
 Page 1 Nathan Wallace

PHP: Hackers Paradise

by Nathan Wallace
http://www.e-gineer.com/articles/php-hackers-paradise.phtml

PHP: Hackers Paradise ...1

1 Introduction ...2
2 Laziness is a Virtue ...2

2.1.1 Introduction...2
2.1.2 Use Other People’s Code..2
2.1.3 Helpful Functions and Classes..2

2.1.3.1 Introduction..2
2.1.3.2 Database Abstraction ...2
2.1.3.3 Session Management..3
2.1.3.4 Debugging Variables..3
2.1.3.5 Log Functions ..4
2.1.3.6 Optimization ..5
2.1.3.7 Debugging and Optimizing Database Operations..6

3 Chameleon Coding ..6
3.1.1 Introduction...6
3.1.2 Structuring your PHP Code ..7

3.1.2.1 Introduction..7
3.1.2.2 Dynamic, Hackable Frontend Code ...7
3.1.2.3 Stable, Structured Backend Code...7

3.1.3 Coding Techniques ...7
3.1.3.1 Include Files...7
3.1.3.2 Design Patterns for Web Programming ...8

4 Speed of Coding, Not Speed of Code..8
4.1.1 Introduction...8
4.1.2 Optimizations to Satisfy Your Hacker Instinct...9

4.1.2.1 Introduction..9
4.1.2.2 Use Inline Tags Instead of echo...9
4.1.2.3 str_replace vs ereg_replace ..10
4.1.2.4 Quoted Strings ...11

4.1.3 Optimizations that Really Make a Difference ..11
4.1.3.1 Reduce queries ...11
4.1.3.2 Optimize your Queries ...11
4.1.3.3 Avoid joins...12
4.1.3.4 Make your pages smaller ...12

4.1.4 Gotchas ...12
4.1.4.1 Introduction..12
4.1.4.2 Arrays of Objects ...12
4.1.4.3 Calling overridden methods ...13
4.1.4.4 Trouble with Types ..13

4.1.5 Tricky Concepts..16
4.1.5.1 Include vs Require ...16
4.1.5.2 Echo vs Print ..16

4.1.6 Scripting with PHP ...17
4.1.7 Extreme Programming..17

5 Getting Help ..18

http://www.e-gineer.com/articles/php-hackers-paradise.phtml

 Page 2 Nathan Wallace

1 Introduction

PHP (http://www.php.net) is a powerful server side web scripting solution. It has quickly grown in
popularity and according to the 1999 January Netcraft Web Server Survey PHP is installed on 12.8% of
all web sites. Much of its syntax is borrowed from C, Java and Perl with a couple of unique PHP-
specific features thrown in. The goal of the language is to allow web developers to write dynamically
generated pages quickly.

Being a good PHP hacker isn’t just about writing single line solutions to complex problems. For
example, web gurus know that speed of coding is much more important than speed of code. In this
article we’ll look at techniques that can help you become a better PHP hacker. We’ll assume that you
have a basic knowledge of PHP and databases.

If nothing else, you should leave here with the 3 key ideals for PHP hackers:
• Laziness is a Virtue
• Chameleon Coding
• Speed of Coding, Not Speed of Code

2 Laziness is a Virtue

2.1.1 Introduction

It seems strange to think of a web programmer as lazy. Most of us work one hundred-hour week’s in
our quest to join the gold rush. In fact, we need to be lazy because we are so busy.

There are two key ways to be lazy. Firstly always use existing code when it is available, just integrate
it into your standards and project. The second technique is to develop a library of helpful functions that
let you be lazy in the future.

2.1.2 Use Other People’s Code

We need to use laziness to our advantage and PHP is the perfect tool. PHP was born and raised in an
open source environment. The community holds open source ideals close to its heart. As a result there
are thousands of people on the mailing list willing to share their knowledge and code. There are also
many open source PHP projects that you can tap into.
I’m not suggesting that you spend all day asking people to write code for you. But through clever use
of the knowledge base, mailing list archives and PHP projects you can save yourself a lot of time.

PHP Knowledge Base – http://php.faqts.com

PHP Mailing List Archive - http://www.progressive-comp.com/Lists/?l=php3-general&r=1&w=2

2.1.3 Helpful Functions and Classes

2.1.3.1 Introduction

In this section we will work at developing a library of PHP code which will aid us in future
development. A small amount of work now let’s us be lazy in the future.

Some of this code has been taken from open source PHP projects. Other parts from the mailing list
archives. In fact, all the work I really needed to do was structure the code into a coherent library of
functions.

2.1.3.2 Database Abstraction

One of the features / problems with PHP is that it does not have a uniform method for accessing
databases. There are specialized functions for each database PHP is able to connect to. This is a

http://www.e-gineer.com/clickthrough.phtml?sendtourl=http%3A%2F%2Fwww.php.net
http://www.e-gineer.com/clickthrough.phtml?sendtourl=http%3A%2F%2Fwww.netcraft.com%2FSurvey%2FReports%2F0001%2F
http://php.faqts.com/
http://www.progressive-comp.com/Lists/?l=php3-general&r=1&w=2#php3-general

 Page 3 Nathan Wallace

feature because it allows you to optimize your database code. It is a problem because it makes your
code less portable and increases the learning curve for newcomers.

A number of database wrapper classes have been developed to solve this problem. They provide a
uniform set of functions for accessing any database. Personally I like them because I find it much
easier to remember a few simple functions like query and next_record than having to think about
database handles, connections and so on.

The most commonly used (and defacto standard) is PHPLib - http://phplib.netuse.de/

Metabase - http://phpclasses.UpperDesign.com/browse.html/package/20

There is also PHPDB - http://phpdb.linuxbox.com/

2.1.3.3 Session Management

The main purpose of PHPLib is session management. This allows you to associate data with visitors to
your site for the duration of their stay. This can be useful for remembering options and so on.

PHP4 has session management features built into the PHP internal function library.

2.1.3.4 Debugging Variables

There is limited debugging support for PHP. This is no Smalltalk environment where you can browse
objects and perform methods on them. Instead we need to make creative use of the old, reliable echo
statement.

The first thing we need to be able to do is look at the value of variables. The loose typing of PHP lets
us use most variables directly in strings. This is great for numbers and so on, but falls down when we
are dealing with arrays and objects.

The other problem with debugging is that sometimes I'm not even sure what a variable is likely to
contain. If I was, there be no need to debug.

So, lets be smart now and lazy for the rest of time. We can write a function that shows us the type and
value of any variable.

function ss_array_as_string (&$array, $column = 0) {
 $str = "Array(
\n";
 while(list($var, $val) = each($array)){
 for ($i = 0; $i < $column+1; $i++){
 $str .= " ";
 }
 $str .= $var.' ==> ';
 $str .= ss_as_string($val, $column+1)."
\n";
 }
 for ($i = 0; $i < $column; $i++){
 $str .= " ";
 }
 return $str.')';
}

function ss_object_as_string (&$object, $column = 0) {
 if (empty($object->classname)) {
 return "$object";
 }
 else {
 $str = $object->classname."(
\n";
 while (list(,$var) = each($object->persistent_slots)) {
 for ($i = 0; $i < $column; $i++){
 $str .= " ";

http://phplib.netuse.de/
http://phpclasses.upperdesign.com/browse.html/package/20
http://phpdb.linuxbox.com/

 Page 4 Nathan Wallace

 }
 global $$var;
 $str .= $var.' ==> ';
 $str .= ss_as_string($$var, column+1)."
\n";
 }
 for ($i = 0; $i < $column; $i++){
 $str .= " ";
 }
 return $str.')';
 }
}

function ss_as_string (&$thing, $column = 0) {
 if (is_object($thing)) {
 return ss_object_as_string($thing, $column);
 }
 elseif (is_array($thing)) {
 return ss_array_as_string($thing, $column);
 }
 elseif (is_double($thing)) {
 return "Double(".$thing.")";
 }
 elseif (is_long($thing)) {
 return "Long(".$thing.")";
 }
 elseif (is_string($thing)) {
 return "String(".$thing.")";
 }
 else {
 return "Unknown(".$thing.")";
 }
}

Note that these functions work together to correctly print, format and indent arrays. They are also able
to print objects when they have been defined with the PHPLIB standard variables classname (the name
of the class) and persistent_slots (an array of the variable names we care about).

Now we can see the state of any variable by just doing:

 echo ss_as_string($my_variable);

We can see the value of all variables currently defined in the PHP namespace with:

 echo ss_as_string($GLOBALS);

2.1.3.5 Log Functions

A great way to debug is through logging. It’s even easier if you can leave the log messages through
your code and turn them on and off with a single command. To facilitate this we will create a number
of logging functions.

$ss_log_level = 0;
$ss_log_filename = '/tmp/ss-log';
$ss_log_levels = array(
 NONE => 0,
 ERROR => 1,
 INFO => 2,
 DEBUG => 3);

function ss_log_set_level ($level = ERROR) {
 global $ss_log_level;

 Page 5 Nathan Wallace

 $ss_log_level = $level;
}

function ss_log ($level, $message) {
 global $ss_log_level, $ss_log_filename;
 if ($ss_log_levels[$ss_log_level] < $ss_log_levels[$level])
{
 // no logging to be done
 return false;
 }
 $fd = fopen($ss_log_filename, "a+");
 fputs($fd, $level.' - ['.ss_timestamp_pretty().'] -
'.$message."\n");
 fclose($fd);
 return true;
}

function ss_log_reset () {
 global $ss_log_filename;
 @unlink($ss_log_filename);
}

There are 4 logging levels available. Log messages will only be displayed if they are at a level less
verbose than that currently set. So, we can turn on logging with the following command:

ss_log_set_level(INFO);

Now any log messages from the levels ERROR or INFO will be recorded. DEBUG messages will be
ignored. We can have as many log entries as we like. They take the form:

ss_log(ERROR, "testing level ERROR");
ss_log(INFO, "testing level INFO");
ss_log(DEBUG, "testing level DEBUG");

This will add the following entries to the log:

ERROR – [Feb 10, 2000 20:58:17] – testing level ERROR
INFO – [Feb 10, 2000 20:58:17] – testing level INFO

You can empty the log at any time with:

ss_log_reset();

2.1.3.6 Optimization

We need a way to test the execution speed of our code before we can easily perform optimizations. A
set of timing functions that utilize microtime() is the easiest method:

function ss_timing_start ($name = ‘default’) {
 global $ss_timing_start_times;
 $ss_timing_start_times[$name] = explode(' ', microtime());
}

function ss_timing_stop ($name = ‘default’) {
 global $ss_timing_stop_times;
 $ss_timing_stop_times[$name] = explode(' ', microtime());
}

function ss_timing_current ($name = ‘default’) {
 global $ss_timing_start_times, $ss_timing_stop_times;
 if (!isset($ss_timing_start_times[$name])) {

 Page 6 Nathan Wallace

 return 0;
 }
 if (!isset($ss_timing_stop_times[$name])) {
 $stop_time = explode(' ', microtime());
 }
 else {
 $stop_time = $ss_timing_stop_times[$name];
 }
 // do the big numbers first so the small ones aren’t lost
 $current = $stop_time[1] –
$ss_timing_start_times[$name][1];
 $current += $stop_time[0] –
$ss_timing_start_times[$name][0];
 return $current;
}

Now we can check the execution time of any code very easily. We can even run a number of execution
time checks simultaneously because we have established named timers.

See the optimizations section below for the examination of echo versus inline coding for an example of
the use of these functions.

2.1.3.7 Debugging and Optimizing Database Operations

The best way to gauge the stress you are placing on the database with your pages is through
observation. We will combine the logging and timing code above to assist us in this process.

We will alter the query() function in PHPLib, adding debugging and optimizing capabilities that we can
enable and disable easily.

function query($Query_String, $halt_on_error = 1) {
 $this->connect();
 ss_timing_start();
 $this->Query_ID = @mysql_query($Query_String,$this-
>Link_ID);
 ss_timing_stop();
 ss_log(INFO, ss_timing_current().’ Secs – ‘.$Query_String);
 $this->Row = 0;
 $this->Errno = mysql_errno();
 $this->Error = mysql_error();
 if ($halt_on_error && !$this->Query_ID) {
 $this->halt("Invalid SQL: ".$Query_String);
 }
 return $this->Query_ID;
}

3 Chameleon Coding

3.1.1 Introduction

A chameleon is a lizard that is well known for its ability to change skin color. This is a useful
metaphor for web programming as it highlights the importance of separating well structured and stable
backend code from the dynamic web pages it supports.

PHP is the perfect language for chameleon coding as it supports both structured classes and simple web
scripting.

 Page 7 Nathan Wallace

3.1.2 Structuring your PHP Code

3.1.2.1 Introduction

When writing PHP code we need to make a clear distinction between the code which does the principal
work of the application and the code which is used to display that work to the user.

The backend code does the difficult tasks like talking to the database, logging, and performing
calculations.

The pages that display the interface to these operations are part of the front end.

3.1.2.2 Dynamic, Hackable Frontend Code

Mixing programming code in with HTML is messy. We can talk about ways to format the code or
structure your pages, but the end result will still be quite complicated.

We need to move as much of the code away from the HTML as possible. But, we need to do this so
that we don’t get lost in the interaction between our application and the user interface.

A web site is a dynamic target. It is continually evolving, improving and changing. We need to keep
our HTML pages simple so that these changes can be made quickly and easily. The best way to do that
is by making all calls to PHP code simple and their results obvious.

We shouldn’t worry too much about the structure of the PHP code contained in the front end, it will
change soon anyway.

That means that we need to remove all structured code from the actual pages into the supporting
include files. All common operations should be encapsulated into functions contained in the backend.

3.1.2.3 Stable, Structured Backend Code

In complete contrast to the web pages your backend code should be well designed, documented and
structured. All the time you invest here is well spent, next time you need a page quickly hacked
together all the hard parts will be already done waiting for you in backend functions.

Your backend code should be arranged into a set of include files. These should be either included
dynamically when required, or automatically included in all pages through the use of the
php3_auto_prepend_file directive.

If you need to include HTML in your backend code it should be as generic as possible. All
presentation and layout should really be contained in the front end code. Exceptions to this rule are
obvious when they arise, for example, the creation of select boxes for a date selection form.

PHP is flexible enough to let you design your code using classes and or functions. My object oriented
background means that I like to create a class to represent each facet of the application. All database
queries are encapsulated in these classes, hidden from the front end pages completely. This helps by
keeping all database code in a single location and simplifying the PHP code contained in pages.

3.1.3 Coding Techniques

3.1.3.1 Include Files

If we are building these function libraries we need to work out a scheme for including them in our
pages. There are a couple of different approaches to this.

We can either include all our library files all the time, or include them conditionally as required.

 Page 8 Nathan Wallace

As part of my speed of coding philosophy I prefer to just include all the files and never think about it
again. When the Zend optimizing engine becomes available to pre-parse this code the performance hit
will not be significant.

I have about 10,000 lines of code in PHP libraries for my site. A quick check using the timing
functions will tell us the damage:

<?php
require(‘timing.inc’);
ss_timing_start();
// include other library files here
ss_timing_stop();
echo ‘<h1>’.ss_timing_current().’</h1>’;
?>

It seems to take about 0.6 seconds to parse all my function libraries. My sites do not receive millions
of hits so this penalty is not important enough to worry about yet.

One drawback of including all libraries all the time is that it makes it difficult to work on them. One
mistake in any of those files will bring down every page on the entire site. Be very, very careful.

If you are not as lazy as me then perhaps you’d prefer the conditional include technique. It’s simple to
use and implement. Just structure all of your library files like the example below:

<?php // liba.inc

if (defined('__LIBA_INC')) return;
define('__LIBA_INC', 1);

/*
 * Library code here.
 */

?>

Then you just need to include this library in any script where it is used. Libraries may also need to
include other libraries. Your include statements look the same as normal:

include(‘liba.inc’);

This way, the calling scripts don't have to do any of the work. Unfortunately return won't work from
require()d files in PHP4 anymore. So, you will need to use include() instead. You can still use
require() in PHP3.

3.1.3.2 Design Patterns for Web Programming

Some of the best web programming techniques are captured in the Web Programming Design Patterns.
They are high level descriptions of the best solutions to common web programming problems. You
can read more about these here:

http://www.e-gineer.com/articles/design-patterns-in-web-
programming.phtml

4 Speed of Coding, Not Speed of Code

4.1.1 Introduction

The hardest thing for me to learn as a web programmer was to change the way I wrote code. Coming
from a product development and university background the emphasis is on doing it the right way.
Products have to be as close to perfect as possible before release. School assignments need to be
perfect.

 Page 9 Nathan Wallace

The web is different. Here it is more important to finish a project as soon as possible than it is to get it
perfect first time. Web sites are evolutionary, there is no freeze date after which it is difficult to make
changes.

I like to think of my web sites as prototypes. Everyday they get a little closer to being finished. I can
throw together 3 pages in the time it would take to do one perfectly. It’s usually better on the web to
release all three and then decide where your priorities lie. Speed is all important.

So, everything you do as a programmer should be focused on the speed at which you are producing
code (pages).

4.1.2 Optimizations to Satisfy Your Hacker Instinct

4.1.2.1 Introduction

This section describes some tricks you can use to speed up your PHP code. Most of them make very
little difference when compared to the time taken for parsing, database queries and sending data down a
modem.

They are useful to know both so you can feel you are optimizing your code and to aid your
understanding of certain PHP concepts.

4.1.2.2 Use Inline Tags Instead of echo

The PHP interpreter gets invoked once for each page. Whatever is not contained in PHP tags like <?
?> is just echoed back out by the interpreter.

As a result it is faster to use lots of little in-line tags than it is to build massive strings or use echo
statements.

Let’s use the timing functions we developed above to run a quick test.

<h2>Test Inline Tags vs echo</h2>
<p>

<?php ss_timing_start('echo'); ?>
<?php
for ($i=0; $i<1000; $i++) {
 echo $i."
";
}
?>
<?php ss_timing_stop('echo'); ?>

<p>

<?php ss_timing_start(str); ?>
<?php
$str = '';
for ($i=0; $i<1000; $i++) {
 $str .= $i."
";
}
echo $str;
?>
<?php ss_timing_stop(str); ?>

<p>

<?php ss_timing_start(inline); ?>
<?php

 Page 10 Nathan Wallace

for ($i=0; $i<1000; $i++) {
?>
123

<?php
}
?>
<?php ss_timing_stop(inline); ?>

<p>

<h2>Results</h2>

echo - <?php echo ss_timing_current('echo') ?>

<p>

str - <?php echo ss_timing_current(str) ?>

<p>
inline - <?php echo ss_timing_current(inline) ?>

The results of this test averaged out to be:

echo - 0.063347 secs
str - 0.083996 secs
inline - 0.035276 secs

We can see that inline is clearly the fastest technique. But, when we consider that we only save 0.03
milliseconds each time we use it, the method you use to echo your values is pretty much irrelevant. A
moral victory at best…

4.1.2.3 str_replace vs ereg_replace

It’s predictable that the simple str_replace() will be significantly faster than ereg_replace. A quick test
also reveals the time difference when we introduce a simple pattern match into the ereg_replace.

<h2>Test str_replace vs ereg</h2>
<p>

<?php $string = 'Testing with <i>emphasis</i>'; ?>

<?php ss_timing_start('str_replace'); ?>
<?php
for ($i=0; $i<1000; $i++) {
 str_replace('i>', 'b>', $string).'
';
}
?>
<?php ss_timing_stop('str_replace'); ?>

<p>

<?php ss_timing_start(ereg); ?>
<?php
for ($i=0; $i<1000; $i++) {
 ereg_replace('i>', 'b>', $string).'
';
}
?>
<?php ss_timing_stop(ereg); ?>

<p>

 Page 11 Nathan Wallace

<?php ss_timing_start(ereg_pattern); ?>
<?php
for ($i=0; $i<1000; $i++) {
 ereg_replace('<([/]*)i>', '<\1b>', $string).'
';
}
?>
<?php ss_timing_stop(ereg_pattern); ?>

<p>

<h2>Results</h2>

str_replace - <?php echo ss_timing_current(str_replace) ?>

<p>

ereg - <?php echo ss_timing_current(ereg) ?>

<p>
ereg_pattern - <?php echo ss_timing_current(ereg_pattern) ?>

Here are the results. Notice how using the simple pattern in ereg_replace has almost doubled the
execution time.

str_replace - 0.089757
ereg - 0.149406
ereg_pattern - 0.248881

Again, the difference of these functions relative to one another is noticable but in the context of
returning a web page basically irrelevant.

4.1.2.4 Quoted Strings

PHP parses double quoted strings to look for variables. Any variable contained in a double quoted
string will be resolved and inserted into the string at that location.

Single quoted strings are printed exactly as they appear. They are not parsed.

So, you should use single quoted strings where possible to reduce the work to be done by the parser.

4.1.3 Optimizations that Really Make a Difference

4.1.3.1 Reduce queries

Accessing the database is expensive. Persistent connections reduce a lot of the overhead by removing
the need to connect with each request, but performing queries is still a high cost exercise compared
with the execution of PHP code.

This is particularly true due to locking issues in the database. In testing you might see that individual
queries to the database are actually quite fast. In production you will see the database get overloaded
with many small queries as it struggles to satisfy a single large query.

4.1.3.2 Optimize your Queries

The type of queries you make to the database will have a dramatic effect on the speed of your
application. Making smart use of column indexes is essential. Small changes to your SQL can result in
dramatic time savings.

 Page 12 Nathan Wallace

4.1.3.3 Avoid joins

Joins are expensive. The minute you do a join the size of the resulting table becomes the multiple of
the tables being joined.

Lets look at some quick statistics to give you a feel for the cost of joins. I have created two tables, foo
and big_foo. Foo contains a single column with the numbers 1-1000. Big_foo contains a single
column with the numbers 1-1,000,000. So, big_foo is equivalent in size to the join of foo with itself.

$db->query(“select * from foo”);
0.032273 secs

$db->next_record();
0.00048999999999999 secs
$db->query(“insert into foo values (NULL)”);
0.019506 secs

$db->query(“select * from foo as a, foo as b”);
17.280596 secs

$db->query(“select * from foo as a, foo as b where a.id >
b.id”);
14.645251 secs

$db->query(“select * from foo as a, foo as b where a.id =
b.id”);
0.041269 secs

$db->query(“select * from big_foo”);
25.393672 secs

We can see from the results above that selecting all rows from the join of a 1000 row table is only
marginally quicker than selecting all rows from a 1,000,000 row table.

It is worth noting that a join that returns a small number of rows is still very fast.

4.1.3.4 Make your pages smaller

Let’s consider a typical user on a 56Kbps modem. On a good connection, they can download pages at
approximately 6kBps. We were looking at optimizations above that save approximately 0.15 seconds
on an extremely complex page. Reducing the size of your page by about 900 bytes will give you an
equivalent saving.

Usually response times for the user are gained most easily through examination of your HTML and
optimizing the use of images.

4.1.4 Gotchas

4.1.4.1 Introduction

This section will be quite small since most PHP developers are now making the switch to PHP4. The
parsing engine has been completely rewritten and has removed a lot of the annoying quirks that can
bring a lot of grief to both newcomers and experienced PHP programmers.

4.1.4.2 Arrays of Objects

PHP3 does not handle arrays of objects very well. The following code will NOT parse correctly:

$a[$i]->foo();

 Page 13 Nathan Wallace

PHP does not like the object reference after the array index brackets. Instead you need to use a
temporary variable:

$tmp = $a[$i];
$tmp->foo();

4.1.4.3 Calling overridden methods

PHP3 has support for classes and inheritence. You can even override functions in subclasses.
Problems occur when you need to call the overridden function in the parent class. Unfortunately this is
quite common as you may want to define the function in the subclass as being the original function plus
some extra work. If that explanation has made you completely confused take a look at the example
below.

There is a (hacky) work around. The basic idea is to define a unique method name in each class for the
same method. Then the extended class can reference directly to the unique method name in its parent.

To achieve the appearance of polymorphism when using the class you just create a method with the
desired name in every class definition that calls the unique method name in that class. An example will
explain it better:

class A {
 function A() { }

 function A_dspTwo() {
 echo "A: Two
";
 }

 function dspTwo() {
 return $this->A_dspTwo(); // call the class A dspTwo
method
 }
}

class B extends A {
 function B() {
 $this->A(); // call the parent constructor.
 }

 function B_dspTwo() {
 $this->A_dspTwo();
 echo "B: Two
";
 }

 function dspTwo() {
 return $this->B_dspTwo();
 }
}

$object = new B();
$object->dspTwo();

This is supported by the Zend engine and will thus be supported in PHP 4.0.

4.1.4.4 Trouble with Types

PHP is a loosely typed language. That means that the variables actually do have types, but in general
you do not need to worry about them. PHP will automatically convert variables between types when
required.

 Page 14 Nathan Wallace

Unfortunately there are some cases where you need to manually convert the type of variables. This can
lead to confusion because they are very rare. Below is an example page to highlight how rare these
cases can be:

<h2>Test String Integer Comparisons</h2>

<?php
$a = 1;
$b = '2';
if ($a < $b) {
 echo ss_as_string($a).' < '.ss_as_string($b);
}
else {
 echo ss_as_string($a).' >= '.ss_as_string($b);
}
?>

<p>

<?php
$a = 2;
$b = '2';
if ($a == $b) {
 echo ss_as_string($a).' == '.ss_as_string($b);
}
else {
 echo ss_as_string($a).' != '.ss_as_string($b);
}
?>

<p>

<?php
$a = array(2, '1');
if ($a[0] > $a[1]) {
 echo ss_as_string($a[0]).' > '.ss_as_string($a[1]);
}
else {
 echo ss_as_string($a[0]).' <= '.ss_as_string($a[1]);
}
?>

<p>

<?
$a = array('2', '1');
echo ss_as_string($a).'
sorts to
';
sort($a);
echo ss_as_string($a);
?>

<p>

<?
$a = array(2, 1);
echo ss_as_string($a).'
sorts to
';
sort($a);
echo ss_as_string($a);
?>

<p>

 Page 15 Nathan Wallace

<?
$a = array('2', 1);
echo ss_as_string($a).'
sorts to
';
sort($a);
echo ss_as_string($a);
?>

<p>

<?
$a = array(2, '1');
echo ss_as_string($a).'
sorts to
';
sort($a);
echo ss_as_string($a);
?>

Here is the output from these tests. Notice that all the tests work correctly except for the last one,
sorting array(2, ‘1’). We can even sort array(‘2’, 1) without problems. The error occurs when we have
multiple types in an array passed to the sort function with the order number then string.

Long(1) < String(2)

Long(2) == String(2)

Long(2) > String(1)

Array(
0 ==> String(2)
1 ==> String(1)
)
sorts to
Array(
0 ==> String(1)
1 ==> String(2)
)

Array(
0 ==> Long(2)
1 ==> Long(1)
)
sorts to
Array(
0 ==> Long(1)
1 ==> Long(2)
)

Array(
0 ==> String(2)
1 ==> Long(1)
)
sorts to
Array(
0 ==> Long(1)
1 ==> String(2)
)

Array(
0 ==> Long(2)
1 ==> String(1)
)

 Page 16 Nathan Wallace

sorts to
Array(
0 ==> Long(2)
1 ==> String(1)
)

4.1.5 Tricky Concepts

4.1.5.1 Include vs Require

Include() and require() are slightly different. Basically, include is conditional and require is not.

This would include 'somefile' if $something is true:

if($something){
 include("somefile");
}

This would include 'somefile' unconditionally

if($something){
 require("somefile");
}

This would have VERY strange effects if somefile looked like:

} echo "Ha! I'm here regardless of something:
$something
\n";
if (false) {

Another interesting example is to consider what will happen if you use include() or require() inside a
loop.

$i = 1;
while ($i < 3) {
 require(“somefile.$i”);
 $i++;
}

Using require() as above will cause the same file to be used every single iteration. Clearly this is not
the intention since the file name should be changing in each iteration of the loop. We need to use
include() as below. Include() will be evaluated at each iteration of the loop including somefile.0,
somefile.1, etc as expected.

$i = 1;
while ($i < 3) {
 include(“somefile.$i”);
 $i++;
}

The only interesting question that remains is what file will be required above. It turns out that PHP
uses the value of $i when it reads the require() statement for the first time. So, the require() loop above
will include something.1 two times. The include() loop includes something.1 and something.2.

4.1.5.2 Echo vs Print

There is a difference between the two, but speed-wise it should be irrelevant which one you use. print()
behaves like a function in that you can do:

$ret = print "Hello World";

 Page 17 Nathan Wallace

and $ret will be 1.

That means that print can be used as part of a more complex expression where echo cannot. print is
also part of the precedence table which it needs to be if it is to be used
within a complex expression. It is just about at the bottom of the precendence list though. Only ","
AND, OR and XOR are lower.

echo is marginally faster since it doesn't set a return value if you really want to get down to the nitty
gritty.

If the grammar is:

echo expression [, expression[, expression] ...]

Then

echo (expression, expression)

is not valid. (expression) reduces to just an expression so this would be valid:

echo ("howdy"),("partner");

but you would simply write this as:

echo "howdy","partner";

if you wanted to use two expressions. Putting the brackets in there serves no purpose since there is no
operator precendence issue with a single expression like that.

4.1.6 Scripting with PHP

It’s easy to forget that PHP is a complete programming language that can be used for more than just
generating web pages. I was once writing a script to receive emails and place them in a database. I
was fumbling around in Perl and shell scripts until it dawned on me to install PHP for scripting. 30
minutes later the emails were churning in.

Installing PHP for scripting on unix is easy. Just remove the –with-apache directive from your
configure options. This will create the PHP binary that can be used to run scripts directly from the
command line. There are complete instructions for installing PHP for scripting here:

http://www.e-gineer.com/instructions

You can then write your script like any other shell script. Here is an example:

#!/usr/local/bin/php –q
<?php
// your php code here
?>

Once you start scripting with PHP the possibilities are endless. It’s a fully featured language, you can
do anything you would normally do in a shell script.

4.1.7 Extreme Programming

We are getting a little off topic here, but I believe programming techniques are an important part of
being a good programmer.

My working style is based on the ideas of Extreme Programming. >From the Extreme Programming
web site:

 Page 18 Nathan Wallace

XP improves a software project in four essential ways; communication, simplicity, feedback, and
courage. XP programmers communicate with their customers and fellow programmers. They keep
their design simple and clean. They get feedback by testing their software starting on day one.
They deliver the system to the customers as early as possible and implement changes as
suggested. With this foundation XP programmers are able to courageously respond to changing
requirements and technology.

The focus on speed and change is what makes Extreme Programming so suitable for web projects.

You can learn more about Extreme Programming here:

http://www.extremeprogramming.org

5 Getting Help

There are a number of resources available for PHP help. The PHP community is generous with its time
and assistance. Make use of their contributions and use the time you save to help others.

The PHP Knowledge Base is a growing collection of PHP related information. It captures the
knowledge from the mailing list into a complete collection of searchable, correct answers. Of course, I
may be a little biased.

http://php.faqts.com

The PHP manual is a great reference point for information on functions or language constructs.

http://www.php.net/manual

If you can’t find the relevant information in the PHP Knowledge Base your next stop should be the
mailing list archives. There are thousands of questions on the mailing list every month so you can be
almost certain your question has been asked before. Prepare to do some wading.

http://www.progressive-comp.com/Lists/?l=php3-general&r=1&w=2

If all that searching fails to help, try asking on the mailing list. A lot of PHP gurus reside there.

php3@lists.php.net

If all these on-line resources aren’t enough or you hate reading from a computer screen, you might be
interested in one of the many PHP books that are now available.

http://www.php.net/books.php3

http://php.faqts.com/
http://php.faqts.com/
http://www.progressive-comp.com/Lists/?l=php3-general&r=1&w=2
mailto:php3@lists.php.net
http://php.faqts.com/

	PHP: Hackers Paradise
	Introduction
	Laziness is a Virtue
	Introduction
	Use Other People’s Code
	Helpful Functions and Classes
	Introduction
	Database Abstraction
	Session Management
	Debugging Variables
	Log Functions
	Optimization
	Debugging and Optimizing Database Operations

	Chameleon Coding
	Introduction
	Structuring your PHP Code
	Introduction
	Dynamic, Hackable Frontend Code
	Stable, Structured Backend Code

	Coding Techniques
	Include Files
	Design Patterns for Web Programming

	Speed of Coding, Not Speed of Code
	Introduction
	Optimizations to Satisfy Your Hacker Instinct
	Introduction
	Use Inline Tags Instead of echo
	str_replace vs ereg_replace
	Quoted Strings

	Optimizations that Really Make a Difference
	Reduce queries
	Optimize your Queries
	Avoid joins
	Make your pages smaller

	Gotchas
	Introduction
	Arrays of Objects
	Calling overridden methods
	Trouble with Types

	Tricky Concepts
	Include vs Require
	Echo vs Print

	Scripting with PHP
	Extreme Programming

	Getting Help

