
 1

PHP From an
IT Manager's Perspective

By Tobias Ratschiller on May 30th, 2000.

What have sprint.ca, livebid.amazon.com, xoom.com, and mp3.lycos.com in common? All employ one of
the Web's hottest server side technologies: PHP, the PHP Hypertext Preprocessor. As this article shows,
PHP over the years had the opportunity to strengthen its core base and to integrate more features, and
provides today a base that can easily stand out in the increasingly crowded server-side application
development platform market.

Introduction to PHP..1
What Is PHP ...1
Architecture Overview ...2
New Challenges..2
PHP Meets Development Challenges...2
Faster Time to Market ..3
Abundant Connectivity...3
Leveraging Enterprise Logic ..3
Portability ...3
Open Source ...4
Performance ...4
Pointers...4
Conclusion..4

Introduction to PHP
What have sprint.ca, livebid.amazon.com, xoom.com, and mp3.lycos.com in common? All employ one of
the Web's hottest server side technologies: PHP, the PHP Hypertext Preprocessor.

While the success of Open Source software like Linux or Apache has been documented extensively
throughout all mainstream media, the rise of PHP has gone largely unnoticed. Still, the Web scripting
language PHP is the most popular module for the Apache Web server, according to a E-Soft survey
(http://www.e-softinc.com/survey/). Netcraft studies have found that PHP is in use on over 6% of all Web
domains in the world (see http://www.netcraft.com/survey). That is an incredible market penetration for a
rather specialized product. This popularity continues to rise exponentially, with the new version 4.0 just
around the corner. Increasingly, this is being reflected in traditional media: By May 2000, more than 20
books about PHP have been published in different languages, with more in the pipeline. Commercial
players are beginning to join the bandwagon: PHP is included with Web servers, for example C2's
Stronghold, and Linux distributions. A new company, Zend Technologies, has been formed to provide
commercial add-ons and support for PHP. A long list of large-scale Web sites employ PHP, as well as
hundreds of thousands small to medium Web sites. Enough reasons to take a closer look at PHP.

What Is PHP
PHP is a programming language, used on the server to create dynamic Web pages. The principles of this
technology are similar to Allaire's ColdFusion, Mod_Perl, Sun's JSP, or Microsoft's ASP, which all
address one problem: As Web sites and intranets get larger and more complex, static HTML files hit their
limits. Today, the Web is an interactive, transaction-oriented business platform, featuring advanced Web-
based applications such as online commerce, business information systems, and collaborative computing
environments. To develop such applications, you need a technology to generate dynamic content for Web
pages.

 2

Traditionally, developers have used CGI (Common Gateway Interface) scripts for interaction with users,
querying databases, and so forth. However, because CGI scripts are separate software programs, which
get executed as stand-alone processes whenever a user requests the script, scalability was lacking - CGI
scripts could quickly consume all available memory and CPU power. Enter PHP: Rasmus Lerdorf, a then
Toronto-based IT-consultant, developed it in late 1994 as a quick hack to embed macros into HTML
pages, to avoid the forking of external programs. When he decided to make his project open source, it
proved to be popular, and users started to contribute to it. In 1997, Zeev Suraski and Andi Gutmans, two
developers from Israel, rewrote the core engine of PHP, the language parser, and made a complete
programming language out of a pet project. The current rewrite, PHP 4.0, is again much cleaner,
especially with complex scripts and when used in business environments.

Architecture Overview
Working with PHP leads to a three-tier architecture in such a coherent way that many developers don't
even notice it. In the first tier there is a thin client - translated to the world of Web applications, this
would be the browser. The middle tier (application server) is obviously PHP and the Web server as host
application, while the third tier consists of a database system.

PHP scripts are often embedded in the HTML code of page, and then get parsed on the server-side - the
browser sees plain HTML only. A typical Hello-World script looks like this:

<html>
 <? print("Hello World!");?>
</html>
This is the method that novice developers find the easiest to work with. Larger and more complex
applications usually go other routes, to enforce a cleaner separation of layout and application logic. When
embedding the script directly in HTML, average, HTML-literate Web designers cannot easily edit the
contents of the page without being familiar with the scripting language used. PHP offers a variety of
libraries to work with page templates, which solve this problem, and introduce an efficient development
methodology and simplify maintenance. This way, developers focus on the application logic, and
designers can change the layout of a dynamic page without involving the developer or interfering with the
program logic. This translates into faster application development, and makes maintenance tasks easier by
dividing them into content and logic tasks, which can be handled by separate team members.

PHP needs not be used for Web development exclusively. It can also be compiled as stand-alone script
interpreter, and handles simple system administration tasks as well. For example, you could use a small
PHP script to send daily statistics from your e-commerce application. In version 4.0, the language core
engine, the Zend parser, has been abstracted enough to be embeddable in other technologies. Rumours go
that is planned to integrate PHP as stored prodecure language into the popular MySQL database system.
Seeing the dynamic evolution of PHP, it is only logical to expect the language to grow into other
scenarios - why not use PHP as a macro processor in a word processor?

New Challenges
As you've seen, the new opportunities created by the Web bring new challenges to IT organizations
building the applications. Choosing the right technology is critical to the success of any Web application
development project. The main challenges are an increased demand on productivity, connectivity,
portability, and performance.

PHP Meets Development Challenges
The first advantage of PHP was one common to many Open Source projects: It simply delivered, while
other technologies were still vapor ware. PHP pre-dates ASP, Mod_Perl, and ColdFusion by at least 12
months. Over the years, PHP had the opportunity to strenghten its core base and to integrate more
features, and provides today a base that can easily stand out in the increasingly crowded server-side
application development platform market, as the following points will show.

 3

Faster Time to Market
The development time of Web applications is measured in days and weeks - dinosaur projects spanning
multiple years belong to an era which many Web developers don't even remember. IT managers and
developers are struggling to keep up with this pressure, and demand high productivity from their
development environments.

Perl is a general scripting language, Java is a full-fledged, complex programming language, Visual Basic
Script and JSscript have been post-integrated into ASP - PHP, on the other hand, was built with the needs
of Web developers in mind. In Web application development, there is no itch you can't scratch with PHP.
Unlike other cumbersome, overhead-laden approaches, PHP is lightweight and focused on the Web -
where it can solve complex problem scenarios quicker and more easily than comparable technologies.

The syntax and grammatical structure of PHP resembles the C programming language with the
complexity (for example, memory management, pointers, and strong typing) taken out. The developers of
PHP aren't hesitant to integrate the best features of other languages, though, so you'll find elements of
Perl and Java in PHP as well. For programmers familiar with C, Perl, or Java, it is a matter of days to get
acquainted with PHP. Thanks to the excellent reference manual, anyone of your developers can probably
produce small database enabled applications after just one afternoon.

Abundant Connectivity
And there's a lot to explore. For example, PHP implements native interface to a wide variety of database
engines, from Open Source systems like MySQL or PostgreSQL to commercial products like Oracle,
SQL Server, DB2, and many more. The native database access offers better performance and tighter
control than layered access methods such as ODBC (which is still available for databases not supported
natively). Especially on the Web, a fast response time is crucial for the success of applications.

Besides databases, PHP supports most current Internet standards: IMAP, FTP, POP, XML, WDDX,
LDAP, NIS, and SNMP - to list only a few of the acronyms which will inevitably get a twinkle into your
developers eyes. For corporate and IT needs, this simply means that PHP is able to talk to different
standards and technologies with ease: All from one common tool set, without the need for expensive third
party modules.

Leveraging Enterprise Logic
I hear you say already: "Nice features - but unfortunately, we've all of our business logic already
developed with Foo", where Foo stands for Java classes, Enterprise Java Beans, or COM components,
depending on your corporate bias. Indeed, others have had these thoughts, and since version 4.0, PHP
supports direct access to Java objects on any system with a Java Virtual Machine available, as well as
Distributed COM on Windows. Multiple Web applications can reuse the same components. This enables
you to keep your business logic in separate components, and use PHP for what it does best, and where it
outperforms its alternatives: Web application development. This means a significantly lower Cost of
Ownership: It enables business to leverage existing technology and develop new applications in an easier
way.

Portability
When mentioning Java, one if its key features comes to mind instantly: portability. Up until version 3.0,
PHP could be integrated only as module into the Apache Web server, or run as separate CGI program,
which would eliminate many of PHP's speed benefits. In version 4.0, however, the Web server interface
(Server API, or SAPI) has been abstracted, and PHP now integrates well with different Web servers:
iPlanet/Netscape Enterprise Server, IIS, Apache, Zeus, fhttpd, and so forth. Platform independence has
always been an advantage of PHP: It runs on all popular Unix platforms, including Linux, on Windows,
on MacOS, and even on OS/2.

Portability is the key to scalable applications. You can run the same application on a low-scale Linux box
and on a high-end Solaris machine, without the need to worry about platform-specific features. Also, PHP

 4

interfaces transparently with clustering solutions from simple Round Robin IP clusters to advanced Cisco
solutions.

The broad platform support can be directly attributed to the fact that PHP is distributed with full source
code. Anyone with the necessary skills can port PHP to a new operating system. The resulting
modifications to the core system can then be contributed back to the community.

Open Source
Open Source software in general means a number of significant advantages for the corporate IT
infrastructure. Because the full source code is available, it can be inspected in thorough security audits. If
third parties find security issues, they're usually fixed within hours or days. If no one is going to do it, you
can assign your own personnel to it - with the full code in your hands, you're no longer dependent on
external software manufacturers.

Then there's the community. Free help is available from mailing lists, newsgroups, and IRC channels. The
PHP core developers participate in these support forums, and provide developers with top-level advice -
usually within hours. I'm certain that more, commercial support options will be available in a very short
time.

Open Source brings with it that rough edges are corrected promptly, and that the overall strategy is
unbureaucratically adjusted to new requirements. For example, originally no one had thought that PHP
would be used in most sophisticated business scenarios, and only version 4.0 is really prepared for this
environment.

Performance
Therefore, while the speed of PHP 3.0 was sufficient for the average, medium-sized Web application,
scalability for advanced applications could be a problem. The plain, out-of-the-box 4.0 version is already
multiple times faster than PHP 3.0, introducing a performance boost, which will make some clustering
systems superfluous. Plus, there's the Zend Optimizer, a free add-on module from Zend Technologies. It
performs on-the-fly code optimizations to enhance the running speed of PHP applications. An application
that uses the Zend Optimizer, typically executes 40% to 100% faster than one without.

Pointers
Official PHP Homepage: http://www.php.net

Zend Homepage: http://www.zend.com

Conclusion
Considering the vastly growing amount of servers on which PHP is now running, taking a look at the
huge step PHP made from version 3.0 to version 4.0, and seeing its mature and up-to-date base, PHP has
surely become what it has been aiming at: A great tool for rapid development of stable and fast Web
applications. If your business relies on Web applications, you should certainly consider PHP. Gone are
the days, when a business could post static pages on a Web site - today, sophisticated Web applications
demand that companies use technologies that can provide them with rapid development, performance,
scalability, openness, and security - and PHP is a strong option in the Web application development area.

This article appeared first on Idm.Internet.com.

	Introduction to PHP	1
	What Is PHP
	Architecture Overview
	New Challenges
	PHP Meets Development Challenges
	Faster Time to Market
	Abundant Connectivity
	Leveraging Enterprise Logic
	Portability
	Open Source
	Performance
	Pointers
	Conclusion

