most of them should teepaatedand theconfiguration files updated
to reflect the changes.

O The need for two sets abntroling scripts(startup/shutown) andwatctdogs

O If you areprocesBg log files, now youprobably will have to merge the twsepaate log files
into one befor@rocessig them.

e Just as in the one server approach, we still have the problem of a mod_perl ppecabg its

precious time serving slow clients, when grecessg portion of the request was completed a long
time agoDeploying a proxy solves this, and will be covered in the next section.

As with the single server approach, this is not a ndigad/artageif you are on a fast network (i.e.
Intranet). It is likely that you do not wanbaffering server in this case.

3.5 Adding a Proxy Server in http Accelerator Mode

At the begiming there were 2 servers: one plain apache server, whiclvematight, andconfiguredto
serve static objects, the other mod_perl enabledy heavy and configuredto serve mod_perl scripts.
We named therhttpd_docs andhttpd_perl respetively.

The two servers coexist at the same IP addredisteying to different ports: httpd_docs listens to

port 80 (e.g|http://www.nowhere.com/images/test)g&nd httpd_perl listens to port 8080 (e.g.
[http://www.nowhere.com:8080/perl/tes).pNote that | did not writfattp://www.nowhere.com:$€or the

first example, since port 80 is the default port for the http service. Later on, | whblngng the configu-
ration of thehttpd_docs server to make it listen to port 81.

Now | am going to convince you that yaant to use a proxy server (in the htpcekrator mode). The
advanagesare:

® Allow serving of static objects from the proxy’s cache (objects ghatiously were entirely served

16

by thehttpd_docs server).

You get less I/Oactivity reading static objects from the disk (proxy serves the most “popular”
objects from RAM - of course you benefit more if you allow the proxy server to consume more
RAM). Since you do not wait for the 1/0 to be completed you are able to serve static objects much
faster.

The proxy server acts as a sort of output buffer for the dynamic content. The mod_perl server sends
the entire response to the proxy and is then free to deal with other requests. The proxy server is
respomsible for sending the response to the browser. So ifttheder is over a slow link, the
mod_perl server is not waiting around for the data to move.

2 Sep 2000

http://www.nowhere.com:80/
http://www.nowhere.com:8080/perl/test.pl
http://www.nowhere.com/images/test.gif

mod_perl Tutorial: Server Setup Strategies 3.5 Adding a Proxy Server in http Accelerator Mode

Using numbers is always mocenvindng :) Let's take a user connected to your site with 56 kbps
(bps == bits/sec) modem. 1 byte == 8 bits. It means that the speed of the user’s link is 56/8 = 7
kbytes/sec. | assume an averagmeated HTML page to be of 42Kb (Kb =%kilobyteg and an
average script thajeneatesthis output in 0.5 second. How long will the server wait before the user
gets the whole output response? A singakuation reveals pretty scary numbers -- it will have to

wait for another 12 secs (42kb/0.5*7Kb), when it could serve another 11 (12/1-1) dynamic requests
in this time.

This very simple example shows us that we need only one twelfth the numdieldaén running,
which means that we will need only one twelfth of the memory (not quite true because some parts of
the code are shared).

But you know thahowalaysscripts often return pages which are blown up with javascript code and
similar, which can make them of 100kb size anddberioad time will be of the order of... (This
calcuation is left to you as aaxecise:)

Many users like to open many browser windows and do many things a{dowsdoad files and
browsegraphcally heavysites). So the speed of 7K/sec we wassunng before, may often be 5-10
times slower.

e \We are going to hide the details of the serveriplemertation. Users will never see ports in the
URLs (more on that topic later). You can have a few boxes serving the requests, and only one serving
as a front end, which spreads the jobs between the servers in a way that you can control. You can
actually shut down a server, without the user emeticing, because the front end server will dispatch
the jobs to other servers.

® [or secuity reasons, using any httaatceérator (or a proxy in httpdaccekrator mode) isessetial
because you do not let yoimtemal server get directly attacked hybitrary packets from whomever.
The httpdacceerator andintemal servercommunicatein expected HTTP requests. This allows for
only your public “bastion” accekrating www server to get hosed in succestl attack, while
leaving youlintemal data safe.

Thedisad/artagesare:

e Of course there ardrawbacks Luckily, these are ndunctionality drawbacks but they are more
admiristration hassle. You have another daemon to worry about, and while proxigerzeally
stable, you have to make sure to prepare proper startughabldwn scripts, which are run at boot
and reboot aapprgriate Also, you might want to set up the crontab to ruvaéchdog script.

® Proxy servers can bmonfiguredto be light or heavy, the admin must decide what gives the highest
performancefor his applicaion. A proxy server like Squid is light in the concept of having only one
process serving all requests. But it can appear pretty heavy when it loads objects into memory for
faster service.

Have | succeeded onvindng you that you want a proxy server?

2 Sep 2000 17

3.6 Implementations of Proxy Servers Stas Bekman

If you are on a local area network (LAN), then the big benefit of the pboxXiering the output and
feeding a slow client is gone. You gebably better offsticking with a straight mod_perl server in this
case.

3.6 Implementations of Proxy Servers

As of this writing, two proxyimplemertations are known to be widely used with mod_peshuid proxy
server anagnod_proxy which is a part of the apache server. Let's compare them.

3.6.1 The SquidServer

The Advantages

® Caching of static objects. These are served much fastnng that your cache size is big enough
to keep the most frequently requested objects in the cache.

e Buffering of dynamic content, by taking the burdenrefurring the contengeneatedby mod_perl
servers to slow clients, thus freeing mod_perl servers from waiting for the slow clielowrioad
the data. Freed serveimmediately switch to serve other requests, thus your number of required
servers goes dowdramaically.

® Non-linear URL space / server setup. You can use Squid to play some tricks with the URL space
and/or domain based virtual server support.

TheDisadrartages

® Proxying dynamic content is not going to help much if all the clients are on a fast local net. Also, a
message on the squid mailing list implied that squid only buffers in 16k chunks so it would not allow
a mod_perl to compleienmediatelyif the output is larger.

® Speed. Squid is not very fast today when compared with the plain file based web @enileite
Only if you are using a lot of dynamic features such as mod_perl or similar is there a reason to use
Squid, and then only if thepplication and the server are designed with caching in mind.

® Memory usage. Squid uses quite a bit of memory.

e HTTP protocol level. Squid is pretty much ATTP/1.0 server, whichserpusly limits the deploy
mentof HTTP/1.1 features.

e HTTP headers, dates afrg@smess The squid server might give out stale pagesfusng down
streanfclient caches.(You update somh@cumentson the site, but squid will still serve the old ones.)

e Stabiity. Compared to plain web servers, Squid is not the most stable.

The pros and cons presented above lead to the idea that you might want to use squid for its dynamic
contentbuffering features, but only if your server serves mostly dynamic requests. So Bituhiion,
when perfomanceis the goal, it is better to have a plain apache server serving static objects, and squid

18 2 Sep 2000

mod_perl Tutorial: Server Setup Strategies 3.6.2 Apache’s mod_proxy

proxying the mod_perl enabled server only.

3.6.2 Apache’smod_proxy

| do not think thedifferencein speed between apachewd_proxy andsquid is relevant for most sites,
since the real value of what they dobisffering for slow clientconnetions. However, squid runs as a
single process angrobably consumes fewer system resources.

The trade-off is that mod_rewrite is easy to use if you want to spread parts of the siteifferessback

end servers, while mod_proxy knows how to fixregirectscontairing the back-end server’s idea of the
locaion. With squid you can run gediredor process to proxy to more than one back end, but there is a
problem in fixingredirectsin a way that keeps the client’s view of both server names and port numbers in
all cases.

Thediffi cult case is where:
® You have DNS aliases that map to the same IP addremsd

® You want theredirect to port 80 and

The server is on adiffer ent port and

® You want to keep the specific name the browser has already sent, so that it does not change in
the client’s Location window.

The Advantages

® No addtional server is needed. We keep the one plain plus one mod_perl enabled apache servers. All
you need is to enablenod_proxy in the httpd_docs server and add a few lines to
httpd.conf file.

® TheProx yPass andProx yPass Reverse diredivesallow you to hide théntemal redirects so
if http://nowhere.com/modperl/ is actually http://local host :81/modperl/ it
will be absdutely trangarentto the userProx yPass redirrectsthe request to the mod_perl server,
and when it gets the responBeox yPass Reverse rewrites the URL back to tteiginal one, e.g:

ProxyPass /modperl/ |nttp://localhost:81/modperl/ ‘
ProxyPassReverse /modperl/ [htip:/Mlocalhost:81/modperl/ |

e |t does mod_perl outpiuffering like squid does.

® |t even does caching. You have to produce cor@mitent-Length , Last-Modi fied and
Expires http headers for it to work. If some of your dynamic content does not change frequently,
you candramaitcally increaseperformanceby caching it withProx yPass.

® Prox yPass happens before thautheicaion phase, so you do not have to worry abewtheri-
caiing twice.

2 Sep 2000 19

http://localhost:81/modperl/
http://localhost:81/modperl/

3.6.2 Apache’s mod_proxy Stas Bekman

® Apache is able taccekrate secure HTTP requests completely, while also daeiccgeratedHTTP.
With Squid you have to use amtenalrediredion program for that.

® The latest (apache 1.3.6 and later) Apache paaxgeratedmode is reported to be very stable.

;0)

20 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4 Porting from CGI Scripts and mod_perl Coding Guidelines.

4 Porting from CGI Scripts and mod_perl Coding
Guidelines.

2 Sep 2000 21

4.1 What we will learn in this chapter Stas Bekman

4.1 What we will learn in this chapter
® Exposng Apache::Registrgecrets
® Someimesit Works, Somdimesit Doesn’t
e @INCandmod_ perl
® Reloadng Modules and Requireliles
® Namecollisionswith Modules andibs
® More package name relatesgues
e END__and _ DATA_tokens
® Output from systerngalls
® Terminaing requests and processes, ¢lx@() andchild_termi nate () funcions
e die() andmod_perl
e Apache::print() ancCORE::print()
® GlobalVariablesPersisance

e Command line Switches (-w, -€tc)

4.2 Exposng Apache::Registrysecrets

Let's start with some simple code and see what can go wrong with it, detect bugs and debug them, discuss
possble pitfalls and how to avoid them.

I will use a simple CGI script, thatitializesa$counter to 0, and prints its value to the browser while
incremening it.

22 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.2.1 The First Mystery

counter.pl:

#!/usr/bin/perl -w
use strict;

print "Content-type: text/plain\r\n\r\n";
my $counter = 0O;

for (1..5) {
increment_counter();

}

sub increment_counter{
$counter++;
print "Counter is equal to $counter \r\n";

}
You would expect to see the output:

Counter is equalto 1!
Counter is equal to 2!
Counter is equal to 3!
Counter is equal to 4 !
Counter is equalto 5!

And that’'s what you see when you execute this script the first time. But let's reload it a few times... See,
suddenly after a few reloads the counter doesn'’t start its count from 1 any more. We continue to reload
and see that it keeps on growing, but not steadiising almost randomly at 10, 10, 10, 15, 20... Weird...

Counter is equal to 6 !
Counter is equal to 7 !
Counter is equal to 8 !
Counter is equal to 9!
Counter is equal to 10!

We saw twoanomadies in this very simple scriptnexpectedincrementof our counter over 5 aridcon
sigentgrowth over reloads. Letigvedigatethis script.

4.2.1 The First Mystery

First let's peek into therror_log file. Since we have enabled thvarnngswhat we see is:

Variable "$counter" will not stay shared
at /home/httpd/perl/conference/counter.pl line 13.

The Variable "$counter" will not staysharedwarning isgeneated when the script contains a named
nestedsubrouine (a named - as opposed dnonynous- subrouine defined inside anothesubrotine)
that refers to &exically scopedvariable defined outside this nestedbrouine. This effect is explained in

2 Sep 2000 23

4.2.1 The First Mystery Stas Bekman

the PerlRefeencesection at the end of this handout.

Do you see a nested nam&abrodine in my script? | don’t! What's going on? Maybe it's a bug? But
wait, maybe the peiihtempretersees the script in different way, maybe the code goes through some
changes before #ctually gets executed? The easiest way to check whatially happeing is to run the
script with adebuger.

But since we must debug it when it's being executed by the webserver, a debugler won’t help,

because thdebugyer has to be invoked from within the webserver. Luckily DMacEaclkern wrote the

Apache::DB module and we will use this to debug my script. WAiiache::DB allows you to debug
the codenteradively, we will do ithon-inteadively.

Modify the httpd.conf file in thefollowing way:

PerlSetEnv PERLDB_OPTS "NonStop=1 Linelnfo=/tmp/db.out AutoTrace=1 frame=2"
PerlIModule Apache::DB
<Location /perl>
PerlFixupHandler Apache::DB
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
PerlSendHeader On
</Location>

Restart the server and issue a requesbtmter.plas before. On the surface nothing has changed--we still
see the correct output as before, but two things happenedhadkygound

Firstly, the file/tmp/db.outwas written, with a complete trace of the code that was executed.

Secondly,error_log now contains the real code that wagtally executed. This is produced as a side
effect ofreporing theVariable "$counter” will not stay shareat... warning that we saw earlier.

Here is the code that wastwally executed:

24 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.2.1 The First Mystery

package Apache::ROOT::perl::conference::counter_2epl;
use Apache qw(exit);
sub handler {

BEGIN {
$ W =1;
h
$W = 1;

use strict;
print "Content-type: text/plain\r\n\r\n";
my $counter = 0;

for (1..5) {
increment_counter();

}

sub increment_counter{
$counter++;
print "Counter is equal to $counter \r\n";

}
}

The code in therror.log wasn’t indented. I've indented it for you to stress that the code was wrapped
inside thehandler() subrotine.

What do we learn from this?

Well firstly that every CGI script is cached under a package whose name is formed from the
Apache::ROOT:: prefix and the relaive part of the script's URL (perl::confer -

ence ::counter_2epl) by repladng all occurencesof / with :: and. with _2e. That's how
mod_perl knows what script should be fetched from the cache--each script is just a package with a single
subroudine namedhandler

If we were to addise diag nostics to the script we would also seeederencein the error text to an
inner (nestedyubrodine--incre ment_counter isactwally a nestegubrodine.

With mod_perl, eaclsubrodine in every Apache::Registry script is nested inside thHeandler
subrodine.

It's important to undestand that the inner subroudine effect happens only with code that

Apache::Registry wraps with adeclaation of thehandler subrodine. If you put your code into a
library or module, which the main scrigtquire()’'s oruse()’s, this effect doesn’t occur.
For example if we put theubrouine incre ment_counter() into mylib.pl , save it in the same

diredory as the main script angquire() it, there will be no problem at all. (Don't forget the at
the end of the library or thequire() might fail.)

2 Sep 2000 25

4.2.1 The First Mystery Stas Bekman

sub increment_counter{
$counter++;
print "Counter is equal to $counter \r\n";

}
1

counter.pl:

#!/usr/bin/perl -w

use strict;
require "./mylib.pl";

print "Content-type: text/plain\r\n\r\n";
my $counter = 0O;

for (1..5) {
increment_counter();

}

Unless the script is very short, | tend to write all the codianal libraries, and to have only a few lines
in the main scriptGeneally the main script simply calls the mdimction of my library. Usually | call it
init) . I don't worry about nesteslbrotine effects anymore (unless | create them myself :).

The sectionRemeies for Inner Subrouines in the PerlRefeence chapter discusses othpossble
workarounds for this problem.

You shouldn’t bantimidatedby this issue at all, since Perl is your friend. Just keepvéiteings mode
On and Perl will gladly tell yowvhereveryou have this effect, by saying:

. Variable "$counter" will not stay shared at ...[snipped]

Just don’t forget to check yoerror_log file, before going intg@rodudion!

By the way, the above example was pretty boring. In my first days of using mod_perl, | wrote a simple
userregidration program. I'll give a very simpleepresenation of this program.

use CGl;

$q = CGl->new;

my $name = $g->param(’name’);
print_response();

sub print_response{
print "Content-type: text/plain\r\n\r\n";
print "Thank you, $name!";

}

26 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.2.2 The Second Mystery

My boss and | checked the program atdegebpmentserver and it worked OK. So we decided to put it
in produdion. Everything was OK, but my boss decided to keepcbeckng by submiting variations of

his profile. Imagine the surprise when afsetomiting his name (let's say “The Boss” :), he saw the
response “Thank you, Stas Bekman!”.

What happened is that | tried tpeodudion system as well. | was new to mod_perl stuff, and was so
excited with the speeidhprovementthat | didn't notice the nestesibrodine problem. It hit me. At first |
thought that maybe Apache had started to confosmetions, returring responses from other people’s
requests. | was wrong of course.

Why didn’t we notice this when we were trying tbeftware on ourdevebpmentserver? Keep reading
and you willundestandwhy.

4.2.2 The SecondVystery

Let's return to ourriginal example and proceed with the second mystery we noticed. Why did we see
incorsigentresults ovenumepusreloads?

That's very simple. Every time a server gets a request to process, it hands it over onehddre
geneally in a round robin fashion. So if you have 10 hithddrenalive, the first 10 reloads might seem
to be correct because the effect we've just talked about starts to appear from thersécoowition.
Subseguentreloads then retunmnexpectedresults.

Moreover, requests can appear at random ehitren don’t always run the same scripts. At any given
moment one of thehildrencould have served the same script more times than any other, and another may
never have run it. That's why we saw the stramgieavor.

Now you see why we didn’t notice the problem with the uegidration system in the example. First, we
didn't look at theerror_log . (As a matter of fact we did, but there were so maagnngsin there that
we couldn't tell what were thienportant ones and what were not). Second, we had too many ssmiler
drenrunning to notice the problem.

A workaround is to run the server as a single process. You achieve thiokiyng the server with theX
parangter (httpd -X). Since there are no other servgasildrer) running, you will see the problem on
the second reload.

But before that, let therror_log help you detect most of thmssble errors--most of thevarnings can
become errors, so you should make sure to check every warning that is detected by pextpblydyou
should write your code in such a way thatwernings appear in therror_log . If your error_log

file is filled up with hundreds of lines on every scriptocation, you will havediffi culty noticing and
locaing realprodems-and on grodudion server you'll soon run out of disk space if your site is popular.

Of course none of th@arningswill be reported if the warninmechanismis not turneddn.

2 Sep 2000 27

4.3 Sometimes it Works, Sometimes it Doesn't Stas Bekman

4.3 Somdimes it Works, Somdimes it Doesn'’t

When you start running your scripts under mod_perl, you mightyfiodself in asituation where a script
seems to work, birsomdimesit screws up. And the more it runs without a restart, the more it screws up.
Often the problem is easily detectable aot/able You have to test your script under a server running in
single process modattpd -X).

Geneally the problem is the result of using globakiables Because globalariablesdon’t change from
one scripinvocdion to another unless you change them, you can find your scripts do strange things.

4.3.1 RegularExpression Memory

Another good example is usage of theegularexpresionmodifier, which compiles a regula&xpresion

once, on its firsexecuion, and never compiles it again. This problem carliffecult to detect, as after
restaring the server each request you make will be serveddiffesent child process, and thus the regex
pattern for that child will be compiled afresh. Only when you make a request that happens to be served by
a child which has already cached the regex will you see the proBlemeally you miss that. When you

press reload, you see that it works (with a new, fresh cliidrtually it doesn’t, because you get a child

that has already cached the regex and wectnpile because of the modifier.

An example of such a case would be: $pat = $g->param(“‘keyword”);foreach(@list) { print
if /$pat/o; }

To make sure you don’t miss these bugs always test your CGl in single process mode.

4.4 @INC and mod_perl

When running under mod_perl, once the server i€@UNCis frozen and cannot be updated. The only
oppotunity to temporarily modify @INCis while the script or the module are loaded and compiled for
the first time. After that its value is reset to tr@inal one. The only way to chan@@INCpermanentlyis

to modify it at Apache startup.

Two ways to alte@INCat server startup:

® In theconfiguration file. For example add:

. PerlSetEnv PERL5LIB /home/httpd/perl

or

. PerlSetEnv PERL5LIB /home/httpd/perl:/home/httpd/mymodules

Note that this setting will be ignored if you have Bexl Taint Mode mode turned on.

28 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.5 Reloading Modules and Required Files

® In the startup file directly alter th @ INC For example

startup.pl

use lib gw(/home/httpd/perl /home/httpd/mymodules);
and load the startup file from tleenfiguration file by:

. PerlRequire /path/to/startup.pl

4.5 Reloadng Modules and RequiredFiles

When you develop plain CGI scripts, you can just change the code, and rerun the CGI from your browser.
Since the script isn’t cached in memory, the next time you call it the server starts up a new perl process,
which reconpiles it from scratch. The effects of anyodificaions you've applied ardmmediately

present.

The situation is different with Apache::Registry , since the whole idea is to get maximperfor
mancefrom the server. By default, the server won't spend timeckng whether any included library
modules have been changed. It assumes that they weren't, thus savingifi$eaondsto stat() the
source file(multiplied by however many modules/libraries yose() and/orrequire() in your
script.)

The only check that is done is to see whether your main script has been changed. So if you have only
scripts which do notise() or require() other perl modules grackages there is nothing to worry

about. If, however, you ardevebping a script that includes other modules, the files yse() or

require() aren’t checked fomodificaion and you need to dsomehing about that.

So how do we get our modperl-enabled serveetoqize changes in library modules? Well, there are a
couple oftechiques

4.5.1 Restaring the server
The simplest approach is to restart the server each time you apply some change to your code.

After restaring the server about 100 times, you will tire of it and you will look for oflodutions.

4.5.2 Using Apache::StatINC for theDevebpmentProcess

Help comes from thApache::StatINC module. When Perl pulls a file viaquire(), it stores the
full patmameas a value in the global ha%iNC with the file name as the keppache::StatINC
looks througsINCandimmediately reloads any files that have been updated on disk.

2 Sep 2000 29

4.5.2 Using Apache::StatINC for the Development Process Stas Bekman

To enable this module just add two linedittpd.conf
PerlIModule Apache::StatINC
PerlinitHandler Apache::StatINC

To be sure it really works, turn on debug mode on ydewebpment box by addingPerlSet Var
Stat INCDebug Onto your config file. You end up wittomehing like this:

PerlIModule Apache::StatINC

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
PerlSendHeader On
PerlinitHandler Apache::StatINC
PerlSetVar StatINCDebug On

</Location>

Be aware that only the modules locatedgNCare reloaded on change, and you can ch@i¢Conly
before the server has been started (in the startup file).

Nothing you do in your scripts and modules which are pulled in reigoire() after server startup
will have any effect o@INC

When you write:

. use lib gw(foo/bar);

@INCis changed only for the time the code is being parsed and compiled. When that'€ddQas
reset to itoriginal value.

To make sure that you have g@tNCcorrectly,configure /perl-statuslocation (the Apache::Status
module), fetchhttp://www.example.com/perl-status?iand look at the bottom of the page, where the
contents of@INCwill be shown.

Notice thefollowing trap:

While “. " is in @ING perl knows torequire() files with patmamesgiven reldive to the current
(script)diredory. After the script has been parsed, the server doesn&niberthe path!

So you can end up with a broken entr@4iNClike this:

. $INC{bar.pl} eq "bar.pl"

If you want Apache::StatINC to reload your script--modayNCat server startup, or use a full path in the
require() call.

30 2 Sep 2000

http://www.example.com/perl-status?inc

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.6 Name collisions with Modules and libs

4.6 Namecollisionswith Modules andlibs

To make things clear before we go into details: each child process has #sIN@imash which is used to
storeinformation about its compiled modules. The keys of the hash are the names of the modules and files
passed agsrgumentsto require() anduse(). The values are the full aelaive paths to these
modules and files.

Suppose we havay-lib.pl andMyModile .pm both located ahome/httpd/perl/my/

® /home/httpd/perl/my/ is in @INCat server startup.

require "my-lib.pl";

use MyModule.pm;

print $INC{"my-lib.pl"},"\n";

print $INC{"MyModule.pm"},"\n";

prints:

/home/httpd/perl/my/my-lib.pl
/home/httpd/perl/my/MyModule.pm

Addinguse lib

use lib gw(.);

require "my-lib.pl";

use MyModule.pm;

print $INC{"my-lib.pl"},"\n";

print $INC{"MyModule.pm"},"\n";

prints:

my-lib.pl
MyModule.pm

® /home/httpd/perl/my/ isn’t in @INCat server startup.

require "my-lib.pl";

use MyModule.pm;

print $INC{"my-lib.pl"},"\n";

print $INC{"MyModule.pm"},"\n";

wouldn’t work, since perl cannot find the modules.

Addinguse lib

2 Sep 2000 31

4.6 Name collisions with Modules and libs Stas Bekman

use lib qw(.);

require "my-lib.pl";

use MyModule.pm;

print $INC{"my-lib.pl"},"\n";

print $INC{"MyModule.pm"},"\n";

prints:

my-lib.pl
MyModule.pm

Let's look at three scripts with faults related to name space. Féoltbwing discusionwe will consider
just oneindividual child process.

Scenariol

First, You can’t have twadentical module names running on the same server! Only the first one
found in ause() or require() stateanentwill be compiled into the package, the request for the
other module will be skipped, since the server will think that it's already compiled. This is a direct
result of usingoING which has keys equal to the names of the modules.idevtical names will

refer to the same key in the hash.

So if you have twdlifferentFoo modules in twdaifferentdiredories and two scriptscriptl.pl
andscript2.pl , placed like this:

Jtool1l/Foo.pm
Jtooll/tooll.pl
Jtool2/Foo.pm
Jtool2/tool2.pl

Where some sample code could be:

tool1/tooll.pl

use Foo;

print "Content-type: text/plain\r\n\r\n";
print "I'm Script number One\n";
foo();

Jtool1l/Foo.pm

sub foo{
print "I'm Tool Number One!\n";

}
1;

32 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.6 Name collisions with Modules and libs

Jtool2/tool2.pl

use Foo;

print "Content-type: text/plain\r\n\r\n";
print "I'm Script number Two\n";
foo();

Jtool2/Foo.pm

sub foo{
print "I'm Tool Number Two!\n";

}
1

Both scripts calluse Foo; . Only the first one called will know abo#o. When you call the
second script it will not know abo&oo at all--it's like you'veforgottento writeuse Foo; . Run
the server in single server mode to detect this kind ofrbogediately.

You will see thdollowing in the error_log file:

Undefined subroutine
&Apache::ROOT::perl::tool2::tool2_2epl::foo called at
/home/httpd/perl/tool2/tool2.pl line 4.

Scenario2

If the files do not declare a package, the above is true for libraries{i:i.pl") you require()
as well:

Suppose that you havedaedory strucure like this:

Jtool1/config.pl
Jtool1/tooll.pl
Jtool2/config.pl
Jtool2/tool2.pl

and both scripts contain:

use lib qw(.);
require "config.pl";

while ./tool1/config.plcan besomehing like this:

$foo = 0;
1

2 Sep 2000 33

4.6 Name collisions with Modules and libs Stas Bekman

and./tool2/config.pl

$foo=1;
1

The second scenario is rdifferentfrom the first, there is almost mfferencebetweeruse() and
require() if you don’'t have to import some symbols into a calling script. Only the first script
served willactwally do therequire(), for the same reason as the example aldaWRC already
includes the keyconfig.pl"

Scenario3

It is interesing that thefollowing scenario will fail too!

tool/config.pl
tool/tooll.pl
tool/tool2.pl

wheretooll.pl andtool2.pl bothrequire() thesameconfig.pl
There are thresoluionsfor this:
Solution 1

The first two faultyscenaios can be solved by placing your library modules subdredory struc
ture so that they havdifferentpath prefixes. The file system layout will semehing like:

tool1/Tooll/Foo.pm
Jtool1/tooll.pl
Jtool2/Tool2/Foo.pm
Jtool2/tool2.pl

And modify the scripts:

use Tooll::Foo;
use Tool2::Foo;

Forrequire() (scenario number 2) use tfidlowing:

tool1/tool1-lib/config.pl
tooll/tooll.pl
Jtool2/tool2-lib/config.pl
Jtool2/tool2.pl

And each script containespetively:

34 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.6 Name collisions with Modules and libs

use lib qw(.);
require "tool1-lib/config.pl";

use lib qw(.);
require "tool2-lib/config.pl”;

This soluion isn’t good, since while it might work for you now, if you add another script that wants
to use the same moduleannfig.pl file, it would fail as we saw in the third scenario.

Let's see some bettepluions
Solution 2

Another option is to use a full path to the script, so it will be used as a k&G
. require "/full/path/to/the/config.pl";

This soluion solves the problem of the first tveoenaios. | was surprised that it worked for the third
scenario as well!

With this solution you lose somgortability. If you move the tool around in the file system you will
have to change the bad&edory or write someaddtional script that willautamaically update the
harccodedpath after it was moved. Of course you will havesimenberto invoke it.

Solution 3
Make sure you read all of théslution.

Declare a package name in the required files! It should be unigeletion to the rest of the package
names you usé@oINC will then use the unique package name for the key. It's a good idea to use at
least two-level package names for your private modulesMyBroject ::Carp and notCarp,

since the latter will collide with aaxising stardard package. Even though a package may not exist
in the stardard distribution now, a package may come along in a lalistribution which collides

with a hname you've chosen. Using a two part package name will help avoid this problem.

Even a better approach is to use three level naming, Gkenpany Name:Project -
Name:Module , which is most unlikely to have conflicts with later Perl releases. Fopesdems
like this and savgourself future trouble.

What are thémplicaions of packagealeclaation?

Without packagaleclaations, it is veryconvenientto use() or require() files because all the
variablesandsubrodines are part of thenain:: package. Any of them can be used as if they are
part of the main script. With packageclaations things are more awkward. You have to use the
Package::func tion () method to call subroudine from Package and to access a globari-
able$foo inside the same package you have to vifiRackage::foo

2 Sep 2000 35

4.7 More package name related issues Stas Bekman

See

Lexically definedvariables those declared witmy() inside Package will be inaccesible from
outside the package.

You can leave your scripts unchanged if you import the names of the ghizdlesand subrou
tinesinto thenamegpaceof packagenain:: like this:

. use Module qw(:mysubs sub_b $varl :myvars);

You can export botlsubrodinesand globalariables Note however that this method has thead
varntageof consuning more memory for the current process.

Seeperldoc Exporter for informaion aboutexporing othervariablesand symbols.

This completely covers the third scenario. When youdifserent module names in packadeclaa-
tions, as explained above, you cover the first two as well.

also thperlmod lib andperlmod manpages.

From the abovéiscusionit should be clear that you cannot evebpmentandprodudion versions of
the tools using the same apache server! You have to sepaate server for each. They can be on the
same machine, but the servers will diféerentports.

4.7 More package name relatedssues

If you have thdollowing:

And

PerlHandler Apache::Work::Foo
PerlHandler Apache::Work::Foo::Bar

you make a request that pulls i\pache/Work/Foo/Bar.pm first, then the

Apache::Work::Foo package gets defined, so mod_perl does not try to pull
Apache/Work/Foo.pm

4.8 END__and DATA_ tokens

Apache::Registry scripts cannot contain END__or__ DATA___tokens.

Why? Becausépache::Registry scripts are being wrapped int@@abrodine calledhandler |, like
the script at URIperl/test.pl

36

print "Content-type: text/plain\r\n\r\n";
print "Hi";

2 Sep 2000

in

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.9 Output from system calls

When the script is being executed undpache::Registry handler, itactually becomes:

package Apache::ROOT::perl::test_2epl;
use Apache gw(exit);
sub handler {
print "Content-type: text/plain\r\n\r\n";
print "Hi";
}

So if you happen to put an END__tag, like:

print "Content-type: text/plain\r\in\r\n";

print "Hi";

__END__

Some text that wouldn’t be normally executed

it will be turned into:

package Apache::ROOT::perl::test_2epl;
use Apache gw(exit);
sub handler {
print "Content-type: text/plain\r\n\r\n";
print "Hi";
__END__
Some text that wouldn’t be normally executed

}
and you try to execute this script, you will receiveftiwing warning:
. Missing right bracket at ... line 4, at end of line

Perl cutsevenything after the END__ tag. The same applies to theDATA__ tag.

Also, rememéer that whakever applies toApache::Registry scripts, in most cases applies to
Apache::PerlRun scripts.

4.9 Output from systemcalls

The output ofsystem() , exec() , andopen(PIPE,"|program") calls will not be sent to the
browser unless your Perl wasnfiguredwith sfio

You can uséackicks as gpossble workaround:

. print ‘command here’;

2 Sep 2000 37

4.10 Terminating requests and processes, the exit() and child_terminate() functions Stas Bekman

But you'rethrowing performanceout the window either way. It's best not to fork at all if you can avoid it.

4.10 Terminating requests and processes, the exit() and
child_terminate() functions

Perl’s exit() built-in function cannot be used in mod_perl scripts. Calling it causes the mod_perl
process to exit (which defeats the purpose of using mod_perl)Agéehe::exit() function should
be used instead.

You might start your scripts bgveriding the exit() subrotine (if you use Apache::exit()
directly, you will have a problem testing the script from the shell, unless yaisp#tpache (); into
your code.) | use thillowing code:

BEGIN {
Auto-detect if we are running under mod_perl or CGlI.
$USE_MOD_PERL = $ENV{MOD_PERL} ? 1 : 0;
}

use subs qw(exit);

Select the correct exit function
T
sub exit{
$USE_MOD_PERL ? Apache::exit(0) : CORE::exit(0);
}

Now the correcexit() will always be chosen, whether you run the script under mod qudihary
CGl or from the shell.

Note that if you run the script undApache::Registry , The Apachefunction exit() overrides
the Perl core built-in function. While you seexit() listed in the@EXPORT_Olkt of the Apache
package Apache::Registry doessomehing you don’'t see and imports thignction for you. This
means that if your script is running under fygache::Registry handler you don’t have to worry
aboutexit(). The same applies tapache::PerlRun

If you useCORE::exit() in scripts running under mod_perl, the child will exit, but neither a proper
exit nor logging will happen on the wa@ORE::exit() cuts off the server’s legs.

Note thatApache::exit(Apache::Constants::DONE) will cause the server to exgracdully,
compleing the loggingfunciions and protocol requirements etc. (Apache::Constants::DONE == -2,
Apache::Constants::OK == 0.)

If you need to shut down the child cleanly after the request was completed, use the
$r->child_termi nate method. You can call it anywhere in the code, and not just at the “end”. This
sets the value of thelaxRequestsPer Child configuration variableto 1 and clears thieeepalive

flag. After the request is serviced, the curreinedion is broken, because of theepalive flag, and

the parent tells the child to cleanly quit, becaMsxRequestsPer Child is smaller than the number

of requests served.

38 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.11 die() and mod_perl

In anApache::Registry script you would do:

. Apache->request->child_terminate;

or in httpd.conf:

. PerlFixupHandler "sub { shift->child_terminate }"

You would want to use the latter example only if you wanted the chilertoinateevery time theegis
teredhandler is calledProlebly this is not what you want.

Even if you don’t need to cathild_termi nate () atthe end of the request if you want the process to
quit aftewards here is an example @fssiging the posprocesing handler. You might do this if you
wanted to execute your own code a moment before the process quits.

my $r = shift;
$r->post_connection(\&exit_child);
sub exit_child{
some logic here if needed
$r->child_terminate;

}

The above is the code that is used byAlpache::Size Limit module whichterminatesprocesses
that grow bigger than a value you choose.

Apache::GTopLimit (based oribgtop andGTop.pm) is a similar module. It does the same thing,
plus you carconfigure it to terminateprocesses when their shared memory shrinks below spedfied
size.

4.11 die() and mod_perl

When you write:

. open FILE, "foo" or die "Cannot open foo file for reading: $!";

in a perl script and execute it--the script wodiel() if it is unable to open the file, l3boring the script
exection, printing the death reason anditting the Perintempreter

You will hardly find aproperly written Perl script that doesn't have at least die¢) statenentin it, if
it has to cope with system calls and the like.

A CGlI script running under mod_cgi exits on @smpldion. The Perlintemperterexits as well. So it
doesn't really matter whether tlhivgterpreterquits because the script died by natural death (when the last
statenentwas executed) or was aborted byie() statenent

2 Sep 2000 39

4.12 Apache::print() and CORE::print() Stas Bekman

In mod_perl we don’t want thimterpreterto quit. We already know that when the script completes its
chores thénterpeterwon’t quit. There is no reason why it should quit when the script has stopped because
of die(). As aresult callinglie() won't quit the process.

And this is how it works--when thdie() getstriggered it's mod_perI's$SIG{ _DIE__} handler that
logs the error message and calls Apache::exit() instead of CORE::die(). Thus the script stops, but the
process doesn’t quit.

Here is an example of sutfapping code, although it isn’t the real code:

. $SIG{__DIE__} =sub { print STDERR @_; Apache::exit(); }

4.12 Apache::print() and CORE::print()

Under mod_perlCORE::print() will redirect its data toApache::print() since the STDOUT
filehardle is tied to theApache module. This allows us to run CGI scriptsimodfied under
Apache::Registry by chairing the output of one content handler to the input of the other handler.

Apache::print() behaves mostly like the built-print() function. In addtion it sets a timeout so that
if the clientconnetion is broken the handler won't wait forever trying to print daédavnstreamto the
client.

There is also aonptimization built into Apache::print() . If any of theargumentsto the method are
scalarreferencesto strings, they arautanaically derekrencedfor you. This avoidseedesscopying of
large strings when passing thenstdorodines For example:

$long_string = "A" x 10000000;
$r->print(\$long_string);

4.13 Global Vari ablesPersidance

Since the child procesgeneally doesn't exit before it has serviced several requests, glaables
persist inside the same process from request to request. This means that you must never rely on the value
of the globalvariableif it wasn'tinitialized at thebegiming of the requegprocesmg.

You should avoid using glob&kariablesunless it'simpossible without them, because it will make code
devebpmentharder and you will have to make certain that allMfwgablesareinitialized before they are
used. Useny() scopedvariableswherveryou can.

You should beespeially careful with Perl specialariableswhich cannot béexically scoped. You have
to uselocal() instead.

40 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.14 Command line Switches (-w, -T, etc)

4.14 Command line Switches (-w, -T etc)

Normally when you run perl from the command line, you have the shell invoke itliin/perl
(someimesreferred to as the shebang line). In scripts running under mod_cgi, you may esepdEon
switch argumentsas described in thperlrun manpage, such aw/, -T or -d . Since scripts running
under mod_perl don’t need the shebang line, all switches exeegre ignored by mod_perl. This feature
was added for backvard compaibility with CGI scripts.

Most command line switches have a spegsiableequivalent which allows them to be set/unset in code.
Consult theperlvar manpage for more details.

4.14.1 Warnings

There are three ways to enablarnngs
® Globally to all Processes

Setting:

. PerlWarn On

in httpd.conf will turn warningsOn in any script.

You can then fine tune your code, turningrnings Off andOn by setting thes"W variablein your
scripts.

® |ocally to ascript

. #!/usr/bin/perl -w

will turn warnings On for the scope of the script. You can turn th&iffi andOn in the script by
setting theb"Wvariableas noted above.

® |[ocally to ablock

This code turngvarnngs modeOn for the scope of the block.

{
local $"W = 1;
some code

}

$"W assumes its previous value here

This turns itOff:

2 Sep 2000 41

4.14.2 Taint Mode Stas Bekman

{
local $"W = 0;
some code

}

$"W assumes its previous value here

Note, that if you forget théocal opeitor this code will affect the chilgprocesimg the current
request, and all theubsguentrequests processed by that child. Thus

will turn thewarnings Off, no matter what.

If you want to turnwarnings On for the scope of the whole file, as in feviousitem, you can do
this by adding:

. local $"W = 1;

at thebegiming of the file. Since a file ieffedively a block, file scope behaves like a block’s curly
braced } andlocal $"Wat the start of the file will beffedive for the whole file.

While having warning mode turnédn is essetial for adevebpmentserver, you should turn gobally

Off in aprodudion server, since, for example, if every served reqgeseatesonly one warning, and

your server serves millions of requests per day, your log file will eat up all of your disk space and your
system will die.

4.14.2 Taint Mode

Perl's-T switch enable3aint mode. If you aren't forcing all your scripts to run undeint mode you
are looking for trouble frormalicioususers. (See thgerlsecmanpage for moraformation)

If you have some scripts that won't run under Taint mode, run only the ones that run under mod_per! with

Taint mode enabled and the rest on another server with Taint mode disabled -- this can be either a
mod_cgi in the front-end server or another back-end mod_perl server. You can use the mod_rewrite
module andedirectrequests based on the fégtersions For example you can ugegifor the taint-clean

scripts, anagi for the rest.

When you have this setup you can start working towbednng the rest of the scripts, to make them run
under the Taint mode. Just because you have a few dirty scripts doesn’t mean that yojecteodize
your whole service.

Since theT switch doesn’t have agquivalent perlvariable mod_perl provides theerl TaintCheck
diredive to turn on taint checks. ttpd.conf , enable this mode with:

42 2 Sep 2000

mod_perl Tutorial: Porting from CGI Scripts and mod_perl Coding Guidelines. 4.14.3 Other switches

. PerlTaintCheck On

Now any code compiled inside httpd will be taint checked.

If you use theT switch, Perl will warn you that you should use Bexl TaintCheck configuration
diredive and will othemwiseignore it.

4.14.3 Other switches

Finally, if you still need to to setddtional perl startup flags such a3 and-D, you can use aanviror+
mentvariable PERL50PT Switches in thivariable are treated as if they were on every Perl command
line.

Only the-[DIMUdmw] switches are allowed.

When thePerl TaintCheck variableis turned on, the value ®ERL50PTwill be ignored.

2 Sep 2000 43

5 Perl Reference Stas Bekman

5 Perl Reference

44 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.1 What we will learn in this chapter

5.1 What we will learn in this chapter
® perldoc’s Rarely Known But Very Usef@ptions
® TracingWarningsReports
e VariablesGlohally, Lexically Scoped And FullQualfied
e my() Scopedvariablein NestedSubrouines
® When You Cannot Get Rid of The Inr@ubrodine
e use(), require(), do(), %INCand@INCExplained
® Using GlobalVariablesand Sharing Them Betwe&todules/Paciges
® The Scope of the Special P¥driables
e Compiled RegulaExpresions

e Excepion Handling formod_perl

5.2 perldoc’s Rarely Known But Very Useful Options

First of all, | want to stress that you cannot become a Perl hacker without knowing how to readuiPerl
mertation and search through it. Books are good, but an easilgsible andsearclable Perlreferenceis
at yourfingettips and is a great time saver.

While you can use online Patbcunentation at the Web, theerldoc utility provides you with access
to thedocumertation installed on your system. To find out what Perl manpagesvaitbleexecute:

. % perldoc perl

To find whatfuncions perl has, execute:

. % perldoc perlfunc

To learn the syntax and to firckanplesof a specifidunction, you would execute (e.g. fopen()):

. % perldoc -f open

Note: In perl5.00503 and earlier, there is a bug in this andgtheptions ofperldoc . It won't call
pod2man, but will display the section in POD format instead. Despite this bug it'sestithbleand very
useful.

2 Sep 2000 45

5.3 Tracing Warnings Reports Stas Bekman

To search through the Perl FAQerlfag manpage) sections you would (e.g for tygen keyword)
execute:

. % perldoc -gq open

This will show you all thenatchng Q&A sections, still in POD format.

To read thgerldocmanpage you execute:

. % perldoc perldoc

5.3 Tracing Warnings Reports

Somdimesit’s very hard toundestandwhat a warning i€omplairing about. You see the source code,
but you cannotundestandwhy some specific snippet produces that warning. The mystery often results
from the fact that the code can be called fdifferentplaces if it's located insidesubrouine.

Here is an example:

warnings.pl

#!/usr/bin/perl -w

correct();
incorrect();

sub correct{
print_value("Perl");

}

sub incorrect{
print_value();

}

sub print_value{
my $var = shift;
print "My value is $var\n";

}

In the code abovearint_value() prints the passed valuegrrect() passes the value to print and
inincor rect () we forgot to pass it. When we run the script:

. % ./warnings.pl

we get the warning:

46 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.3 Tracing Warnings Reports

. Use of uninitialized value at ./warnings.pl line 16.

Perl complains about amddined variable$var at the line that attempts to print its value:

. print "My value is $var\n";

But how do we know why it isinddined? The reason hembviously is that the callingunction didn’t
pass theargument But how do we know who was the caller? In our example there ar@dasble
callers, in the general case there can be many of them, perhaps located in other files.

We can use thealler() function, which tells who has called us, but even that might not be enough:
it's possble to have a longer sequence of cakedbrodines and not just two. For example, here it is sub
third() which is at fault, and putting swaller() in subsecond() would not help us very much:

sub third{
second();

}

sub second{
my $var = shift;
first($var);

}
sub first{

my $var = shift;
print "Var = $var\n”

}

Thesoluion is quite simple. What we need is a full calls stack trace to the caitiggeredthe warning.

The Carp module comes to our aid with itduck() function. Let's modify the script by adding a
couple of lines. The rest of the script is unchanged.

2 Sep 2000 47

5.3 Tracing Warnings Reports Stas Bekman

warnings2.pl

#!/usr/bin/perl -w

use Carp ();
local $SIG{__WARN__} =\&Carp::cluck;

correct();
incorrect();

sub correct{
print_value("Perl");

}

sub incorrect{
print_value();

}

sub print_value{
my $var = shift;
print "My value is $var\n";

}

Now when we execute it, we see;:

Use of uninitialized value at ./warnings2.pl line 19.
main::print_value() called at ./warnings2.pl line 14
main::incorrect() called at ./warnings2.pl line 7

Take a moment tandestandthe calls stack trace. The deepest calls are printed first. So the second line
tells us that the warning wasggeredin print_value(); the third, thatprint_value() was
called byincor rect () subrouine.

. script => incorrect() => print_value()

We go intoincor rect () and indeed see that we forgot to passvlr@ble Of course when you write
a subrodine like print_value it would be a good idea to check the passepmentsbeforestaring
exection. We omitted that step to contrive an easily debugged example.

Sure, you say, | could find that problem by simpkgpedion of the code!

Well, you're right. But | promise you that your task would be qadmplicatedand timeconsuning if
your code has somousandsof lines. Inaddiion, under mod_perl, certain uses of el opeitor
and “heredocuments are known to throw off Perl’s lineumbeing, so the messagesporing warnngs
and errors can havecorectline numbers.

Getting the trace helps a lot.

48 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.4 Variables Globally, Lexically Scoped And Fully Qualified

5.4 VariablesGlobally, Lexically Scoped And FullyQuali-
fied
Also see thelarification of my() vs.use vars - Ken Williams writes:

Yes, there is quite a bit of difference! With use vars(), you are
making an entry in the symbol table, and you are telling the
compiler that you are going to be referencing that entry without an
explicit package name.

With my(), NO ENTRY IS PUT IN THE SYMBOL TABLE. The compiler
figures out C<at compile time> which my() variables (i.e. lexical
variables) are the same as each other, and once you hit execute time
you cannot go looking those variables up in the symbol table.

And my() vs.local() - Randal Schwartz writes:

local() creates a temporal-limited package-based scalar, array,
hash, or glob -- when the scope of definition is exited at runtime,
the previous value (if any) is restored. References to such a
variable are *also* global... only the value changes. (Aside: that
is what causes variable suicide. :)

my() creates a lexically-limited non-package-based scalar, array, or
hash -- when the scope of definition is exited at compile-time, the
variable ceases to be accessible. Any references to such a variable
at runtime turn into unique anonymous variables on each scope exit.

5.5 my() ScopedVariable in NestedSubroutines

Before we proceed let's make tlssumpgon that we want to develop the code under skrict
pragma. We will uséexically scopedrariables(with help of themy() opeitor) whereverit's possble.

5.5.1 The Poison

Let’'s look at this code:

2 Sep 2000 49

5.5.1 The Poison Stas Bekman

nested.pl
#!/usr/bin/perl
use strict;
sub print_power_of 2 {
my $x = shift;
sub power_of_2 {
return $x ** 2;
}
my $result = power_of_2();
print "$x"2 = $result\n"”;
}
print_power_of_2(5);
print_power_of_2(6);

Don't let the weirdsubrodine names to fool you, therint_power_of 2() subrotine should print
the square of the passed number. Let's run the code and see whether it works:

% ./nested.pl
5702 =25
672 =25

Ouch,somehing is wrong. May be there is a bug in Perl and it doesn’'t work correctly with number 6?
Let’s try again using the 5 and 7:

print_power_of_2(5);
print_power_of_2(7);

And run it:

% ./nested.pl
572 =25
72 =25

Wow, does it works only for 5? How about using 3 and 5:
print_power_of_2(3);
print_power_of_2(5);

and the result is:

50 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.5.2 The Diagnosis

% ./nested.pl
3n2=9
502=9

Now we start taindestand-only the first call to therint_power_of 2() function works correctly.
Which makes us think that our code has some kind of memory for results of thexdicgion, or it
ignores theargunentsin subsguentexecuions

5.5.2 The Diagnosis

Let's follow theguiddinesand use thew flag. Now execute the code:

% ./nested.pl
Variable "$x" will not stay shared at ./nested.pl line 9.

572 =25
6”2 =25

We have never seen such a warning message before and we doningestandwhat it means. The
diag nostics pragma will certainly help us. Let's prepend this pragma beforsttite pragma in

our code:

#!/usr/bin/perl -w

use diagnostics;
use strict;

And execute it:

2 Sep 2000 51

5.5.3 The Remedy Stas Bekman

% ./nested.pl
Variable "$x" will not stay shared at ./nested.pl line 10 (#1)

(W) An inner (nested) named subroutine is referencing a lexical
variable defined in an outer subroutine.

When the inner subroutine is called, it will probably see the value of
the outer subroutine’s variable as it was before and during the

first call to the outer subroutine; in this case, after the first

call to the outer subroutine is complete, the inner and outer
subroutines will no longer share a common value for the variable. In
other words, the variable will no longer be shared.

Furthermore, if the outer subroutine is anonymous and references a
lexical variable outside itself, then the outer and inner subroutines
will never share the given variable.

This problem can usually be solved by making the inner subroutine
anonymous, using the sub {} syntax. When inner anonymous subs that
reference variables in outer subroutines are called or referenced,

they are automatically rebound to the current values of such

variables.

572 =25
6”2 =25

Well, now evengthing is clear. We have thaner subrodine power_of 2() and theouter subroudine
print_power_of 2() in our code.

When the innepower_of_2() subrouine is called for the first time, it sees the value of the outer
print_power_of_2() subrodine's $x variable On subsguent calls the $x variable won't be
updated, no matter what the value of it in the osidarodine. There are two copies of t& variable no
longer a single one shared by the two routines.

5.5.3 The Remedy

The diag nostics pragma suggests that the problem can be solved by making thesidmedine
anonynous

An anonymoussubrouine can act as alosurewith respect tdexically scopedvariables Baskally this

means that if you definesaubrodine in aparticular lexical context at garticular moment, then it will run

in that same context later, even if called from outside that context. The upshot of this is that when the
subrotine runs, you get the same copies of flegically scopedvariableswhich were visible when the
subrotine wasdefined. So you can pasggunentsto afunction when you define it, as well as when you
invoke it.

Let's rewrite the code to use thechmique

52 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.6 When You Cannot Get Rid of The Inner Subroutine

anonymous.pl

#!/usr/bin/perl
use strict;

sub print_power_of 2 {
my $x = shift;

my $func_ref = sub {
return $x ** 2;

%

my $result = &$func_ref();
print "$x"2 = $result\n"”;

}

print_power_of_2(5);
print_power_of_2(6);

Now $func_ref contains aeferenceto ananonynousfunction, which we later use when we need to
get the power of two. (In Perl, fanction is the same thing assaibrodine.) Since it isanonynous the
function will autanaically be rebound to the new value of the outer scoei@ble $x, and the results
will now be as expected.

Let's verify:

% .Janonymous.pl

52 = 25
6"2 =36
Indeed,anonymouspl worked as we expected.

5.6 When You Cannot Get Rid of The InnerSubroutine

First you might wonder, why in the world will someone need to define an suteouine? Well, for
example to reduce some of Perl's script stadupheadyou might decide to write a daemon that will

compile the scripts and modules only once, and cache the pre-compiled code in memory. When some
script is to be executed, you just tell the daemon the name of the script to run and it will do the rest and do

it much faster.

Seems like an easy task, and it is. The only problem is once the script is compiled, how do you execute it?
Or let's put it the other way: after it was executed for the first time and it stays compiled in the daemon

memory, how do you call it again? If you could getdaebpersto code the scripts so each hasibrou

tine calledrun() that will actually execute the code in the script then you have half of the problem

solved.

2 Sep 2000 53

5.6 When You Cannot Get Rid of The Inner Subroutine Stas Bekman

But how does the daemon know to refer to some specific script if they all runritathe name space?

One soluion might be to ask thdevebpersto declare a package in each and every script, and for the
package name to be derived from the script name. However, since there is chance that there will be more
than one script with the same name besidng in different diredories then in order to prevent
name-spaceollisionsthe diredory has to be a part of the package name too. And don't forget that script
may be moved from ondiredory to another, so you will have to make sure that the package name is
corrected every time the script gets moved.

But why enforce these strange rulesdevebpers when we can arrange for our daemon to do this work?

For every script that daemon is about to execute for the first time, it should be wrapped inside the package
whose name is constructed from the mangled path to the script sugr@tine calledrun(). For

example if the daemon is about to execute the stmipthello.pi

hello.pl

#!/usr/bin/perl
print "Hello\n";

Prior to running it, the daemon will change the code to be:

wrapped_hello.pl

package cache::tmp::hello_2epl;
sub run{

#!/usr/bin/perl
print "Hello\n";

}

The package name is constructed from the piihe:: , eachdiredory sepaation slash is replaced
with :: , and nonalphanumeric chaaders are encoded so that for examplda dot) becomes2e (an
undescorefollowed by the ASCII code for a dot in hexpresertation).

. % perl -e "printf "%x",ord(".")’

prints: 2e. Theundescoreis the same you see in URIcodng where%chaader is used instea($2B,
but since2has a special meaning in Perl (prefix of haafiable it couldn’t be used.

Now when the daemon is requested to execute the guripthello.p] all it has to do is to build the
package name as before based oratation of the script and call itaun() subrouine:

use cache::tmp::hello_2epl;
cache::tmp::hello_2epl::run();

We have just written a partiptotaype of the daemon we desired. The only method rexwairing unde
finedis how to pass the path to the script to the daemon. This detalil is left to the readexexsisn

54 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.6.1 Remedies for Inner Subroutines

If you arefamiliar with the Apache::Registry module, you know that it works in almost the same
way. It uses alifferent package prefix and the genefimction is calledhandler() and notrun().
The scripts to run are passed through the HpiRocol's headers.

Now youundestandthat there are cases where your norsuddrodinescan become inner, since if your
script was a simple:

simple.pl

#!/usr/bin/perl
sub hello { print "Hello" }
hello();

Wrapped into aun() subrouine it becomes:

simple.pl

package cache::simple_2epl;

sub run{
#!/usr/bin/perl
sub hello { print "Hello" }
hello();

}

Therdore, hello() is an innersubrodine and if you have usenhy() scopedvariablesdefined and
altered outside and used insidgllo(), it won't work as you expedtartng from the second call, as
was explained in thprevioussection.

5.6.1 Remaliesfor Inner Subrouines

First of all there is nothing to worry about, as long as you don'’t forget to tumatmngs On. If you do
happen to have tHemy() Scoped/ariablein NestedSubrouines’ problem, Perl will always alert you.

Given that you have a script that has this problem, what are the ways to solve it? There are many of them
and we will discuss some of them here.

We will use thefollowing code to show thdifferentsoluions

2 Sep 2000 55

5.6.1 Remedies for Inner Subroutines Stas Bekman

multirun.pl

#!/usr/bin/perl -w
use strict;

for (1..3)1
print “run: [time $_]\n";
run();

}

sub run {
my $counter = 0;

increment_counter();
increment_counter();

sub increment_counter{
$counter++;
print "Counter is equal to $counter \n";

}

} # end of sub run

This code executes then() subrodine three times, which in turimitializesthe$counter variableto

0, every time it executed and then calls the inndrrodine incre ment_counter() twice. Sub
incre ment_counter() prints$counter ’s value afterincremening it. One might expect to see the
following output:

run: [time 1]
Counteris equal to 1!
Counter is equal to 2!
run: [time 2]
Counteris equal to 1!
Counter is equal to 2!
run: [time 3]
Counteris equal to 1!
Counter is equal to 2!

But as we have already learned from pievious sections, this is not what we are going to see. Indeed,
when we run the script we see:

. % ./multirun.pl

56 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.6.1 Remedies for Inner Subroutines

Variable "$counter” will not stay shared at ./nested.pl line 18.
run: [time 1]

Counteris equal to 1!

Counter is equal to 2!

run: [time 2]

Counter is equal to 3!

Counter is equal to 4 !

run: [time 3]

Counteris equal to 5!

Counter is equal to 6 !

Obviously, the$counter variableis notreinitialized on eachexecuion of run(). It retains its value
from thepreviousexecuion, and subincre ment_counter() incrementsthat.

One of the workarounds is to ugebally declaredsariables with thevars pragma.

multirunl.pl

#!/usr/bin/per! -w

use strict;
use vars gqw($counter);

for (1..31
print "run: [time $_J\n";
run();

}

sub run {
$counter = 0;

increment_counter();
increment_counter();

sub increment_counter{

$counter++;
print "Counter is equal to $counter \n";

}

} # end of sub run

If you run this and the othapluions offered below, the expected output will peneated

2 Sep 2000 57

5.6.1 Remedies for Inner Subroutines Stas Bekman

% ./multirunl.pl

run: [time 1]
Counteris equal to 1!
Counter is equal to 2!
run: [time 2]
Counteris equal to 1!
Counter is equal to 2!
run: [time 3]
Counteris equal to 1!
Counter is equal to 2!

By the way, the warning we saw before has gone, and so has the problem, since tharg()s (hexi-
cally defined)variableused in the nestesibrouine.

Another approach is to use fullpuaified variables This is better, since less memory will be used, but it
adds a typingvethead

multirun2.pl

#!/usr/bin/per! -w
use strict;

for (1..31
print "run: [time $_J\n";
run();

}

sub run {
$main::counter = 0;

increment_counter();
increment_counter();

sub increment_counter{
$main::counter++;
print "Counter is equal to $main::counter \n";

}

} # end of sub run

You can also pass thariableto thesubrouine by value and make theubrodine return it after it was
updated. This adds time and memomeheads so it may not be good idea if thariable can be very
large, or if speed afxecdion is an issue.

Don't rely on the fact that theariable is small during thelevebpment of the applicaion, it can grow

guite big insituationsyou don’t expect. For example, a very simple HTML form text entry field can return

a few megabytes of data if one of your users is bored and wants to test how good is your code. It's not
unconmonto see users Copy-and-Paste 10Mb core dump files into a form’s text fields and then submit it
for your script to process.

58 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.6.1 Remedies for Inner Subroutines

multirun3.pl

#!/usr/bin/perl -w
use strict;

for (1..3)1
print “run: [time $_]\n";
run();

}
sub run {
my $counter = 0;

$counter = increment_counter($counter);
$counter = increment_counter($counter);

sub increment_counter{
my $counter = shift || O ;

$counter++;
print "Counter is equal to $counter \n";

return $counter;

}

} # end of sub run

Finally, you can useeferencesto do the job. The version afcre ment_counter() below accepts a
referenceto the$counter variableandincrementsits value after firsterekrendng it. When you use a
reference thevariableyou use inside thinction is phydcally the same bit of memory as the one outside
thefunction. Thistechiqueis often used to enable a calfedction to modifyvariablesin a callingfunc-
tion.

2 Sep 2000 59

5.6.1 Remedies for Inner Subroutines Stas Bekman

multirun4.pl

#!/usr/bin/perl -w
use strict;

for (1..3)1
print “run: [time $_]\n";
run();

}

sub run {
my $counter = 0;

increment_counter(\$counter);
increment_counter(\$counter);

sub increment_counter{
my $r_counter = shift || 0;

$$r_counter++;
print "Counter is equal to $$r_counter \n";

}

} # end of sub run

Here is yet another and more obscreterenceusage. We modify the value &tounter inside the
subrotine by using the fact thatariablesin @_are aliases for the actual scgbaraneters Thus if you
called afunction with two arguments those would be stored $ [0] and$ [1] . In partialar, if an
element$_[0] is updated, theorrespondng argumentis updated (or an error occurs if it is ngdat
able.

60 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.7 use(), require(), do(), %INC and @INC Explained

multirun5.pl

#!/usr/bin/perl -w
use strict;

for (1..3)1
print “run: [time $_]\n";
run();

}
sub run {
my $counter = 0;

increment_counter($counter);
increment_counter($counter);

sub increment_counter{
$_[O]++;
print "Counter is equal to $_[0] \n";

}

} # end of sub run

Now you have at least five workarounds to choose from.

For moreinformation please refer to perlref and perlsub manpages.

5.7 use(),require(), do(), %INC and @INC Explained
5.7.1 The @INCarray

@INCis a special Penariable which is theequivalent of the shell’'sPATH variable WhereasPATH
contains a list oflirecoriesto search foexecuthles @INCcontains a list oflirectories from which Perl
modules and libraries can be loaded.

When youuse(), require() ordo() afilenameor a module, Perl gets a list difedories from the
@INCvariableand searches them for the file it was requested to load. If the file that you want to load is
not located in one of the listatiredories you have to tell Perl where to find the file. You can either
provide a pathelative to one of thaliredoriesin @INGC or you can provide the full path to the file.

5.7.2 The %INC hash

%INC is another special Pevhariable that is used to cache the names of the files and the modules that
weresucceshlly loaded and compiled hyse(), require() ordo() functions Beforeattemping

to load a file or a module, Perl checks whether it's already if6lNC hash. If it's there, the loading and
therdore the compiation are not performed at alDthemwise the file is loaded into memory and an
attempt is made to compiled it.

2 Sep 2000 61

5.7.2 The %INC hash Stas Bekman

If the file is succeshully loaded and compiled, a new key-value pair is addedItddC The key is the
name of the file or module as it was passed to the one of thefuhiiens we have just mentioned, and
if it was found in any of th@INCdiredoriesexcept'." the value is the full path to it in the file system.

Thefollowing exanpleswill make it easier teindestandthe logic.

First, let's see what are the contentg@iNCon my system:

% perl -e "print join "\n", @INC’
{usr/lib/perl5/5.00503/i386-linux
{usr/lib/perl5/5.00503
{usr/lib/perl5/site_perl/5.005/i386-linux
lusr/lib/perl5/site_perl/5.005

Notice the. (currentdiredory) is the lasdiredory in the list.
Now let’s load the modulstrict.pm and see the contents%iNC

% perl -e 'use strict; print map {"$_ => $INC{$_}\n"} keys %INC’

strict.pm => /usr/lib/perl5/5.00503/strict.pm

Sincestrict.pm was found inusr/lib/perl5/5.00503Hireaory and/ustr/lib/perl5/5.00503is a part of
@ING %INCincludes the full path as the value for the k&jct.pm

Now let’s create the simplest module/imp/test.pm

It does nothing, but returns a true value when loaded. Now let’s loadiftéarentways:

% cd /tmp
% perl -e 'use test; print map {"$_ => $INC{$_}\n"} keys %INC’

test.om => test.om

Since the file was founctlative to. (the currendiredory), therelaive path is inserted as the value. If we
alter @ING by addingtmpto the end:

% cd /tmp
% perl -e 'BEGIN{push @INC, "/tmp"} use test; \
print map {"$_ => $INC{$_}\n"} keys %INC’

test.om => test.om

62 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.7.2 The %INC hash

Here we still get theelaive path, since the module was found firskaive to "." . Thediredory /tmp
was placed after in the list. If we execute the same code fromiifeerentdiredory, the"." diredory
won’t match,

% cd/

% perl -e 'BEGIN{push @INC, "/tmp"} use test; \
print map {"$_ => $INC{$_}\n"} keys %INC’

test.pm => /tmp/test.pm

so we get the full path. We can also prepend the pathunghift(), so it will be used fomatchng
before"." andtherdore we will get the full path as well:

% cd /tmp
% perl -e 'BEGIN{unshift @INC, "/tmp"} use test; \
print map {"$_ => $INC{$_}\n"} keys %INC’

test.pm => /tmp/test.pm
The code:
. BEGIN{unshift @INC, "/tmp"}

can be replaced with the more elegant:

. use lib "/tmp";

Which executes the BEGIN block above exactly.

These approaches teodifying @INCcan be labomntensive, since if you want to move the script around
in the file-system you have to modify the path. This can be painful, for example, when you move your
scripts fromdevebpmentto aprodudion server.

There is a module calldeindBin which solves this problem in the plain Perl world, botortunately it

won't work under mod_perl, since it's a module and as any module it's loaded only once. So the first
script using it will have all the settings correct, but the rest of the scripts will not if locatetiffarant
diredory from the first.

For acomplet@essof this section, I'll present this module anyway.

If you use this module, you don't need to write a hard coded patHollding snippet does all the work
for you (the file igtmp/load.p):

2 Sep 2000 63

5.7.3 Modules, Libraries and Files Stas Bekman

#!/usr/bin/perl

use FindBin ();

use lib "$FindBin::Bin";

use test;

print "test.om => $INC{’test.pm'A\n";

In the above examplgFindBin::Bin is equal totmp. If we move the scrippomevhereelse... e.g.
/tmp/xin the code abov@FindBin::Bin equalghome/x

% /tmp/load.pl

test.pm => /tmp/test.pm

Just like withuse lib but no hard coded path required.

You can use this workaround to make it work under mod_perl.

do 'FindBin.pm’;

unshift @INC, "$FindBin::Bin";

require test;

#maybe test::import(...) here if need to import stuff

You will have a slighbvetheadbecause you will load from disk anecconpile the FindBin module on
each request. So it can be not worth it.

5.7.3 Modules,Libraries andFiles
Before we proceed, let’s define what we meamloylule andlibrary orfile.
® The Library or the File
A file which contains pesubrodinesand other code.
It geneally doesn't include a packageclaation.
Its laststatenentreturns true.

It can be named in any way desired, ¢pemeally its extersionis .pl or .ph.

Exanples
config.pl
$dir = "/home/httpd/cgi-bin";
$cgi = "/cgi-bin";
1

64 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.7.4 require()

mysubs.pl

sub print_header{
print "Content-type: text/plain\r\n\r\n";

}
1
e the Module
A file which contains persubrodinesand other code.
It geneally declares a package name atliegiming of it.
Its laststatenentreturns true.
The namingconverion requires it to have gamextersion

Example:

MyModule.pm

package My::Module;
$My::Module::VERSION = 0.01;

sub new{ return bless {}, shift;}
END { print "Quitting\n"}
1

5.7.4 require()

require() reads a filecontaining Perl code and compiles it. Befaattemping to load the file it looks
up theargumentin %INCto see whether it has already been loaded. If it fteagiire() just returns
without doing a thingOthewise an attempt will be made to load and compile the file.

require() has to find the file it has to load. If thegumentis a full path to the file, it just tries to read
it. For example:

. require "/home/httpd/perl/mylibs.pl";

If the path isrelaive, require() will attempt to search for the file in all tliiredories listed in@INC
For example:

. require "mylibs.pl";

If there is more than oneccurenceof the file with the same name in theedories listed in @INCthe
first occurencewill be used.

2 Sep 2000 65

5.7.4 require() Stas Bekman

The file must returRUEas the lasstatenentto indicatesuccesiil execuion of anyinitialization code.
Since you never know what changes the file will go through in the future, you cannot be sure that the last
statenentwill always returnTRUE That's why thesuggetion is to put* 1; " at the end of file.

Although you should use the rddénamefor most files, if the file is anodule you may use théllow-
ing convertion instead:

. require My::Module;

This is equal to:

. require "My/Module.pm";

If require() fails to load the file, either because it couldn’t find the filguresion or the code failed
to compile, or it didn’t returTRUE then the program wouldie(). To prevent this theequire()
statenentcan be enclosed into awal() block, as in this example:

require.pl

#!/usr/bin/per! -w

eval { require "ffile/that/does/not/exists"};
if $@) {
print "Failed to load, because : $@"

}

print "\nHello\n";

When we execute the program:

% ./require.pl

Failed to load, because : Can't locate /file/that/does/not/exists in
@INC (@INC contains: /ust/lib/perl5/5.00503/i386-linux
{usr/lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386-linux
lusr/lib/perl5/site_perl/5.005 .) at require.pl line 3.

Hello

We see that the program diddie(), becauséiello was printed. Thisrick is useful when you want to
check whether a user has some module installed, but if she hasn't itiiticat, perhaps the program can
run without this module with reducédnctionality.

If we remove theeval() part and try again:

66 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.7.5 use()

require.pl

#!/usr/bin/perl -w

require "ffile/that/does/not/exists";
print "\nHello\n";

% ./requirel.pl

Can't locate /file/that/does/not/exists in @INC (@INC contains:
lusr/lib/perl5/5.00503/i386-linux /usr/lib/perl5/5.00503
lusr/lib/perl5/site_perl/5.005/i386-linux
lusr/lib/perl5/site_perl/5.005 .) at requirel.pl line 3.

The program justlie()s in the last example, which is what you want in most cases.

For moreinformation refer to theperfunc manpage.

5.7.5 use()

use(), just likerequire(), loads and compiles fileontairing Perl code, but it works witmodules
only. The only way to pass a module to load is by its module name and filen#sne If the module is
located inMyCode.pmthe correct way tase() itis:

. use MyCode

and not;

. use "MyCode.pm"

use() trandatesthe passedrgumentinto a file nameepladng:: with/ andappenihg .pmat the end.
SoMy::Module becomedy/Module.pm

use() is exactlyequivalentto:

. BEGIN { require Module; import Module LIST; }

Intemally it callsrequire() to do the loading andompiation chores. Whemequire() finishes its
job,import() s called unles§) is the secondrgument Thefollowing pairs areequivalent

2 Sep 2000 67

5.8 Using Global Variables and Sharing Them Between Modules/Packages Stas Bekman

use MyModule;
BEGIN {require MyModule; import MyModule; }

use MyModule gw(foo bar);
BEGIN {require MyModule; import MyModule ("foo","bar"); }

use MyModule ();
BEGIN {require MyModule; }

The first pair exports the default tags. This happens if the modul€@dEORT0 a list of tags to be
exported by default. The module manpggeeally describes what modules are exported by default.

The second pair exports all the tags passear@snents No default tags are exported unlesplicitly
told to.

The third pair describes the case where the caller does not want any symbols to be imported.

import() is not a builtinfunction, it's just anordinary static method call into thé MyModule ”
package to tell the module to import the list of features back into the current package. See the Exporter
manpage for mormformdion.

When you write your own modules, alwagamenber that it's better to us@EXPORT_OWstead of
@EXPORTInce the former doesn’t export symbols unless it was asked to. Exports polhaendgace
of the module user. Also avoid short or common symbol names to reduce the risk of name clashes.

When fundtions and variables aren’'t exported you can still access them using their full names, like
$My::Module::bar or $My::Module::foo() . By converion you can use a leadinghdescore
on names tinformally indicatethat they arénternal and not for public use.

There’s acorrespondng “ no” command that un-imports symbols imported e, i.e., it callsunim -
port Module LIST instead ofmport()

5.7.6 do()

While do() behaves almostertically to require(), it reloads the fileuncorditionally. It doesn’t
check%INCto see whether the file was already loaded.

If do() cannot read the file, it returnmdef and set$! to report the error. Iflo() can read the file
but cannot compile it, it returngndef and sets an error message$i@ If the file is succeslly
compiled,do() returns the value of the lastpresionevalated

5.8 Using Global Vari ablesand Sharing Them Between
Modules/Packages

68 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.8.1 Making Variables Global

5.8.1 Making VariablesGlobal

When you first wrotéx in your code you created a globaliable It is visibleeverywherein the file you

have used it. If you defined it inside a package, it is visible inside the package. But it will work only if you
do not usestrict pragma and yolHAVE to use this pragma if you want to run your scripts under
mod_perl.

5.8.2 Making VariablesGlobal With strict PragmaDn

First you use :

. use strict;

Then you use:
. use vars gw($scalar %hash @array);

Staring from this moment theariablesare global only in the package where you defined them. If you
want to share globalariablesbetweerpackages here is what you can do.

5.8.3 Using Exporter.pm to Share Globalariables

Assume that you want to share @8&l.pm object (I will use$q) between your modules. For example,
you create it irscript.pl , but you want it to be visible ily::HTML . First, you maké&q global.

script.pl:

use vars qw($q);

use CGl;

use lib gw(.);

use My::HTML gw($q); # My/HTML.pm is in the same dir as script.pl
$g = new CGl,

My::HTML.::printmyheader();

Note that we have importekt] from My::HTML . And My::HTML does the export &(q:

2 Sep 2000 69

5.8.3 Using Exporter.pm to Share Global Variables Stas Bekman

My/HTML.pm

package My::HTML;
use strict;

BEGIN {
use Exporter ();

@My::HTML::ISA = gw(Exporter);

@My::HTML:EXPORT = qw();
@My::HTML::EXPORT_OK = qw($q);

}
use vars qw($q);
sub printmyheader{

Whatever you want to do with $g... e.g.
print $g->header();

}

1
So the$q is shared between tiMy::HTML package andcript.pl . It will work vice versa as well, if
you create the object My::HTML but use it irscript.pl . You have true sharing, since if you change
$q in script.pl , it will be changed iMy::HTML as well.

What if you need to shafiy between more than twmackage® For example you want My::Doc to share
$q as well.

You leaveMy::HTML untouched, and modifycript.plto include:

. use My::Doc qw($q);

Then you writeMy::Doc exactly likeMy::HTML - except of course that the contendliiferent:).

Onepossble pitfall is when you want to uddy::Doc in bothMy::HTML andscript.pl Only if you add

. use My::Doc qw($q);

into My::HTML will $gq be sharedOthemwise My::Doc will not share$q any more. To make things
clear here is the code:

70 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.8.3 Using Exporter.pm to Share Global Variables

script.pl:

use vars qw($q);

use CGil;

use lib qw(.);

use My::HTML qw($q); # My/HTML.pm is in the same dir as script.pl
use My::Doc qw($q); # Ditto

$q = new CGl,

My::HTML::printmyheader();

package My::HTML;
use strict;

BEGIN {
use Exporter ();

@My::HTML::ISA = gqw(Exporter);
@My::HTML::EXPORT = qw();
@My::HTML::EXPORT_OK = qw($q);

}

use vars qw($q);
use My::Doc qw($q);

sub printmyheader{
Whatever you want to do with $q... e.g.
print $g->header();

My::Doc::printtitle('Guide’);

2 Sep 2000 71

5.8.4 Using the Perl Aliasing Feature to Share Global Variables Stas Bekman

My/Doc.pm

package My::Doc;
use strict;

BEGIN {
use Exporter ();

@My::Doc::ISA = qw(Exporter);
@My::Doc::EXPORT = qw();
@My::Doc::EXPORT_OK = qw($q);
}

use vars qw($q);

sub printtitle{
my $title = shift || 'None’;

print $g->h1($title);

=

5.8.4 Usingthe PerlAliasing Feature to Share GlobaVariables

As the title says you can importvariableinto a script or module without usirigkporter.pm . | have
found it useful to keep all theonfiguration variablesin one moduleéMy::Config . But then | have to
export all thevariablesin order to use them in other modules, which is bad for two reagohsting
other paclkages name spaces with extra tags which increase the memquiranents and adding the
ovetheadof keeping track of whatariablesshould be exported from tlw®nfiguration module and what
imported, for someparticular package. | solve this problem by keeping all theablesin one hasi®oc
andexporing that. Here is an example Mly::Config

package My::Config;

use strict;

use vars qw(%c);

%c = (
All the configs go here
scalar_var => 5,

array_var =>[
foo,
bar,

1,

hash_var => {
foo => 'Foo’,
bar => 'BARRR’,
h

~—

79 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.9 The Scope of the Special Perl Variables

Now in packagesthat want to use theonfiguration variablesl have either to use the fulaified names

like $My::Config::test , which | dislike or import them as described in firevious section. But

hey, since we have only orariableto handle, we can make things even simpler and save the loading of
the Exporter.om package. We will use the Pealiasng feature forexporing and saving the
keystrokes:

package My::HTML;
use strict;
use lib qw(.);
Global Configuration now aliased to global %c
use My::Config (); # My/Config.pm in the same dir as script.pl
use vars qw(%c);
*c = \%My::Config::c;
Now you can access the variables from the My::Config
print $c{scalar_val};

print $c{array_val}[0];
print $c{hash_val}{foo};

Of course$c is globaleverywhereyou use it as described above, and if you changeniivhereit will
affect any othepackagesyou have aliasefiMy::Config::c to.

Note that aliases work either with globallecal() vars - you cannot write:

. my *c = \%My::Config::c;

Which is an error. But you can write:

. local *c =\%My::Config::c;

For moreinformation aboutaliagng, refer to the Camel book, second edition, pages 51-52.

5.9 The Scope of the Special PeWariables

Special Perbariableslike $| (buffering), $"T (time), $"W (warnings), $/ (input recordsepaator), $\
(output recordsepaator) and many more are all globariables This means that you cannot scope them
with my(). Only local() is permited to do that. Since the child server doesn’t usually exit, if in one
of your scripts you modify a globakriable it will be changed for the rest of the process’ life and will
affect all the scripts executed by the same process.

We will demorstratethe case on the input recosépaator variable If you unddine this variable a
diamondopetor will suck in the whole file at once if you have enough memBgmenbeiing this you
should never write code like the example below.

2 Sep 2000 73

5.10 Compiled Regular Expressions Stas Bekman

$/ = undef;
open IN, "file"

slurp it all into a variable
$all_the_file = <IN>;

The proper way is to havdacal() keyword before the speciahriableis changed, like this:

local $/ = undef;
open IN, "file"

slurp it all inside a variable
$all_the_file = <IN>;

But there is a catclocal() will propagatethe changed value to any of the code below it. mbdified
value will be in effect until the scriperminates unless it is changed agaomevhereelse in the script.

A cleaner approach is to enclose the whole of the code that is affectednbydiied variablein a block,
like this:

{

local $/ = undef;
open IN, "file"
slurp it all inside a variable
$all_the_file = <IN>;
}

That way when Perl leaves the block it restoresotiginal value of the$/ variable and you don't need
to worry elsevherein your program about its value being changed here.

5.10 Compiled Regular Expressions

When using a regulaxpresionthat contains amtempadlatedPerlvariablg if it is known that thevariable
(or variableg will not change during thexecuion of the program, atardardoptimization techiqueis to
add thelo modffier to the regexp pattern. This directs the compiler to buildntiemal table once, for the
entirelifetime of the script, rather than every time the pattern is executed. Consider:

my $pat = oo$’; # likely to be input from an HTML form field
foreach(@list) {

print if /$pat/o;
}

This is usually a big win in loops over lists, or when ugjrep() ormap() opektors

In long-lived mod_perl scripts, however, thariable can changaccordng to theinvocdion and this can
pose a problem. The firgtvocdion of a fresh httpd child will compile the regex and perform the search
correctly. However, alsubsguentuses by that child will continue to match teginal pattern,regard
lessof the current contents of the Pgdriablesthe pattern is supposed to depend on. Your script will
appear to be broken.

74 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.10 Compiled Regular Expressions

There are twsoluionsto this problem:

The first is to useeval g// , to force the code to bevaliatedeach time. Just make sure that the eval
block covers the entire loop pfocessig, and not just the pattern match itself.

The above codagmentwould berewritten as:

my $pat = 'foo$’;
eval gf
foreach(@list) {
print if /$pat/o;
}
}

Just saying:

foreach(@list) {
eval g{ print if /$pat/o; };
}

is going to be &orribly expersive propasition.

You can use this approach if you require more than one pattern opetetor in a given section of code.
If the section contains only orpetor (be it anm// ors///), you can rely on thproperty of the null
pattern, that reuses the last pattern seen. This leads to the sektiod, which alsceliminatesthe use of
eval.

The above codfagmentbecomes:

my $pat = 'foo$’;
"something" =~ /$pat/; # dummy match (MUST NOT FAIL!)
foreach(@list) {
print if //;
}

The only gotcha is that the dummy match that boots the regxpmesion engine musabsadutely, posk
tively succeedpthemise the pattern will not be cached, and the will match everything. If you can’t
count on fixed text to ensure the match succeeds, you haymsasbilities

If you canguamarteethat the pattermariable contains naneta-chaaders(things like *, +, #, $...), you can
use the dummy match:

. "$pat" =~ N\Q$pat\E/; # guaranteed if no meta-characters present

If there is apossbility that the pattern can contaimeta-chaaders you should search for the pattern or
thenon-searcable\377chamader as follows:

2 Sep 2000 75

5.11 Exception Handling for mod_perl Stas Bekman

. "\377" =~ [$pat|\377$/; # guaranteed if meta-characters present

Another approach:

It depends on theomplexty of the regexp to which you apply thiechigue One common usage where
a compiled regexp is usually moefficientis to“ match any one of a group phttern$ over and over
again.

Maybe with a helper routine, it's easierreamenber. Here is one slightlynodified from Jeffery Friedl's
example in his book Masteiing RegeX.

HHH AR R R R R R R R R R R R R
Build_MatchMany_Function
-- Input: list of patterns
-- Output: A code ref which matches its $_[0]
against ANY of the patterns given in the
"Input”, efficiently.
#
sub Build_MatchMany_Function {
my @R=@_;
my $expr = join ’||', map { \$_[0] =~ mA$R[$_]/0"} (0..$#R);
my $matchsub = eval "sub { $expr }";
die "Failed in building regex @R: $@" if $@;
$matchsub;

Example usage:

@some_browsers = gw(Mozilla Lynx MSIE AmigaVoyager lwp libwww);
$Known_Browser=Build_MatchMany_Function(@some_browsers);

while (KACCESS_LOG>) {
#...
$browser = get_browser _field($_);
if (! &Known_Browser($browser)) {
print STDERR "Unknown Browser: $browser\n";

}
#...

}

5.11 Exception Handling for mod_perl

Provided here are songeiiddinesfor clean(erexcepion handling for mod_perl usage, although theh
niquepresented here applies to all of your Pedgramming.

Thereasoimg behind thisdocumentis the current broken status $I1G{ DIE } in the perl core -
see both the perl5-porters and mod_perl mailing list archives for details @isttusion (It's broken in
at least Perl v5.6.0 anmobably in later versions as well.)

76 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.11.1 Trapping Exceptions in Perl

5.11.1 Trapping Excegionsin Perl

To trap anexception in Perl we use theval{} construct. Many people initially make the mistake that
this is the same as tlewal EXPRconstruct, which compiles and executes code at run time, but that’s
not the caseeval{} compiles at compile time, just like the rest of your code, and has next to zero
run-time penalty.

When in an eval block, if the codeecuing die()'s for some reason, rather thgerminaing your
code, theexcepiion is caughtand the program is allowed to examine tiatepion and makedecsions
based on it. The full construct looks like this:

eval

{

Some code here
}; # Note important semi-colon there
if ($@) # $@ contains the exception that was thrown

{

Do something with the exception

}

else # optional

{

No exception was thrown

}

Most of the time when you see theseegion handlers there is no else block, because it tends to be OK if
the code didn’t throw aexcepion.

5.11.2 Alternative Excegion Handling Techiques

An often suggested method for handling globatepions in mod_perl, and other perl programs in
general, is a_DIE__ handler, which can be setup by eitlassiging a function name as a string to
$SIG{_DIE__} (notpartiaularly recommended because of thpossble namegpaceclashes) oassign
ing a codeeferenceto $SIG{__DIE__} , the usual way of doing so is to useaaonynoussubrodine:

. $SIG{__DIE__} = sub { print "Eek - we died with:\n", $_[0]; };

The current problem with this is th&6IG{__DIE__} is a global setting in your script, so while you
canpoterially hide away youexcepionsin someextenal module, theexecuion of $SIG{__DIE__}

is fairly magical, andnterferesnot just with your code, but with all code in every module you import.
Beyond the magic involve&SIG{ _DIE__} actually inteffereswith perl’s normalexcepion handling
meclanism, theeval{} construct. Witness:

2 Sep 2000 77

5.11.3 Better Exception Handling Stas Bekman

$SIG{__DIE__} = sub { print "handler\n"; };

eval {

print "In eval\n";

die "Failed for some reason\n";
I3
if (@) {

print "Caught exception: $@";

}

The codaunfortunatelyprints out:

In eval
handler
Which isn't quite what you would expedspeially if that $SIG{__DIE__} handler is hidden away

deep in some other module that you didn't know about. There are work arounds however. One is to
localise$SIG{__DIE__} in everyexcepion trap you write:

eval {
local $SIG{_DIE__ };

k

Obviously this just doesn’t scale - you don’t want to be doing that for emecgpion trap in your code,
and it's a slow down. A second work around is to check in your handler if you are trying to catch this
excepion:

$SIG{_DIE_ }=sub{
die $_[0] if $1S;
print "handler\n®;

%

However this won't work undekpache::Registry - you're always in an eval block there!

You should warn people about this dange$8fG{__DIE__} and inform them of better ways to code.
Thefollowing mateial is an attempt to just that.

5.11.3 BetterExcepgion Handling

Theeval{} construct in itself is a fairly weak way to hanébecepions as strings. There’'s no way to
pass morénformation in yourexcepion, so you have to handle yoexcegion in more than one place - at
thelocaion the error occurred, in order to constructeashle error message, and again in yexcepion
handler to de-construct that string irgomehing mearingful (unless of course all you want yoexcep
tion handler to do is dump the error to the browser).

78 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.11.3 Better Exception Handling

A little known fact abouexcepionsin perl 5.005 is that you can call die with an object. &eefion
handler receives that object$® This is how you are advised to handieepions now, as it provides an
extremelyflexible andscabbleexcepionssolution.

5.11.3.1A Little Housekeepng

First though, before we delve into the details, a llitte@s&eepng is in order. Most, if not all, mod_perl
programs consist of a main routine that is entered, and then dispatches itself to alepeiihg on the
paraneters passed and/or the form values. In a normal C program this isnyau() function, in a
mod_perl handler this is yohandler() function/method.

In order for you to be able to us&cepion handling to its best extent you need to change your script to
have some sort of globalcepion handling. This is much more trivial than it sounds. If you're using
Apache::Registry to emulate CGI you might considefrapping your entire script in one big eval
block, but | woulddiscouagethat. A better method would be tmoduariseyour script into discretunc-

tion calls, one of which should be a dispatch routine:

#!/usr/bin/perl -w
Apache::Registry script

eval {
dispatch();

¥
catch($@);
sub dispatch {

}

sub catch {
my $exception = shift;

This is easier with aordinary mod_perl handler as it is natural to haepaatefuncions rather than a
long run-on script:

2 Sep 2000 79

5.11.3 Better Exception Handling Stas Bekman

MyHandler.pm

sub handler {
my $r = shift;

eval {
dispatch($r);

b
catch ($@);
}

sub dispatch {
my $r = shift;

-

sub catch {
my $exception = shift;

Now that theskelgon code is setup, let's create axcepion class, making use of Perl 5.005’s ability to
throw exceftion objects.

5.11.3.2 An Excepion Class

This is a really simplexcepion class, that does nothing but contaiformation. A betterimplemertation
would probebly also handle its owmxcegion condtions but that would be more complesequiiing
sepaatepaclkagesfor eachexcepion type.

80 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.11.4 Catching Uncaught Exceptions

My/Exception.pm

package My::Exception;

sub AUTOLOAD {
my ($package, $filename, $line) = caller;
no strict 'refs’, 'subs’;
if (SAUTOLOAD =~ /.*::([A-Z]\w+)$/) {
my $exception = $1;
*$AUTOLOAD} =
sub {
shift;
push @_, caller => {
package => $package,
filename => $filename,
line => $line,
h
bless { @_}, "My::Exception::$exception”;
h
goto &{$AUTOLOAD};
}

else {
die "No such exception class: $AUTOLOAD\n";

}
}

1

OK, so this is all highly magical, but what does it do? It creates a simple package that we can import and
use as follows:

use My::Exception;
die My::Exception->SomeException(foo => "bar");
The excepion class tracks exactly where we died from usingciiéer() meclanism, it also caches

excepion classes so tha&#®UTOLOADs only called the first time (in a given process)excefion of a
partiaular type is thrown(partiaularly relevantunder mod_perl).

5.11.4 Catching UncaughtExcegions

What abouexcepionsthat are thrown outside of your control? We can fix this using one opdssble
methods. The first is toveride die globally using the old magic#iSIG{ _DIE__} , and the second, is
the cleaner non-magical methododeriding the globaldie() method to your ownlie() method that
throws arexcepion that makes sense to yapplication.

2 Sep 2000 81

5.11.4 Catching Uncaught Exceptions Stas Bekman

5.11.4.1Using $SIG{__DIE_ }

Oveloadng using$SIG{__DIE__} in this case is rather simple, here’s some code:

$SIG{_DIE_ }=sub{
my $err = shift;
if('ref $err) {
$err = My::Exception->UnCaught(text => $err);
}

die $err;

k

All this does is catch youexcepion and re-throw it. It's not aslangeous as we stated earlier that
$SIG{ _DIE__} can be, because we'aetwally re-throwing the excepion, rather tharcatching it and
stopping there.

There’s only one slight buggette left, and that's if s@xienal codedie()'ing catches thexcepion
and tries to do stringompaisonson theexcepion, as in:

eval {
... # some code
die "FATAL ERROR\n";
I3
if ($@) {
if (3@ =~ /"FATAL ERRORY/) {
die $@;
}
}

In order to deal with this, we cawetloadstringffication for ourMy::Excep tion :UnCaught class:

{
package My::Exception::UnCaught;
use overload ™" => \&str;

sub str {
shift->{text};

}
}

We can now let other code happily continue.

5.11.4.2 Overriding the Core die()Function
So what if we don’t want to tou®SIG{_DIE__} at all? We camvercomethis byoveriding the core

die function. This is slightly more complex thamplemening a $SIG{ DIE__} handler, but is far
less magical, and is the right thing to dog¢ordng to theperl5-porters mailindjst.

82 2 Sep 2000

mod_perl Tutorial: Perl Reference 5.11.5 Some Uses

Overriding corefunctions has to be done from axtenal package/module. So we're going to add that to
ourMy::Excep tion module. Here'’s theelevantparts:

use vars qw/@ISA @EXPORT/,;
use Exporter;

@EXPORT = qw/die/;
@ISA ="Exporter’;

sub import {
my $pkg = shift;
$pkg->export('CORE::GLOBAL', 'die");
Exporter::import($pkg,@_);

}

sub die {
if (fref($_[O])) {
CORE::die My::Exception->UnCaught(text => join(’, @_));

}
CORE::die $_[0];
}

That wasn’t so bad, was it? We're relying on Exporter's exporttion to do the hard work for us,
exporing thedie() funcion into the CORE::GLOBAL namepace Along with the aboveveloaded
stringification, we now have a completxcepion system (well, mostly complet&xceqion die-hards
would argue that there’s no “finally” clause, and exception stack, but that's another topic for another
time).

5.11.5 SomeUses

I’'m going to come right out and say now: | abuse this systerribly! | throw excepions all over my
code, not because I've hit @xcepional bit of code, but because | want to get straight back out of the
currentfunction, without having to have every single levelfohction call check error codes. One way |
use this is to return Apache return codes:

paranoid security check
die My::Exception->RetCode(code => 204);
Returns a 204 error coqeTTP_NO_CONTEN;Twhich is caught at my top levekcegion handler:

if ($@->isa('My::Exception::RetCode")) {
return $@->{code};
}

That last returrstatanentis in my handler() method, so that's the return code that Apaatieally
sends. | have othaxxcepion handlers in place for sending Bagiatherticaion headers an®Redrect
headers out. | also have a gendvig::Excep tion ::OK class, which gives me a way to back out
completely from where | am, brggider that as an OK thing to do.

2 Sep 2000 83

5.11.6 Conclusions Stas Bekman

Why do | go to these extents? After all, code Bkasltode (the code behingdttp://slasklotord) doesn’t
need this sort of thing, so why should my web site? Well it's just a matszaébility andprogrammer
style really. There’s lots diterature out there abougxcegion handling, so | suggest doing some research.

5.11.6 Conclusions

Here I've demorstrateda simple andscahble (and useful)excepion handling mectanism, that fits
perfectly with your current code, and provides phegranmer with excelent means tadetemine what
has happened in his code. Some users might be worried abawttheadof such code. However in use
I've found accesig the database to be a much msignificantovethead and this is used in some code
delivering to thousandsof users.

For similarexcegion handlingtecmiques see the sectiohOtherimplemertations’.

5.11.7 The My::Exception class in itsentirety

84 2 Sep 2000

http://slashdot.org/

mod_perl Tutorial: Perl Reference

package My::Exception

use vars qw/@ISA @EXPORT $AUTOLOAD/;
use Exporter;

@ISA ="Exporter’;

@EXPORT = qw/die/;

sub import {
my $pkg = shift;
$pkg->export(CORE::GLOBAL’, 'die’);
Exporter::import($pkg,@_);

}

sub die {
if (ref($_[0])) {
CORE::die My::Exception->UnCaught(text => join(’, @_));

}
CORE::die $_[0];
}

{
package My::Exception::UnCaught;
use overload ™" => \&str;

sub str {
shift->{text};
}
}

sub AUTOLOAD {
no strict 'refs’, 'subs’;
if (SAUTOLOAD =~ /.*::([A-Z]\w+)$/) {
my $exception = $1;
*{$AUTOLOAD} =
sub {
shift;
my ($package, $filename, $line) = caller;
push @_, caller => {
package => $package,
filename => $filename,
line => $line,
h
bless { @_}, "My::Exception::$exception”;
b
goto &{$AUTOLOAD};
}
else {
die "No such exception class: $AUTOLOAD\n";
}
}

1

2 Sep 2000

5.11.7 The My::Exception class in its entirety

85

5.11.8 Other Implementations Stas Bekman

5.11.8 Other Implementations

Some users might find it very useful to have a more C++/Javantiéace of try/catchfunctions. These
are available in several forms that all work in slightlj§ifferent ways. See théocumertation for each
module for details:

® Error.pm

86

Graham Barr'sxcelent OO styled “try, throw, catch” module (from CPAN).

Exceptiion.pm and StackTrace.pm

by Autarch (fronjftp://ftp.urth.org/puly.

Exception a bit cleaner than the AUTOLOAD method from the abexanplesas it can catch
typos later on. Plus it lets you create actual diéexsrchiesfor yourexcepions, which could be nice
if you want to createxcepion classes that do more stuff and then inherit from them.

Try.pm
Tony Olekshy’s. Adds an unwind stack. Not on CPAN (yet?).
Exceptions.pm

Peter Seibel'€xcep tions module is totallynon-fundional with modern Perl and has besuper
sededby Graham Barr’'&€rror module.

;0)

2 Sep 2000

ftp://ftp.urth.org/pub/

mod_perl Tutorial: Getting Help and Further Learning 6 Getting Help and Further Learning

6 Getting Help and Further Learning

2 Sep 2000 87

6.1 What we will learn in this chapter Stas Bekman

6.1 What we will learn in this chapter
® Gettinghelp

® Get help withmod_perl

® Get help withPerl

® Get help withPerl/CGI

® Get help withApache

® Get help withDBI

® Get help withSquid

6.2 Getting help

If after reading this guide and othdocumentslisted in this section, you feel that yoguwesion is not yet
answered, please ask the apache/mod_perl mailing list to help you. But first try to browse the mailing list
archive. Most of the time you will find the answer for yauresion by searcing the mailing archive,

since there is a big chance someone else has akeadynteredthe same problem and foundaiuion

for it. If you ignore this advice, do not be surprised if yquesion will be left unarswered- it bores

people to answer the sameedion more than once. It does not mean that you should avoid apkeyy

tions Just do not abuse tlvailable help andRTFM before you call foHELP. (You have certainly

heard thenfamousfable of theshefherdboy and the wolves)

6.3 Get help with mod_ perl

e mod_perlhome

[http://perl.apache.org

e mod_perl Garden project

|http://modperl.souraamenord

e mod_perl Books

O ’Apache Modules’ Book

[http://www.modperl.comis the home site of The Apache Modules Book, a book atreatng
Web server modules using the Apache API, written by Lincoln Stein and ac§aclern

Now you can purchase the book at your |dmabkstoreor from the online dealer. O'Reilly lists
this book as:

88 2 Sep 2000

http://www.modperl.com/
http://modperl.sourcegarden.org/
http://perl.apache.org/

mod_perl Tutorial: Getting Help and Further Learning 6.3 Get help with mod_perl

Writing Apache Modules with Perl and C
By Lincoln Stein & Doug MacEachern
1st Edition March 1999

1-56592-567-X, Order Number: 567X
746 pages, $34.95

O ’Enabling web services with mod_perlBook

[http://www.modpetbookconyis the home site of the new mod_perl book, that Eric Cholet and
Stas Bekman armn-authoing together. We expect the book to be published in fall 2000.

Ideas,suggetions and comments are welcome. You may send theimfa@ modpetbookcom

mod_perl Guide

by Stas Bekman ittp://perl.apache.org/guide

mod_perl FAQ

by Frank Cringle ghttp://perl.apache.org/fgdq/

mod_perl performancetuning guide

by Vivek Khera ahttp://perl.apache.org/tuning/

mod_perl plugin referenceguide

by DougMacEaclern atjhttp://perl.apache.org/src/mod_perl.Html

Quick guide for moving from CGI to mod_perl

atlhttp://perl.apache.org/dist/cgi to mod perl.html

mod_perl_traps,common traps andsolutions for mod_perl users

atlhttp://perl.apache.org/dist/mod perl traps.html

mod_perl Quick ReferenceCard

[http://lwww.refcards.copfApache and other refcards aneailablefrom this link)

mod_perl ResourcedPage

|http://www.perteferencecom/mod perj/

mod_perl mailing list

2 Sep 2000 89

http://www.perlreference.com/mod_perl/
http://www.refcards.com/
http://perl.apache.org/dist/mod_perl_traps.html
http://perl.apache.org/dist/cgi_to_mod_perl.html
http://perl.apache.org/src/mod_perl.html
http://perl.apache.org/tuning/
http://perl.apache.org/faq/
http://perl.apache.org/guide
http://www.modperlbook.com/

6.4 Get help with Perl Stas Bekman

The Apache/Perl mailing ligmodperl@apache.oygs available for mod_perl users anddevebp-
ers to share ideas, solv@roblems and discuss things related to mod_perl and the Apache::*
modules. To subscribe to this list, send mail toodperl-subscribe@apache.omgth empty
Subject and withBody:

. subscribe modperl

A searchable mod_perl mailing list archive available at |http://forum.swarth
Imoreedu/epigone/modpériwWe owe it to Ken Williams.

More archivesvailable

O |http://www.geocrawler.com/lists/3/web/182/0/

O |http://www.bitmehaniccom/mail-archives/modpdrl/

O |http://www.mail-archive.com/modperl%40apache Jorg/

O |nttp://www.davin.ottawa.on.ca/archive/modgerl/

O |http://www.progresive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-mofperl

O |http://www.egroups.com/group/modpegrl/

6.4 Get help with Perl

® The Perl FAQ

[http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.himl

® The Perl home

|http://www.perl.coni/

® The Perl Journal

|http://www.tpj.com

® Perl Module Mechanics

[http://world.std.com/~swmcd/steven/perl/module _memasdntml - This page describes theechan
ics of creatng, compiling, releaghg andmaintaining Perl modules.

90 2 Sep 2000

http://world.std.com/~swmcd/steven/perl/module_mechanics.html
http://www.tpj.com/
http://www.perl.com/
http://www.perl.com/CPAN/doc/FAQs/FAQ/PerlFAQ.html
http://www.egroups.com/group/modperl/
http://www.progressive-comp.com/Lists/?l=apache-modperl&r=1&w=2#apache-modperl
http://www.davin.ottawa.on.ca/archive/modperl/
http://www.mail-archive.com/modperl%40apache.org/
http://www.bitmechanic.com/mail-archives/modperl/
http://www.geocrawler.com/lists/3/web/182/0/
http://forum.swarthmore.edu/epigone/modperl
http://forum.swarthmore.edu/epigone/modperl

mod_perl Tutorial: Getting Help and Further Learning

6.5 Get help with Perl/CGI

® Perl/CGI FAQ

atlhttp://www.perl.com/CPAN/doc/FAQs/cgi/perl-cqi-fag.html

® Answersto somebothering Perl and Perl/CGI quedions

|http://stason.org/TULARC/webmies/myfaq.htm]

e |diot's Guide to CGI programming

|http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html

o WWW Secuity FAQ

|http:/fwww.w3.0rg/Secuty/Fag/www-sectty-fag.htm|

e CGI/Perl Taint Mode FAQ

[http://www.gunther.web66.com/FAQS/taambdehtm| (by Gunther Birznieks)

6.6 Get help with Apache

® ApacheProject's Home

[http://www.apache.ofg

® Apache Quick ReferenceCard

[http://www.refcards.copfApache and other refcards anailablefrom this link)

® The ApacheFAQ

|http://www.apache.org/docs/misc/FAQ.html

® Apache ServerDocumentation

[http://www.apache.org/dog¢s/

® ApacheHandlers

|http://www.apache.org/docs/handler.Html

e mod_rewrite Guide

2 Sep 2000

6.5 Get help with Perl/CGI

91

http://www.apache.org/docs/handler.html
http://www.apache.org/docs/
http://www.apache.org/docs/misc/FAQ.html
http://www.refcards.com/
http://www.apache.org/
http://www.gunther.web66.com/FAQS/taintmode.html
http://www.w3.org/Security/Faq/www-security-faq.html
http://www.perl.com/CPAN/doc/FAQs/cgi/idiots-guide.html
http://stason.org/TULARC/webmaster/myfaq.html
http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html

6.7 Get help with DBI Stas Bekman

[http://iwww.engelschall.com/pw/apache/rewritegyide/

6.7 Get help with DBI

® Perl DBl exanples

[http:/lwww.saturn5.com/~jwb/dbi-exagteshtml (by Jeffrey William Baker).

e DBl Homepage

[http://www.symbostoneorg/tecmology/perl/DBIJ

e DBI mailing list infor mation

|http://www.fugue.com/dhdi/

® DBI mailing list archives

[http:/Toutside.organic.com/mail-archives/dbi-usftss://www.xray.mpe.mpg.de/mailing-lists/dbi/

® Persident connedions with mod_perl

|http://perl.apache.org/src/mod perl.html#PERENT DATABASE CONNECIONY

6.8 Get help with Squid - Inter net Object Cache

e Home page |http://squid.nlanr.ngt/

® FAQ -|http://squid.nlanr.net/Squid/FAQ/FAQ.himl

® Users Guide fhttp://squid.nlanr.net/Squid/Users-Gujde/

e Mailing lists -http://squid.nlanr.net/Squid/mailing-lists.hfml

92 2 Sep 2000

http://squid.nlanr.net/Squid/mailing-lists.html
http://squid.nlanr.net/Squid/Users-Guide/
http://squid.nlanr.net/Squid/FAQ/FAQ.html
http://squid.nlanr.net/
http://perl.apache.org/src/mod_perl.html#PERSISTENT_DATABASE_CONNECTIONS
http://www.xray.mpe.mpg.de/mailing-lists/dbi/
http://outside.organic.com/mail-archives/dbi-users/
http://www.fugue.com/dbi/
http://www.symbolstone.org/technology/perl/DBI/
http://www.saturn5.com/~jwb/dbi-examples.html
http://www.engelschall.com/pw/apache/rewriteguide/

Table of Contents:

[Tutorial: Getting Started with mod perl|
[mod perl Tutorial: Agendd
1[Agendd .
1 1 [Agend: .
[mod perI Tutorlal mod perI in Four Slldes%
2 |mod perl in Four Slidgs.
2.1|mod perlin FourSlides
2.2 |Whatis mod perlP

2.3 [Instalation .
2.4 [Configuration

2. 5|The"mod perl rules" Apache Reglstacrlptst
2.6[The"mod perl rules" Apache Pevlodulg .
2.7 Is That All | Need To Know Aboumod perlP
[mod perl Tutorial: Server Setup Strategies
3 | Server Setutratajies|
3.1 [Whatwe will learn in thlschaptelr .
3.2 [mod perlDeploymentOverview .
3.3 [Stardalonemod perl Enabled Apacl&ervet .
3.4 [OnePlain Apache and One mod perl-enabled Apa}rkmerts
3.5 |Adding a Proxy Server in httccelerator Mode .
3.6 [Implemertations of ProxyServerp .
3.6.1[The SquidServey.
3.6.2[Apache’smod proxy . .
[mod perl Tutorial: Porting from CGI Scrlpts and mod perI Codlng Gwdellnesl .
4 [Porting from CGI Scripts and mod perl Cod{@giddines.| .
4.1 [Whatwe will learn in thischaptelr .
4.2 [Exposng Apache::Registrgecrets.
4.2.1[The FirstMystery,.
4.2.2[The SecondMystery .
4.3 [Somédimesit Works, Someaimesit Doesn t
4.3.1|RegularExpresion Memory
4.4 [@INC andmod petl .
4.5 [Reloadng Modules and Requwelélj
4.5.1|Restaring theservef .
4.5.2|Using Apache::StatINC for thlevebpmentProcesIs
4.6 [Namecollisionswith Modules andibg .
4.7 [More package name relatessuep .
48 END and DATA token$.
4.9 [Outputfrom systentall§ . .
4.10 [Terminaing requests and processes, the exﬂ()&tnkdi termnate() fundlonsi
4.11|die() andmod peil .
4.12 |Apache::printJandCORE: prlnt(b
4.13|GlobalVariablesPersisance .
4.14|ICommandine Switches (-w, -Tetc)

2 Sep 2000

©COWoOoO~N~NOOOULA A~

4.14.1Warnngg .
4.14.2[TaintModqg .
4.14.3|Otherswitche

U

|mod Eerl Tutorial: Perl Re1erenc§e

5 | PerIRefelenc§

1 Whatwe will learn in th|$ha§t§r .

52@

5.3 TracmgWarnngsReport}s . .

5.4 VariablesGlobally, Lexically Scoped And FuII ualfie

5.5 [my() Scoﬁed\/arlableln NestedSubrotuines.
5.5.1[ThePoisoh . S
5.5.2[The Diagnosig
553| heRemedll .

5.6 WhenYou Cannot Get Rld of The InnSubromng
5.6.1[Remediesfor InnerSubrodineg . .

5.7 [use(),require(), do(), %INC and @INEpralneEIJI
5.7.1|The@lNCarra) Ce e
5.7.2[The%INChash . . .

5.7.3[Modules Libraries and-ileg

5.7.4fequire.

5.7.5[use() .

5.7.6[do(] .

5.8 [Using GIobaIVarlabIesand Sharlnq Them BetweMDduIes/Pacaqeb.

5.8.1[Making VariablesGloba] .
5.8.2|Making VariablesGlobal With strict Pragm@ﬂ .

5.8.3|Using Exporter.pm to Share Globdhriable ..
5.8.4(Usingthe PerlAliasing Feature to Share Globdhriables.

5.9 |The Scoﬁe of the SEeciaI Petariable}‘.
5.10|CompiledRegularExpresions)

5.11 [Excegion Handling formod pef
511.1T ra|n [Trapping Excegdionsin Perl |onsm Per

5.11. 2
5.11. 3|BetterExceE|on Handllng .
5.11.3.1[A Little Houséeepng
5.11.3.2]An Exceﬁion CIas}s ..
5.11.4[Catching UncaughiExcefiong
5.11.4.1|Using$SIG{ DIE . . .
5.11.4.2 Overridin§ the Core dieZEunaioﬂ
5.11. 5| omeUse};
5.11.6[Conclsiond .
5.11. 7|The My: Exceglon class n |tsent|rety
5.11.8[Otherimplemeriationg

"4

mod perl Tutorial: Getting Help and Further Learnln

6 |Gett|n§ HeIE and Furthekrearnn§|

1 [Whatwe will learn in thlschaﬁ'@r .

6.2 [Gettinghel

41
42
43
44
44
45
45
46
49
49
49
51
52
53
55
61
61
61
64
65
67
68
68
69
69
69
72
73
74
76
77
77
78
79
80
81
82
82
83
84
84
86
87
87
88
88

2 Sep 2000

6.3
6.4
6.5
6.6
6.7

Gethelp withmod_petl
GetheIE withPer .
Gethelp withPer /CGI

GetheIE withAEach}. .
GethelpwithDBI] . . .

6.8

Gethelp with Squid intemetO

bjectCache¢.

2 Sep 2000

88
90
91
91
92
92

	1€€Agenda
	1.1€€Agenda

	2€€mod_perl in Four Slides
	2.1€€mod_perl in Four Slides
	2.2€€What is mod_perl?
	2.3€€Installation
	2.4€€Configuration
	2.5€€The "mod_perl rules" Apache::Registry Scripts
	2.6€€The "mod_perl rules" Apache Perl Module
	2.7€€Is That All I Need To Know About mod_perl?

	3€€Server Setup Strategies
	3.1€€What we will learn in this chapter
	3.2€€mod_perl Deployment Overview
	3.3€€Standalone mod_perl Enabled Apache Server
	3.4€€One Plain Apache and One mod_perl-enabled Apache Servers
	3.5€€Adding a Proxy Server in http Accelerator Mode
	3.6€€Implementations of Proxy Servers
	3.6.1€€The Squid Server
	3.6.2€€Apache's mod_proxy

	4€€Porting from CGI Scripts and mod_perl Coding Guidelines.
	4.1€€What we will learn in this chapter
	4.2€€Exposing Apache::Registry secrets
	4.2.1€€The First Mystery
	4.2.2€€The Second Mystery

	4.3€€Sometimes it Works, Sometimes it Doesn't
	4.3.1€€Regular Expression Memory

	4.4€€@INC and mod_perl
	4.5€€Reloading Modules and Required Files
	4.5.1€€Restarting the server
	4.5.2€€Using Apache::StatINC for the Development Process

	4.6€€Name collisions with Modules and libs
	4.7€€More package name related issues
	4.8€€__END__ and __DATA__ tokens
	4.9€€Output from system calls
	4.10€€Terminating requests and processes, the exit†‡ and child_terminate†‡ functions
	4.11€€die†‡ and mod_perl
	4.12€€Apache::print†‡ and CORE::print†‡
	4.13€€Global Variables Persistance
	4.14€€Command line Switches †-w, -T, etc‡
	4.14.1€€Warnings
	4.14.2€€Taint Mode
	4.14.3€€Other switches

	5€€Perl Reference
	5.1€€What we will learn in this chapter
	5.2€€perldoc's Rarely Known But Very Useful Options
	5.3€€Tracing Warnings Reports
	5.4€€Variables Globally, Lexically Scoped And Fully Qualified
	5.5€€my†‡ Scoped Variable in Nested Subroutines
	5.5.1€€The Poison
	5.5.2€€The Diagnosis
	5.5.3€€The Remedy

	5.6€€When You Cannot Get Rid of The Inner Subroutine
	5.6.1€€Remedies for Inner Subroutines

	5.7€€use†‡, require†‡, do†‡, %INC and @INC Explained
	5.7.1€€The @INC array
	5.7.2€€The %INC hash
	5.7.3€€Modules, Libraries and Files
	5.7.4€€require†‡
	5.7.5€€use†‡
	5.7.6€€do†‡

	5.8€€Using Global Variables and Sharing Them Between Modules/Packages
	5.8.1€€Making Variables Global
	5.8.2€€Making Variables Global With strict Pragma On
	5.8.3€€Using Exporter.pm to Share Global Variables
	5.8.4€€Using the Perl Aliasing Feature to Share Global Variables

	5.9€€The Scope of the Special Perl Variables
	5.10€€Compiled Regular Expressions
	5.11€€Exception Handling for mod_perl
	5.11.1€€Trapping Exceptions in Perl
	5.11.2€€Alternative Exception Handling Techniques
	5.11.3€€Better Exception Handling
	5.11.3.1€€A Little Housekeeping
	5.11.3.2€€An Exception Class

	5.11.4€€Catching Uncaught Exceptions
	5.11.4.1€€Using $SIG{__DIE__}
	5.11.4.2€€Overriding the Core die†‡ Function

	5.11.5€€Some Uses
	5.11.6€€Conclusions
	5.11.7€€The My::Exception class in its entirety
	5.11.8€€Other Implementations

	6€€Getting Help and Further Learning
	6.1€€What we will learn in this chapter
	6.2€€Getting help
	6.3€€Get help with mod_perl
	6.4€€Get help with Perl
	6.5€€Get help with Perl/CGI
	6.6€€Get help with Apache
	6.7€€Get help with DBI
	6.8€€Get help with Squid - Internet Object Cache

