
Prev Page Migrating Apache JServ Applications to Tomcat Next Page

ApacheCon Europe 2000

Session T06:

Migrating Apache JServ Applications To
Tomcat

24 October 2000 -- 14h00-15h00

Craig R. McClanahan

Sun Microsystems, Inc.

Craig.McClanahan@eng.sun.com

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Migrating Apache JServ Applications to Tomcat

file:///C|/APACHE~1/PROCEE~1/T06/index.html [9/23/2000 6:51:46 PM]

mailto:Craig.McClanahan@eng.sun.com

Prev Page Session Outline Next Page

New Deployment Options●

Servlet API Versions

Changes From 2.0 to 2.1❍

Changes From 2.1 to 2.2❍

Changes from 2.2 to 2.3❍

●

Web Applications●

Server Configuration●

References●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Session Outline

file:///C|/APACHE~1/PROCEE~1/T06/outline.html [9/23/2000 6:51:52 PM]

Prev Page New Deployment Options Next Page

Apache JServ has standard support only for running with Apache●

Tomcat can run with the following web servers:

Apache (1.3.x now, 2.x soon)❍

AOLServer❍

iPlanet (Netscape) Web Server❍

Microsoft IIS and PWS❍

●

In-process versus out-of-process deployment●

Tomcat can run stand alone●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

New Deployment Options

file:///C|/APACHE~1/PROCEE~1/T06/deployment.html [9/23/2000 6:51:55 PM]

Prev Page Servlet API Versions Next Page

Apache JServ is based on Version 2.0 of the Servlet API●

Version 2.1 (11/98) - Significant API changes●

Version 2.2 (08/99) - Introduces Web Applications●

Version 2.3 (08/00 public draft) - Additional API enhancements●

Jason Hunter's JavaWorld articles (links on the References slide at the end of the presentation) on
version 2.1 and 2.2 should be considered required reading for anyone planning a migration

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Servlet API Versions

file:///C|/APACHE~1/PROCEE~1/T06/apiversions.html [9/23/2000 6:52:02 PM]

Prev Page Servlet API Version 2.1 Next Page

Servlet API Version 2.1

Final Release - November, 1998

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Servlet API Version 2.1

file:///C|/APACHE~1/PROCEE~1/T06/21-intro.html [9/23/2000 6:52:05 PM]

Prev Page Version 2.1 - Major Additions Next Page

Servlet context attributes for sharing global application objects:

ServletContext.getAttribute(String name)❍

ServletContext.getAttributeNames()❍

ServletContext.removeAttribute(String name)❍

ServletContext.setAttribute(String name, Object value)❍

●

In the init() method of a startup
servlet:

 ConnectionPool myPool =
 new ConnectionPool(...);
 ServletContext sc = getServletContext();
 sc.setAttribute("pool", myPool);

In a servlet that needs to use the
connection pool:

 ServletContext sc = getServletContext();
 ConnectionPool myPool = (ConnectionPool)
 sc.getAttribute("pool");
 Connection conn = myPool.allocate();
 ...
 conn.close();

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.1 - Major Additions

file:///C|/APACHE~1/PROCEE~1/T06/21-major-adds-1.html [9/23/2000 6:52:12 PM]

Prev Page Version 2.1 - Major Additions Next Page

Servlet request attributes for passing per-request state information:

ServletRequest.getAttribute(String name) was already present❍

ServletRequest.getAttributeNames()❍

ServletRequest.removeAttribute(String name)❍

ServletRequest.setAttribute(String name, Object value)❍

●

In the servlet that processes a request and
forwards control to a presentation servlet:

 Hashtable hashtable =
 database.getResults(...);
 request.setAttribute("results", hashtable);

In the servlet that will use the results to
create the HTML response to the user:

 Hashtable hashtable = (Hashtable)
 request.getAttribute("results");

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.1 - Major Additions

file:///C|/APACHE~1/PROCEE~1/T06/21-major-adds-2.html [9/23/2000 6:52:14 PM]

Prev Page Version 2.1 - Major Additions Next Page

Servlet context resource abstraction:

ServletContext.getResource(String path)❍

ServletContext.getResourceAsStream(String path)❍

●

To load a properties file from within the
document root of this application:

 String name = "/myproperties.properties";
 ServletContext sc = getServletContext();
 InputStream is =
 sc.getResourceAsStream(name);
 Properties props = new Properties();
 props.load(is);
 is.close();

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.1 - Major Additions

file:///C|/APACHE~1/PROCEE~1/T06/21-major-adds-3.html [9/23/2000 6:52:17 PM]

Prev Page Version 2.1 - Major Additions Next Page

RequestDispatcher for programmatic forwarding and nesting:

ServletContext.getResourceDispatcher(String path)❍

RequestDispatcher.forward(ServletRequest request, ServletResponse response)❍

RequestDispatcher.include(ServletRequest request, ServletResponse response)❍

●

In a business servlet that performs database
lookups:
 Hashtable hashtable = new Hashtable();
 hashtable.put(...); // Save results we need
 request.setAttribute("results", hashtable);
 RequestDispatcher rd = getServletContext().
 getRequestDispatcher("/servlet/showResults");
 rd.forward(request, response);

In a portal servlet that assembles its total
response from individual dynamic components:
 RequestDispatcher rd = getServletContext().
 getRequestDispatcher("/servlet/NewsTicker");
 rd.include(request, response);

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.1 - Major Additions

file:///C|/APACHE~1/PROCEE~1/T06/21-major-adds-4.html [9/23/2000 6:52:19 PM]

Prev Page Version 2.1 - Deprecations Next Page

The following methods have been deprecated and return null and empty Enumerations:

ServletContext.getServlet(String name)❍

ServletContext.getServletNames()❍

ServletContext.getServlets()❍

●

How do you deal with this change? It depends on what you were using getServlet() for:

Shared data access - Extract the data into new Java objects stored as Servlet Context
attributes

❍

Access to shared methods - Extract the methods into new Java objects stored as Servlet
Context attributes

❍

Merged input - Use RequestDispatcher.include() for programmatic
server-side includes

❍

Filtered output - Pass data as request attributes to the next stage via
RequestDispatcher.forward()

❍

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.1 - Deprecations

file:///C|/APACHE~1/PROCEE~1/T06/21-major-drops-1.html [9/23/2000 6:52:22 PM]

Prev Page Version 2.1 - Deprecations Next Page

The following method has been deprectated and returns null:

HttpSession.getSessionContext()❍

●

In addition, the entire HttpSessionContext class has been deprecated●

How do you deal with this change?

Create a class that implements HttpSessionBindingListener❍

Make sure an object of this class is added to every new session❍

When valueBound() is called, add the corresponding session to a private collection,
perhaps stored as a servlet context attribute

❍

When valueUnbound() is called, remove the corresponding session from the private
collection

❍

●

In version 2.3, you can also use an Application Events Listener to manage your private session
collection

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.1 - Deprecations

file:///C|/APACHE~1/PROCEE~1/T06/21-major-drops-2.html [9/23/2000 6:52:25 PM]

Prev Page Version 2.1 - Minor Changes Next Page

Minor API Additions:

Logging improvements❍

Multi-valued request parameters❍

Servlet API version values❍

ServletException takes an optional root cause argument❍

Programmatic control over session timeouts❍

●

Minor API Changes:

Spelling changes (Url --> URL)❍

Session attribute methods (getValue() --> getAttribute()) for consistency❍

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.1 - Minor Changes

file:///C|/APACHE~1/PROCEE~1/T06/21-minor-changes-1.html [9/23/2000 6:52:28 PM]

Prev Page Servlet API Version 2.2 Next Page

Servlet API Version 2.2

Final Release - August, 1999

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Servlet API Version 2.2

file:///C|/APACHE~1/PROCEE~1/T06/22-intro.html [9/23/2000 6:52:30 PM]

Prev Page Version 2.2 - Additions Next Page

ServletContext initialization parameters

ServletContext.getInitParameter(String name)❍

ServletContext.getInitParameterNames()❍

●

Internationalization improvements

ServletRequest.getLocale()❍

ServletRequest.getLocales()❍

ServletResponse.getLocale()❍

ServletResponse.setLocale()❍

●

Servlet response buffering support

ServletResponse.flushBuffer()❍

ServletResponse.getBufferSize()❍

ServletResponse.isCommitted()❍

ServletResponse.reset()❍

ServletResponse.setBufferSize()❍

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.2 - Additions

file:///C|/APACHE~1/PROCEE~1/T06/22-major-adds-1.html [9/23/2000 6:52:33 PM]

Prev Page Version 2.2 - Additions Next Page

Additional support for request dispatchers

ServletConfig.getServletName()❍

ServletContext.getNamedDispatcher(String name)❍

ServletRequest.getRequestDispatcher(String path)❍

●

Additional request properties

ServletRequest.isSecure()❍

HttpServletRequest.getContextPath()❍

HttpServletRequest.getHeaders(String name)❍

HttpServletRequest.getUserPrincipal()❍

HttpServletRequest.isUserInRole(String role)❍

●

Additional response methods

HttpServletResponse.addDateHeader(String name, long value)❍

HttpServletResponse.addHeader(String name, String value)❍

HttpServletResponse.addIntHeader(String name, int value)❍

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.2 - Additions

file:///C|/APACHE~1/PROCEE~1/T06/22-major-adds-2.html [9/23/2000 6:52:36 PM]

Prev Page Servlet API Version 2.3 Next Page

Servlet API Version 2.3

Initial Public Draft - August, 2000

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Servlet API Version 2.3

file:///C|/APACHE~1/PROCEE~1/T06/23-intro.html [9/23/2000 6:52:39 PM]

Prev Page Version 2.3 - Additions Next Page

WARNING - Based on Public Draft 1 - Changes are possible before final version is released●

Requires a Java2 (JDK 1.2 or later) platform to run on●

Internationalization improvements

Defined rules for containers to calculate return values for
ServletRequest.getLocale()/getLocales()

❍

ServletRequest.setCharacterEncoding(String encoding)❍

●

Request dispatcher improvements

New request and response wrapper classes are available❍

Arguments to forward() and include() can be the original objects, or wrappers
around the original objects

❍

Query string parameters on the request dispatcher path are aggregated with request
parameters from the original request

❍

●

Additional request methods

ServletRequest.getParameterMap()❍

HttpServletRequest.getRequestURL()❍

●

HttpUtils class is deprecated (but still available)●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.3 - Additions

file:///C|/APACHE~1/PROCEE~1/T06/23-major-adds-1.html [9/23/2000 6:52:42 PM]

Prev Page Version 2.3 - Application Events Next Page

A Web Application corresponds to a ServletContext, and will be discussed in more detail later●

You can register event listener classes that are notified on the following events related to the
entire application (ServletContext):

Application startup (prior to the first request)❍

Application shutdown (after the last request)❍

Added, removed, or replaced servlet context attributes❍

●

Application events are useful for initializing shared resources such as connection pools at
application start time

●

You can register event listener classes that are notified on the following events related to
individual HttpSession instances:

Session creation❍

Session invalidation or timeout❍

Added, removed, or replaced session attributes❍

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Version 2.3 - Application Events

file:///C|/APACHE~1/PROCEE~1/T06/23-major-adds-2.html [9/23/2000 6:52:44 PM]

Prev Page Version 2.3 - Servlet Filtering Next Page

A Filter is an application-defined component that participates in request processing before and
after the servlet that is ultimately invoked

Logging, auditing, and performance measurement❍

●

Filters are mapped to request URI patterns (such as /mydir/* or *.xml) and/or individual
servlets

●

Filters can optionally complete the response and return, without invoking the next filter or the
servlet mapped to this request URI

Application-level authentication❍

Remote IP address filtering❍

●

Filters can optionally wrap the request and/or response objects passed on to the next filter or the
servlet mapped to this request URI

Content transformation (XSLT) or tokenization (SAX/DOM)❍

Data compression and decompression❍

Encryption and decryption❍

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Version 2.3 - Servlet Filtering

file:///C|/APACHE~1/PROCEE~1/T06/23-major-adds-3.html [9/23/2000 6:52:47 PM]

Prev Page Version 2.3 - Servlet Filtering Next Page

An example performance monitoring filter●

public class ExampleFilter implements Filter {

 private FilterConfig filterConfig = null;
 public FilterConfig getFilterConfig() {
 return (this.filterConfig);
 }
 public void setFilterConfig
 (FilterConfig filterConfig) {
 this.filterConfig = filterConfig;
 }

 public void doFilter(ServletRequest request,
 ServletResponse response) throws
 IOException, ServletException {
 long startTime =
 System.currentTimeMills();
 Filter next = filterConfig.getNext();
 next.doFilter(request, response);
 long stopTime =
 System.currentTimeMillis();
 ServletContext sc =
 filterConfig.getServletConfig();
 sc.log("Request took " +
 (stopTime - startTime) +
 " milliseconds");
 }

}

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Version 2.3 - Servlet Filtering

file:///C|/APACHE~1/PROCEE~1/T06/23-major-adds-4.html [9/23/2000 6:52:49 PM]

Prev Page Web Applications Next Page

Introduction To Web Applications

Introduced in Servlet API Version 2.2

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Web Applications

file:///C|/APACHE~1/PROCEE~1/T06/webapps-intro.html [9/23/2000 6:52:51 PM]

Prev Page Web Apps - Overview Next Page

A Web Application is a collection of servlets, JavaServer Pages (JSPs), HTML pages, Java
classes and JAR files, and other resources that can be bundled and run on multiple containers
from multiple vendors.

●

Standard deployment format - the Web Application Archive (WAR) file●

Standard configuration mechanism - the deployment descriptor (web.xml) file●

Attached to a "context path" (request URI prefix), such as /catalog, by the servlet container
administrator

●

If the context path is "" (empty string), this web application represents an entire web site●

Corresponds one-to-one with a ServletContext●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Web Apps - Overview

file:///C|/APACHE~1/PROCEE~1/T06/webapps-1.html [9/23/2000 6:52:53 PM]

Prev Page Web Apps - Deployment Next Page

A Web Application Archive (WAR) file is a JAR file with contents in a standardized directory
layout:

/WEB-INF/* - Directory containing configuration files and resources for this application,
not available to web clients

❍

/WEB-INF/web.xml - The deployment descriptor for this web application❍

/WEB-INF/classes/ - Java classes (including servlets) and resources that are not
packaged in JAR files

❍

/WEB-INF/lib/*.jar - Java classes (including servlets) and resources that have been
packaged in JAR files

❍

/* - Static content (such as HTML pages and images) that are visible at the "document
root" of this application

❍

●

A typical web application will have a "welcome" file named /index.html or /index.jsp
in the top level directory

●

The servlet container MUST accept a WAR file to be deployed, and MAY expand it into the
corresponding unpacked directory structure for execution (Tomcat currently does this)

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Web Apps - Deployment

file:///C|/APACHE~1/PROCEE~1/T06/webapps-2.html [9/23/2000 6:52:56 PM]

Prev Page Web Apps - Security Next Page

Servlet containers now support the concept of container managed security so that applications
do not need to deal with this issue

●

Interface to user database is container specific (in Tomcat, it is a pluggable interface called a
Realm)

●

Four standard mechanisms for authenticating users

HTTP BASIC Authentication - Pop-up username/password prompt like protected areas
unde Apache

❍

HTTP DIGEST Authentication - Similar to BASIC Authentication but username and
password are encrypted before transmission (requires Tomcat 4.0)

❍

Form Based Authentication - Application provides login and error pages to be used by
the container

❍

SSL Client Certificate Authentication - Use client certificates provided on SSL
connections (requires Tomcat 4.0)

❍

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Web Apps - Security

file:///C|/APACHE~1/PROCEE~1/T06/webapps-3.html [9/23/2000 6:52:59 PM]

Prev Page Web Apps - Security Next Page

Subsets of the URI space for this application are protected by security constraints that can limit
access based on any of the following criteria

Authenticated user❍

Authenticated user who possesses a specific role❍

Specified HTTP method (GET, POST, PUT, ...)❍

Require secure (SSL) connection❍

●

Roles can have arbitrary meaning, but are typically mapped to the Group concept in the
underlying security technology

●

In addition to container-managed access to particular URIs, servlets can make security-related
decisions about what content to present

HttpServletRequest.getRemoteUser() - Returns the username for the authenticated user❍

HttpServletRequest.getUserPrincipal() - Returns the java.security.Principal
object for the authenticated user

❍

HttpServletRequest.isUserInRole(String role) - Returns true if the authenticated user
is associated with (possesses) the specified role

❍

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Web Apps - Security

file:///C|/APACHE~1/PROCEE~1/T06/webapps-4.html [9/23/2000 6:53:01 PM]

Prev Page Web Apps - Request Mapping Next Page

The servlet container selects a servlet to process each request by parsing the Request URI
according to a standard set of rules

●

First, it matches the beginning of the Request URI against the context paths of all registered
applications

The longest possible match wins in case of overlaps❍

If there is no match based on context path, the "root" application (the one mapped to a
context path of ""), if any, is selected

❍

●

Next, the container strips off the context path, and compares the remainder of the Request URI
against the Servlet Mapping rules for the selected web application, as follows, until a match is
found:

Check for an exact match against each of the registered servlet mappings ("exact match")❍

Check mappings that end with "/*" and match up to that point ("path match")❍

Check for mappings of the form "*.xxx", and match the last path component of the request
URI ("extension match")

❍

If no other match is found, give this request to the default servlet (if any) for this
application, indicated by a mapping to "/" ("default match")

❍

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Web Apps - Request Mapping

file:///C|/APACHE~1/PROCEE~1/T06/webapps-5.html [9/23/2000 6:53:04 PM]

Prev Page Web Apps - Request Mapping Next Page

Example request mapping patterns and corresponding results●

Request Mapping Patterns

Path Pattern Servlet To Select

/foo/bar/* servlet1

/baz/* servlet2

/catalog servlet3

*.bop servlet4

NOTE: The match for /catalog is exact
because

no wildcard is specified

Request Mapping Results

Incoming Path Selected Servlet

/foo/bar/index.html servlet1

/foo/bar/index.bop servlet1

/baz servlet2

/baz/index.html servlet2

/catalog servlet3

/catalog/index.html "Default" servlet

/catalog/racecar.bop servlet4

/index.bop servlet4

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Web Apps - Request Mapping

file:///C|/APACHE~1/PROCEE~1/T06/webapps-6.html [9/23/2000 6:53:06 PM]

Prev Page Request Mapping Access Methods Next Page

As part of the request mapping process, a servlet container divides the request URI into four
portions, and provides access to those portions through method calls on HttpServletRequest:

getContextPath() - Returns the context path of the web application processing this request
("" for the root context)

❍

getServletPath() - Returns the portion of the request URI, starting with the "/"
immediately after the context path, that was used to select the servlet to process this
request

❍

getPathInfo() - Returns any portion of the request URI that is after the servlet path, and
before the query string (if any)

❍

getQueryString() - Returns any portion of the request URI after an unencoded "?"
character (which may also be parsed into request parameters if the syntax is correct)

❍

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Request Mapping Access Methods

file:///C|/APACHE~1/PROCEE~1/T06/webapps-7.html [9/23/2000 6:53:08 PM]

Prev Page Request Mapping Results Next Page

Each type of request mapping described on the preceding slides results in the following values
for servlet path and path info:

Exact Match - Servlet path will contain the entire request URI after the context path and
before any query string, and path info will be null

❍

Path Match - Servlet path will contain the same characters as the path pattern minus the
trailing "/*", and path info will be anything after that or null

❍

Extenstion Match - Servlet path will contain the entire request URI after the context path
and before any query string, and path info will be null (because extension matching
works only on the last path element)

❍

Default Match - Servlet path will contain the entire request URI after the context path and
before any query string, and path info will be null

❍

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Request Mapping Results

file:///C|/APACHE~1/PROCEE~1/T06/webapps-8.html [9/23/2000 6:53:11 PM]

Prev Page Tomcat Standard Mappings Next Page

Tomcat defines several default request mapping patterns (not required by the Servlet API
Specification) to support standard facilities:

/servlet/* - Executes the "invoker" servlet, that allows you to execute servlets by their
class name even if they are not registered in the configuration file

❍

*.jsp - JSP pages are processed by the Jasper servlet that compiles and/or executes them❍

/ - The default servlet for each web application (unless changed by the user) uses the
specified path to locate a static resource (typically an HTML page or image file) that is
returned as the response to this request

❍

●

How these mappings are defined, and how they can be changed, will be discussed in the
Configuration section

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Tomcat Standard Mappings

file:///C|/APACHE~1/PROCEE~1/T06/webapps-9.html [9/23/2000 6:53:13 PM]

Prev Page Configuration Next Page

Configuration

Web Application Configuration (Portable)

Tomcat Configuration (Specific)

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Configuration

file:///C|/APACHE~1/PROCEE~1/T06/configure-intro.html [9/23/2000 6:53:15 PM]

Prev Page Web Application Configuration Next Page

Web applications are configured using the deployment descriptor (/WEB-INF/web.xml) file,
using XML syntax

●

The document type description (DTD) for the deployment descriptor is listed in the Servlet API
Specification, and included with Tomcat in the $TOMCAT_HOME/conf directory

●

The deployment descriptor you prepare is "validated" against this DTD, so you must obey the
rules described there - most easily accomplished by using an XML-aware editor

●

The following configuration elements (among others) are included in the deployment descriptor:

Servlet context initialization parameters❍

Servlets (name, Java class, and initialization parameters)❍

Servlet mappings (request path patterns and the corresponding servlets to be executed)❍

Welcome file list❍

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Web Application Configuration

file:///C|/APACHE~1/PROCEE~1/T06/configure-web-1.html [9/23/2000 6:53:17 PM]

Prev Page WEB.XML Basic Syntax Next Page

The deployment descriptor follows the standard XML approach of declaring the DTD it
conforms to, and uses the web-app top-level element

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>

 <!-- Configuration elements go here -->

</web-app>

●

Examples for each configuration element will only show that element●

The order of elements we are walking through is the order required by the DTD (all elements of
each type appear together)

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

WEB.XML Basic Syntax

file:///C|/APACHE~1/PROCEE~1/T06/configure-web-2.html [9/23/2000 6:53:19 PM]

Prev Page Context Init Parameters Next Page

Context initialization parameters should be used for values that apply to the application as a whole,
or to configure global resources:

<context-param>
 <param-name>dbpool.driver</param-name>
 <param-value>oracle.jdbc.driver.OracleDriver</param-value>
</context-param>

<context-param>
 <param-name>dbpool.url</param-name>
 <param-value>jdbc:oracle:thin:@dbserver:1521:ORCL</param-value>
</context-param>

●

Servlets can read context initialization parameters like this:

ServletContext sc = getServletContext();
String className = sc.getInitParameter("dbpool.driver");

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Context Init Parameters

file:///C|/APACHE~1/PROCEE~1/T06/configure-web-3.html [9/23/2000 6:53:22 PM]

Prev Page Servlet Definitions Next Page

Servlets and their initialization parameters are defined together:

<servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>com.mycompany.mypackage.MyServlet</servlet-class>
 <init-param>
 <param-name>configprops</param-name>
 <param-value>/WEB-INF/config.properties</param-value>
 </init-param>
 <!-- Ask the container to load this servlet immediately -->
 <load-on-startup>3</load-on-startup>
</servlet>

●

Access to these parameters is common in the init() method:

String resourceName =
 getServletConfig().getInitParameter("configprops");
InputStream stream =
 getServletContext().getResourceAsStream(resourceName);
Properties configProps = new Properties();
configProps.load(stream);
stream.close();

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Servlet Definitions

file:///C|/APACHE~1/PROCEE~1/T06/configure-web-4.html [9/23/2000 6:53:25 PM]

Prev Page Servlet Mappings Next Page

Next, we register request mapping patterns to map requests to the servlets that will be used to
process them:

<servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/store/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>cocoon</servlet-name>
 <url-pattern>*.xml</url-pattern>
</servlet-mapping>

●

You must have defined each servlet named here with a <servlet> element previously●

For extra credit, which of the two servlets would handle a request for /store/index.xml
given these mappings?

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Servlet Mappings

file:///C|/APACHE~1/PROCEE~1/T06/configure-web-5.html [9/23/2000 6:53:27 PM]

Prev Page Specifying Welcome Files Next Page

You can specify the name of the file (or resource) that will be served when the request URI
specifies a "directory" rather than a "file":

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 <welcome-file>index.jsp</welcome-file>
</welcome-file-list>

●

This is similar in capability to Apache's DirectoryIndex configuration directive●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Specifying Welcome Files

file:///C|/APACHE~1/PROCEE~1/T06/configure-web-6.html [9/23/2000 6:53:29 PM]

Prev Page Configuring Tomcat Next Page

The deployment descriptor (web.xml) is portable to all servlet containers -- the following
information is specific to Tomcat 3.2b4

●

In the following slides, $TOMCAT_HOME represents the directory into which you have installed
Tomcat

●

We will focus on configuration necessary to set up Tomcat for stand alone use, and later extend it
for use behind Apache

●

In the simplest case, no configuration at all is required -- simply place your web application
archive (WAR) file into the $TOMCAT_HOME/webapps directory and restart Tomcat

●

Tomcat automatically expands the WAR file into an unpacked directory and installs it●

If you wish to update this application later, be sure you replace the WAR file AND delete the old
directory and all of its contents

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Configuring Tomcat

file:///C|/APACHE~1/PROCEE~1/T06/configure-tom-1.html [9/23/2000 6:53:31 PM]

Prev Page Tomcat Server Configuration File Next Page

Tomcat 3.2b4 configures itself based on the contents of
$TOMCAT_HOME/conf/server.xml

●

We will not cover all of the options in this file - our focus will be on setting up a web application
with non-default properties

●

A web application is configured by a <Context> element (optionally nested in a <Host>
element for apps specific to a virtual host):

<Host name="www.mycompany.com">
 <Context path="/examples"
 docBase="webapps/examples"
 debug="0"
 reloadable="true"/>
</Host>

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Tomcat Server Configuration File

file:///C|/APACHE~1/PROCEE~1/T06/configure-tom-2.html [9/23/2000 6:53:51 PM]

Prev Page Tomcat Server Configuration File Next Page

The <Context> element (in Tomcat 3.2b4) recognizes the following XML attribute names:

Attribute Description

debug
Select the amount of debugging detail information to be logged (higher numbers
generally mean more detail)

docBase
Base directory of this web application - if relative, it is resolved from the
$TOMCAT_HOME directory

path
Context path for this web application - the empty string identifies the default (root)
application

reloadable Set to true to enable application reloading if a class is changed

trusted
Set to true if this application should have access to Tomcat internals - normally
only required for the administrative application

●

Prev Page Session T06: Migrating Apache JServ Applications to
Tomcat

Next Page

Tomcat Server Configuration File

file:///C|/APACHE~1/PROCEE~1/T06/configure-tom-3.html [9/23/2000 6:54:21 PM]

Prev Page Configuring Tomcat+Apache Next Page

Tomcat configuration for stand alone use is fairly simple - unless you really need Apache for
functionality or performance, I suggest you consider deploying it this way

●

For use with Apache, you must configure the mod_jserv or mod_jk module in Apache, as
described in the documentation

●

We will focus on the more useful case for Apache JServ users, which uses mod_jserv●

When Tomcat first starts, it generates a model set of configuration directives to be included in
httpd.conf, in the file $TOMCAT_HOME/conf/tomcat-apache.conf

●

Make a copy of this file for customization, and add an include directive to your Apache
configuration file (httpd.conf):

Include /tomcat-home/my-tomcat-apache.conf

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Configuring Tomcat+Apache

file:///C|/APACHE~1/PROCEE~1/T06/configure-tom-4.html [9/23/2000 6:54:24 PM]

Prev Page Configuring Tomcat+Apache Next Page

The tomcat-apache.conf file starts with the following directives:

LoadModule jserv_module libexec/mod_jserv.so
ApJServManual on
ApJServDefaultProtocol ajpv12
ApJServSecretKey DISABLED
ApJServMountCopy on
ApJServLogLevel notice

ApJServDefaultPort 8007

AddType text/jsp .jsp
AddHandler jserv-servlet .jsp

●

From these settings, we can see that the AJPV12 protocol has been selected, and that JSP pages
(filenames that end with .jsp) will be forwarded to Tomcat for processing

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Configuring Tomcat+Apache

file:///C|/APACHE~1/PROCEE~1/T06/configure-tom-5.html [9/23/2000 6:54:26 PM]

Prev Page Configuring Tomcat+Apache Next Page

Next, a set of directives for each configured web application is created, with the following goals:

Map the context path of this application (in Apache's URI namespace) to the Tomcat
document root

❍

Pass all requests for JSP pages (filename extension ".jsp") to Tomcat❍

Pass all requests matching /servlet/* to Tomcat❍

Disallow clients from requesting files in the WEB-INF or META-INF directories of the
web application

❍

Handle all other requests (typically requests for static HTML files and images) within
Apache itself

❍

●

In Tomcat 3.2b4, the generated directives are not based on the contents of your deployment
descriptor (web.xml) file - only on the context path and document root

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Configuring Tomcat+Apache

file:///C|/APACHE~1/PROCEE~1/T06/configure-tom-6.html [9/23/2000 6:54:29 PM]

Prev Page Configuing Tomcat+Apache Next Page

Here are the directives generated for the standard "/examples" web application that ships with
Tomcat:

Alias /examples "/tomcat-home/webapps/examples"
<Directory "/tomcat-home/webapps/examples">
 Options Indexes FollowSymLinks
</Directory>
ApJServMount /examples/servlet /examples
<Location "/examples/WEB-INF/">
 AllowOverride None
 deny from all
<Location>
<Location "/examples/META-INF/">
 AllowOverride None
 deny from all
<Location>

●

A special directive is also included to make /servlet requests in the Apache server root call
Tomcat's root application:

ApJServMount /servlet /ROOT

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Configuing Tomcat+Apache

file:///C|/APACHE~1/PROCEE~1/T06/configure-tom-7.html [9/23/2000 6:54:32 PM]

Prev Page Customizing Tomcat+Apache Next Page

How can we customize this configuration to accomplish more specialized goals? We will
describe several common scenarios

●

To use a Tomcat instance on a different server (default is localhost) or port (default is 8007):

ApJServMount /examples/servlet ajpv12://myhost:8008/examples

●

Make Apache recognize session identifiers when using URL rewriting (you must have
mod_rewrite configured)

RewriteEngine On
RewriteRule ^(/.*;jsessionid=.*)$ $1 [T=jserv-servlet]

●

Support a JSP page as the directory index / welcome file:

<Directory "/tomcat-home/webapps/examples">
 Options Indexes FollowSymLinks
 DirectoryIndex index.jsp
</Directory>

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Customizing Tomcat+Apache

file:///C|/APACHE~1/PROCEE~1/T06/customize-tom-1.html [9/23/2000 6:54:35 PM]

Prev Page Customizing Tomcat+Apache Next Page

Forward requests for "Exact Match" mapping (/myservlet)

ApJServMount /examples/myservlet /examples

●

Forward requests for "Path Match" mapping (/catalog/*)

ApJServMount /examples/catalog /examples

●

Forward requests for "Extension Match" mapping (*.xml)

<LocationMatch "/examples/*.xml">
 SetHandler jserv-servlet
</LocationMatch>

●

Forward all requests (even for static resources) within a particular web application

ApJServMount /cocoon /cocoon

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Customizing Tomcat+Apache

file:///C|/APACHE~1/PROCEE~1/T06/customize-tom-2.html [9/23/2000 6:54:37 PM]

Prev Page Customizing Tomcat+Apache Next Page

You can combine customizations as necessary - for instance, to run the Struts framework
example application (http://jakarta.apache.org/struts):

Alias /struts-example "/tomcat-home/webapps/struts-example"
<LocationMatch "/struts-example/*.do">
 SetHandler jserv-servlet
</LocationMatch>
<Directory "/tomcat-home/webapps/struts-example">
 Options Indexes FollowSymLinks
 DirectoryIndex index.jsp
</Directory>
ApJServMount /struts-example/servlet /struts-example
<Location "/struts-example/WEB-INF/">
 AllowOverride None
 deny from all
</Location>
<Location "/struts-example/META-INF/">
 AllowOverride None
 deny from all
</Location>

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Customizing Tomcat+Apache

file:///C|/APACHE~1/PROCEE~1/T06/customize-tom-3.html [9/23/2000 6:54:40 PM]

Prev Page Customizing Tomcat+Apache Next Page

As a final example of simple configuration, let's enable the use of /servlets instead of
/servlet for accessing your servlets

●

In your customized version of tomcat-apache.conf, add the following directive so that
Apache will forward these requests:

ApJServMount /servlets /ROOT

●

For Tomcat 3.1 or 4.0, add the following mapping to the deployment descriptor for the ROOT
application ($TOMCAT_HOME/webapps/ROOT/WEB-INF/web.xml):

<servlet-mapping>
 <servlet-name>invoker</servlet-name>
 <url-pattern>/servlets/*<url-pattern>
</servlet-mapping>

●

For Tomcat 3.2, the matched prefix is hard coded in the source code
(org.apache.tomcat.request.InvokerInterceptor), so you have to change it
there and rebuild Tomcat

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

Customizing Tomcat+Apache

file:///C|/APACHE~1/PROCEE~1/T06/customize-tom-4.html [9/23/2000 6:54:43 PM]

Prev Page References Next Page

Servlet API and JavaServer Pages (JSP) Specifications:

http://java.sun.com/products/servlet/download.html❍

http://java.sun.com/products/jsp/download.html❍

●

Jason Hunter's JavaWorld Articles:

http://www.javaworld.com/jw-12-1998/jw-12-servletapi.html❍

http://www.javaworld.com/jw-10-1999/jw-10-servletapi.html❍

●

Tomcat Project Page:

http://jakarta.apache.org/tomcat❍

●

Apache JServ Project Page (historical documentation):

http://java.apache.org/jserv❍

●

Author's Email Address:

Craig.McClanahan@eng.sun.com❍

●

Prev Page Session T06: Migrating Apache JServ Applications to Tomcat Next Page

References

file:///C|/APACHE~1/PROCEE~1/T06/references-1.html [9/23/2000 6:54:46 PM]

	Local Disk
	Migrating Apache JServ Applications to Tomcat
	Session Outline
	New Deployment Options
	Servlet API Versions
	Servlet API Version 2.1
	Version 2.1 - Major Additions
	Version 2.1 - Major Additions
	Version 2.1 - Major Additions
	Version 2.1 - Major Additions
	Version 2.1 - Deprecations
	Version 2.1 - Deprecations
	Version 2.1 - Minor Changes
	Servlet API Version 2.2
	Version 2.2 - Additions
	Version 2.2 - Additions
	Servlet API Version 2.3
	Version 2.3 - Additions
	Version 2.3 - Application Events
	Version 2.3 - Servlet Filtering
	Version 2.3 - Servlet Filtering
	Web Applications
	Web Apps - Overview
	Web Apps - Deployment
	Web Apps - Security
	Web Apps - Security
	Web Apps - Request Mapping
	Web Apps - Request Mapping
	Request Mapping Access Methods
	Request Mapping Results
	Tomcat Standard Mappings
	Configuration
	Web Application Configuration
	WEB.XML Basic Syntax
	Context Init Parameters
	Servlet Definitions
	Servlet Mappings
	Specifying Welcome Files
	Configuring Tomcat
	Tomcat Server Configuration File
	Tomcat Server Configuration File
	Configuring Tomcat+Apache
	Configuring Tomcat+Apache
	Configuring Tomcat+Apache
	Configuing Tomcat+Apache
	Customizing Tomcat+Apache
	Customizing Tomcat+Apache
	Customizing Tomcat+Apache
	Customizing Tomcat+Apache
	References

