Securing Java Application Servers

Kirill Bolshakov
Leonid Mokrushin

{raven,leom}@dcn.nord.nw.ru
Distributed Computing & Networking Dept.
Saint-Petersburg State Technical University

Abstract

We present a set of concepts to enable application service providers
(ASP) to host untrusted Java/XML/XSP-based applications. A set of
patches for JServ engine is presented that includes custom security
manager, as well as a standalone kind of this security manager. It enables
server administrator to use flexible access control mechanism to finely
tune access to various parts of the server. It also enables secure hosting
of multiple applications without mutual trust relationships inside one
servlet engine. The concepts are demonstrated on the example of
Cocoon-based multi-user XSP application server.

Good morning! Let me introduce myself. My name is Kirill Bolshakov, and
| am currently with Distributed Computing and Networking Department of
Saint-Petersburg State Technical University. In this talk, | will present a
set of concepts as well as a project on security of Cocoon/XSP-based
application hosting. The project, named “Xemis” (this word is a hybrid
between “XML” and “Semis”), enables application service providers to
host multiple XSP applications originating from different publishers,
without code reviews and suchlike.

2% Session Agenda - 1

= Application hosting
= CGI
= Java Servlets
= Cocoon/XSP
= Security issues
= Java 2 Platform Security Model

= Xemis
= Project goals
= Security model

= Building and running Xemis

Kirill Bolshakov, Leonid Mokrushin 2

Let me describe session agenda. First, we will discuss several application
hosting schemes, namely, CGl scripts, Java servlets and Cocoon
technology. We will look at them in order to highlight security and
maintenance issues. After that | will talk about Java 2 Platform security
model to remind you of the latest version of Java sandbox.

Next, | will proceed to the project itself. | will declare project goals and
present its security model. The brief installation guide will be the next
topic.

2% Session Agenda - 2

= Security policies notation

= Example: accessing database
» Allow everything!
= Add restrictions
» Debugging the policy set

= Benchmarking Xemis

» Project status

= Further development

Kirill Bolshakov, Leonid Mokrushin

To enforce something you have to express it first, so then | will proceed to
the notation of security policies that are used to configure Xemis. Then |
will comment on some simple example and demonstrate techniques that
should be used to configure Xemis properly. Description of benchmarking
results, project status and planned development will go afterwards.

2% We Are Now At...

= Application hosting
= CGI
= Java Servlets
= Cocoon/XSP
= Security issues
= Java 2 Platform security model

= Xemis
= Project goals
= Security model

Kirill Bolshakov, Leonid Mokrushin

Now we will proceed to discussing application hosting techniques, their
pros and cons.

% Application Hosting: CGI Scripts

= Functionality is limited by OS API only
= Rely on native OS security mechanisms
= CGI scripts are OS-dependent

= Application server becomes 0OS-dependent
= Significant amount of maintenance

= Full-featured programs
= Development takes much time

Kirill Bolshakov, Leonid Mokrushin 5

The first hosting method | am going to discuss is CGl scripts. The scripts
are not necessarily written in scripting language, and may be complex
programs in C or C++. Their functionality is limited only by imagination of
the developer and OS API. The security mechanisms in use are those of
the OS. This way, highly integrated environments emerge, like those of
Microsoft Windows and Microsoft I1IS Web server. However, the
drawbacks here are the following: the application server has to be OS-
dependent, and the amount of maintenance in case of heterogeneous
hosting is rather large. Also, remember all those buffer overflows with
stack smashing? The developer has to be very careful while writing even
the simplest C++ \Web bulletin board. Thus, the time of the development is
increased.

2% Application Hosting: Java

= Platform-independence and faster development
= EJB as enterprise-oriented standard

= Application can be secured, but what about
non-dedicated hosting system?

Operating System (OS)
Java Virtual Machine (JVM)
£s

5 | 58 <> Servet

c g8 -

Sy (e B Sy Senviet | £g

2 Engine | @

; :
Client
Kirill Bolshakov, Leonid Mokrushin 6

In the case of Java servlets, we see major advance in their platform-
independence (this fact virtually turns any heterogeneous network into
homogeneous from point of view of the servlet). Java is also much more
“fault-tolerant” than traditional compiled languages: the absence of
pointers and array bounds checking imply the absence of buffer overflows
and stack smashing. Automatic garbage collection speeds up the
development. Being an object-oriented language, Java forces to use
OOA/OOD paradigms, and this is good as well. EJB as enterprise-
oriented standard help to build protected applications without thinking of
their security in its whole — there is a way to restrict access to beans’
methods.

Let’s consider request’s life in such a case. First, the request travels to the
Web server. After being mapped to servlet engine, it produces a thread
within servlet engine. The engine loads necessary servlet and invokes its,
for example, doPost() method. Consider a number of servlets executing
within the same JVM. They can interfere with each other; access each
other’s files and secret scripts (e.g., those with database passwords).
Such kind of a situation helps us to formulate the question: is it possible to
protect Java application hosting system in the case of multiple publishers?

% Application Hosting: Cocoon/XSP

= Java-based Platform-independent
= Separates content, style and logic

= Easily extendable
= Trivial publishing
= Almost zero

Operating System (OS)

maintena nce § Java Virtual Machine (JVM) User data
Fal -
g Processing
5 Sz Servlet @
®, Servlet | &<

XSP Processor

. — (XML »
Englne XSLT Processor €

&

Web Server
i

Kirill Bolshakov, Leonid Mokrushin 7

Cocoon/XSP hosting solution looks very attractive. First, Cocoon
paradigm explicitly separates content, style and logic of the application.
Second, it is Java-based, and all Java constructs may be used in XSP
programs, for the programs are compiled to Java. And third, the
maintenance is near zero: “Setup and forget”. However, all the flaws in
security area are inherited from Java servlets.

The extendibility of Cocoon framework allows easy creation of custom
producers and processors. XML acts like a glue between different parts of
the application.

XSP stands for eXtensible Server Pages. This technology allows the
developer to put his application in an XML document. The application will
have access to the structure of the document as if it were written with
knowledge of existence of this document. However, the application
resides INSIDE the document, and Cocoon performs all code generation
and compilation tasks itself. This feature makes XSP one of the most
powerful and easy to maintain Web programming technologies.

2% Security Issues

» CGI scripts

= Native OS security

» Platform-dependent maintenance
= Java servlets

» What about multiple publishers?

s Cocoon/XSP

= Same as Java: unable to securely host
applications from different publishers inside
one JVM

Kirill Bolshakov, Leonid Mokrushin 8

Let me summarize security and maintenance features of the above-
mentioned hosting solutions. CGl scripts utilize native OS security
mechanisms, and their maintenance is cumbersome. They do not work in
heterogeneous environments. Java servlets allow creation of safe network
applications, but they lack security mechanisms in the case of multiple
publishers. Cocoon/XSP inherits this drawback from Java servlets (for it is
still a servlet) but wins in maintenance area. Should we try to solve the
problem, we should definitely look for the solution for Cocoon/XSP,
because this very technology offers power combined with maintenance
simplicity.

2% We Are Now At...

= Application hosting
= CGI
= Java Servlets
= Cocoon/XSP
= Security issues
= Java 2 Platform security model

= Xemis
= Project goals
= Security model

Kirill Bolshakov, Leonid Mokrushin

Now we will describe JDK 1.3 Security Model. Then, we will proceed to
Xemis project: its goals and its security model.

2% Java 2 Platform Security Model

= "Sandbox” model
Different codes run with different permissions
= “Package-centered” security

Based on protection domains: sets of classes
whose instances are granted the same set of

pErmMISSIons
system domain
net I/O file /10O AWT
Kirill Bolshakov, Leonid Mokrushin 10

Here | will remind of Java 2 security model. At the base of Java 2 security
model lays the notion of “Sandbox”. Sandbox serves as a layer between
valuable system resources (such as file system) and application
programs. Java application cannot access the resources directly. Thus,
this layer can perform security checks: if the instance of the class that is
trying to access the resource should be allowed to do that. The code is
assigned to domains basing, for example, on the package it is in, or the
physical location it resides at. The resources are split into domains as well
— you can see an example of such domains in the above picture. Here,
applications can access network input/output, file system and AWT only
through using system domain. At the layer of system domain security
checks take place. All Java libraries which work with resources of native
OS or with JVM internals use this paradigm to protect the system from
malicious applications.

10

2% Java 2 Platform Security Model - 2

Class ﬂl]l:> Domain ﬂl]l:> Permission

/ RN
! oo \'\ '
oo \"\E Domain 1 |
(o . 7| Domai permissions |
H v/ AN J/ 1
°°) N/ 4 NG N :
v : Vi . .. i
oo 1 i Domain 2 permissions | :
v /:/ N J !

Security policies

Kirill Bolshakov, Leonid Mokrushin 11

A domain conceptually encloses a set of classes whose instances are
granted the same set of permissions. Protection domains are determined
by the policy currently in effect. The Java application environment
maintains a mapping from code (classes and instances) to their protection
domains and then to their permissions, as illustrated by the figure above.
The permission system is initialized basing on the Java security policies
given in configuration files. This gives flexible way for setting up security
for Java applications.

11

2% Java 2 Platform Security Model - 3

» Security Manager
= Extendable via inheritance

o o o o
~— ﬂ
A

Security Exception

M Java Libraries

(V) Security Manager '«<(X)
A\

Native part of JVM

\j

Valuable resources

Kirill Bolshakov, Leonid Mokrushin 12

The security check is performed in the following way: the thread that is
making an attempt to access the resource is led to SecurityManager
object. Security Manager has a set of methods corresponding to various
actions that can be applied to various resources. This object checks
thread’s privileges (for example, basing on the stack contents of this
thread and determining the “least powerful class instance” in the stack)
and either grants the permission or throws java.lang.SecurityException. A
thread that can access the resource just continues its execution and goes
to the native part of JVM.

For example, if some thread is trying to perform READ operation on a file
or file handle, SecurityManager.checkRead() method will be invoked by
system library code responsible for reading from files with its argument set
to name of the file being accessed. Then, after looking at the call stack,
SecurityManager decides whether or not this thread will be given access
to the file.

In some cases, SecurityManager has to traverse all the stack looking for
class instance belonging to domain with least privileges. If all class
instances in the stack have been checked and there were no
“trespassers”, SecurityManager simply performs “return” from this method.
Otherwise, java.lang.SecurityException is thrown.

12

2% Java 2 Platform Security Model - 4

m Security Manager
= Extendable via inheritance

= Policy-based configuration

grant codeBase "file:/c:/ApachedServ/-" ({
permission java.lang.RuntimePermission "createSecurityManager";
permission java.lang.RuntimePermission "setSecurityManager";
permission java.lang.RuntimePermission "modifyThread";

permission java.net.SocketPermission "127.0.0.1:1024-", "accept,
resolve";

permission java.lang.RuntimePermission "createClassLoader";
permission java.util.PropertyPermission "*", "read";

}i

Kirill Bolshakov, Leonid Mokrushin 13

One interesting feature of Java 2 Security architecture is that the standard
security manager can be overridden in order to allow extension of security
mechanisms. This means that it can be extended in the way of introducing
one’s own security paradigm. However, the resources and actions stay the
same in the case when the security manager has been overridden.

The rules that grant or revoke access are given in the form of policy files
(introduced by Sun). For example, in the picture above a permission to
create ClassLoader and modify threads (i.e., thread’s name) is granted to
instances of classes under c:/ApachedJServ folder. Instances of these
classes can also:

*Create and set SecurityManager in the current instance of JVM (by the
way, SecurityManager is a JVM-wide object).

*Accept and listen to connections with the peers that connect to the
localhost.

*Read all system properties.
codeBase is the place from which classes being checked originate.

13

2% Protected Objects

s AWT = Property
s File = JVM properties
= Access to a file or n Reflect
directory = For reflective operations
s Network s Runtime
= Socket operations = ClassLoader
= URL handling = SecurityManager
= Security = JVM, etc.
» Policy manipulation,
etc.
Kirill Bolshakov, Leonid Mokrushin 14

The above picture lists those JVM and OS objects access to which is
regulated by Java security policies (the list is incomplete). Access to these
objects is specified using corresponding permissions. AWT permissions
include access to the clipboard, display pixels, and AWT event queue. File
permission controls read/write/execute and delete access to files and
folders. Network permission controls the flow of authentication information
during URL fetches; socket permission includes control of accept(),
connect(), listen() and resolve() operations. Security permission controls
manipulation of system-wide access policies and management of
cryptography service providers. Property permission controls access to
JVM properties. Runtime permission controls all run-time related actions,
such as creating the ClassLoader, halting the JVM, etc.

Here we come to the conclusion that the set of protected objects is fine-
grained.

14

2% Publisher-oriented Security

= Desired protection scheme

» System objects must be protected from hosted
applications

» Hosted applications must be protected from
each other

= Individual access rights should be granted on
per-publisher basis

= Keep policy-based management intact

Kirill Bolshakov, Leonid Mokrushin 15

To solve the problem posed earlier we need to establish some degree of
understanding of what features should be present in the solution. It is clear
that the first two goals: “System objects must be protected from hosted
applications” and “Hosted applications must be protected from each other”
implies the third one. The way must be found to identify the publisher of
the executing XSP program and then to apply corresponding set of
policies. Additionally, it is desirable to preserve currently existing method
for expressing permissions.

15

2% Xemis: Project Goals

To provide:
= Complete Java application hosting solution

= Fine-grained security for multiple publisher
environments

= Administrator-friendly configuration tools

= Developer-friendly deployment and security
debugging tools

Kirill Bolshakov, Leonid Mokrushin 16

Xemis project is aimed not only at providing such fine-grained security for
multiple publisher environments. The tools for application deployment
should be developed as well. Also, the developer should have his
application prepared to run in restricted environments. For instance, he
should be able to easily learn all the resources that are accessed by his
application during run-time. Should he be aware of the list of accessed
resources he may compare it with the server policy and introduce
corresponding corrections to his application or request policy change from
server’s administrator. The developer should also be able to easily
diagnose problems occurring with his application after it has been
deployed to the server. The administrator should have convenient
graphical tool for specification and validation of policy sets.

16

2% Xemis: Security Model

» Publisher’s name is extracted from
requested URL

= Request identity is tracked throughout
request lifetime

= Access permissions for most objects can be
specified w.r.t. publishers

Kirill Bolshakov, Leonid Mokrushin 17

Given the above conditions, one of the solutions looks like the following:
XSP programs should be placed in directories corresponding to their
publishers; the name of the publisher should be extracted from request
URL and then used to identify request thread. Runtime permissions
should be setup in the way that this thread should be unable to change its
name. This approach will allow identifying publisher of the XSP program
that was invoked first: further attempts to get round the security will result
in SecurityException because of inability of the thread to change its name.

In the next slide, we show the place of Xemis in Cocoon/JServ blend.

17

2% Xemis Implantation

= Patch for Servlet Engine (Apache JServ)
= Parses the URL and sets thread name

= Overridden SecurityManager

Java Virtual Machine (JVM) Userdata | Policy Set
— Processing) sl g
g Servlet
5 sorviet | & | Cromms)
N ervie ko] XML)) User2 rights
. z —)
8 Eng|ne % ¢ Serviet API
; Security System 7"
Servet XML » User3 rights
init TSN
‘ setup \
Security Manager J
Kirill Bolshakov, Leonid Mokrushin 18

Xemis should be installed as the servlet that starts immediately after
Servlet Engine. This allows installation of custom SecurityManager before
any other servlets will load. The Servlet Engine has been modified to
recognize requests that address publishers’ “home” directories. This being
the case, due to knowledge about server directories layout, JServ is able
to extract publisher's name and assigns request thread’s name to it. After
this action, there is no way to change the name of the request’s thread.
During Security Manager methods invocations the name of the publisher
can be obtained from the name of the thread.

To provide debugging capabilities and enhanced error reporting, XSP
programs should be fed to Cocoon by Xemis. This is why we introduced
new handler to Apache configuration: XML files with XSP programs should
now have “.xms” extension.

18

2% Security Policies Notation

= Keywords add-ons = Policy files add-ons
» Files-related = fileAccess.policy
= ALL_FILES = classAccess.policy

» Publisher-related
= $EVERYBODY$
= NOT_A_USER
» Action-related
= action_read
= action_write
= action_execute
= action_delete
= action_all

» packageAccess.policy
= packageDefine.policy

Kirill Bolshakov, Leonid Mokrushin 19

Xemis introduces several security policy files. classAccess.policy contains
rules on which classes are allowed to access which classes.
packageAccess.policy contains rules on which classes are allowed to
access which packages. packageDefine.policy contains rules on which
classes may define which packages. This file is usually empty for the task
of defining some package is usually performed by ClassLoaders in some
special cases.

The general rule to remember is: what is not explicitly granted is implicitly
denied. Try to describe all possible situations when you are going to grant
more access for some application publisher.

The most interesting and useful is fileAccess.policy. It defines publishers’
access to file system. There are a number of variables that may be used
within this file. An example of fileAccess.policy file is demonstrated on the
following example.

19

2% Security Policies Notation - 2

= fileAccess.policy fragment

xemis administrator permissions

C:\Apache\htdocs\users\admin\- = admin, action all

C:\Xemis\conf* = admin, action all

Xemis users permissions

:\ApacheJServ\servlets\zone.properties = $EVERYBODY$, action read
:\Apache\htdocs\users\- = $EVERYBODYS, action read

:\Apache\htdocs\users\$USER NAME$S\private\- = raven, leonidm,
action read

Q Q Q |#*

standalone servlets permissions
C:\ApacheJServ\servlets = $EVERYBODY$, action read
C:\ApacheJServ\servlets\- = $EVERYBODY$, action read

Kirill Bolshakov, Leonid Mokrushin 20

Consider this fragment of fileAccess.policy file.

First section of the file grants full access to Xemis configuration and
admin’s files to administrative user. In the second section, the first line
grants read-only access to zone.properties to all users. The second line
grants access to the root of users home directory. The third line contains
special variable SUSER _NAMES, which, during security checks, is
substituted with user name from the right side and then compared to the
real situation: who wants to get access to whose private files. Third
section of the file grants everybody access to “well-known” servlets that do
not belong to any publisher.

20

2% We Are Now At...

= Security policies notation

= Example: accessing database
» Allow everything!
= Add restrictions
» Debugging the policy set

= Benchmarking Xemis

» Project status

= Further development

Kirill Bolshakov, Leonid Mokrushin 21

Now we will study a small example of database access. However, | would
call it “terse” — the amount of work it performs is tremendous.

21

2% Building and Running Xemis

= Available at http://xemis.sourceforge.net

» Prerequisites:
» Apache Web Server
» Sun JDK 1.3
» Apache JServ / Sun JSDK
= Cocoon
» Optional: mySQL

Kirill Bolshakov, Leonid Mokrushin 22

Xemis depends on significant amount of software packages. However, it
directly relies on JServ only, for it needs patched version of JServ for it to
function properly. Patched version of JServ is important for Xemis only. If
you ever decide to remove Xemis from your system, you can leave
patched version of JServ in place.

The following packages should be obtained:
*Apache Web Server (1.3.12)

*Sun JDK 1.3

*Sun JSDK

*Cocoon (http://xml.apache.orq)

*Apache JServ (please look into the README file in Xemis distribution —
it may contain important updates on Xemis—JServ compatibility)

*As an optional component, you can download and install mySQL
(however, you can use ODBC-JDBC bridge for studying the example)

22

254 Building and Running Xemis - 2

= Install Apache Web Server

= Install and test JServ

= Apply thread-naming patch to JServ
= Install and test Cocoon

= Install Xemis as a servlet

= Tune JServ/Apache parameters

= Modify Xemis access policies

= Watch for java.lang.SecurityExceptions!

Kirill Bolshakov, Leonid Mokrushin

23

This slide roughly describes Xemis installation procedure once you have

all packages downloaded. We strongly recommend perform installation

procedure step-by-step with testing every step. First, install Apache Web

Server. Install JServ and test whether your installation was successful.

Then apply thread-naming patch to JServ, rebuild it and test again. Then

follow on-slide instructions and instructions in Xemis install.txt file.

23

2% Example: Accessing DB

<?xml version="1.0"?>

<?cocoon-process type="sql"?> | XSP page

<?xml-stylesheet href="sql.xsl" type="text/xsl"?>

<?cocoon-process type="xslt"?> || Uses SQL and

<?cocoon-format type="text/html"?>

<connectiondefs> XSL processors
<conrl1ectior1 narvne:“schedule">l . - Connects to
<driver>org.gjt.mm.mysql.Driver</driver>
<dburl>jdbc:mysql://10.0.101.85/SPbSTU</dburl> external database

<username>teacher</username>

» Accesses XSL in

<password>THEWALL</password>

</connection> the f|le System
</connectiondefs>
<query connection="schedule"> | UseS HTML
select * from tutors
</query> formatter
</page>
Kirill Bolshakov, Leonid Mokrushin 24

Now we will consider an example of simple database access. However,
the simplicity is deceptive:

*<?cocoon-process type="sql”> invokes SQL processor which fetches
data from external database “jdbc:mysql://10.0.101.85/SPbSTU”;

«<?xml-stylesheet href="sql.xsl” type="text/xs|"?> tells XSLT processor
about stylesheet, which should be applied to the result of SQL lookup;

*<?cocoon-process type="xslt"?> invokes XSL Transformation processor;

«<?cocoon-format type="text/html”?> invokes Cocoon HTML formatter and

displays the page.

Thus, it is very useful to produce a set of policies that will allow this
application to perform its task but will not allow doing anything else.

In the next slides we will consider several boundary situations (“mostly
allowed” and “mostly denied”) in policy files.

24

2% Allow Everything!

m classAccess.policy

= fileAccess.policy

ALL_FILES = $EVERYBODYS, action all

= java.policy

grant { permission java.security.AllPermission; };

= packageAccess.policy

Kirill Bolshakov, Leonid Mokrushin 25

This example is equivalent to the absence of SecurityManager. In
fileAccess.policy everybody is given full access to all files. In
classAccess.policy and packageAccess.policy all classes are allowed to
access any other classes and packages. In java.policy all the permissions,
which are controlled by standard SecurityManager, are granted to all
classes.

25

2% Add Restrictions

m classAccess.policy

allowing Xemis to access any classes

org.xjtek.xemis.- = -

allowing system classes to access other system classes and Cocoon repository

sun. - = *, java.-, sun.-, org.apache.-, C . Apache. htdocs. users.-
Java.- = *, java.-, sun.-, org.apache.-, C . Apache. htdocs. users.-
org.apache. - = *, java.-, sun.-, org.apache.-, C . Apache. htdocs. users.-
javax.servlet. - = *, java.-, sun.-, org.apache.-, C . Apache. htdocs. users.-
org.gjt.mm.mysql.- = *, sun.io.-, java.text.-

allowing user classes to access system classes
_C . Apache. htdocs. users.- = java.-, sun.-, org.apache.-, C . Apache. htdocs. users.-

= packageAccess.policy
= packageDefine.policy

Kirill Bolshakov, Leonid Mokrushin 26

This example is the one where most “non-standard” (i.e., DB lookup,
network connection) actions will be considered a security violation. Note
the second section. If it is absent, JServ and Cocoon are unable to
function properly (for example, Cocoon will be unable to invoke Java
compiler). Java compiler resides inside sun.tools package. In this case,
org.apache.- (Cocoon) is given access to sun.- (Javac), and sun.- (Javac)
is given access to _C_. Apache._htdocs. users.- (user compiled XSP
scripts).

2% Add Restrictions - 2

= java.policy

grant codeBase "file:${java.home}/lib/ext/*" { permission java.security.AllPermission; };
grant codeBase "file:/c:/jdkl.3/1lib/*" { permission java.util.PropertyPermission "*",
"read"; };
grant codeBase "file:/c:/Xemis/-" { permission java.security.AllPermission; };
grant codeBase "file:/c:/ApacheJdServ/-" {
permission java.lang.RuntimePermission "createSecurityManager™;
permission java.lang.RuntimePermission "setSecurityManager";
permission java.lang.RuntimePermission "modifyThread";

permission java.net.SocketPermission "127.0.0.1:1024-", "accept, resolve";
permission java.lang.RuntimePermission "createClassLoader";
permission java.util.PropertyPermission "*", "read";
b
grant codeBase "file:/c:/Cocoon/bin/-" {
permission java.lang.RuntimePermission "createClassLoader";
permission java.util.PropertyPermission "*", "read";
}i
Kirill Bolshakov, Leonid Mokrushin 27

This example explicitly lists all the permissions that are required for normal
operation of system utilities, such as JDK, Xemis (granted all
permissions), JServ (granted permissions to connect to Apache, read
system properties, use ClassLoader, setup Security Manager and label
threads) and Cocoon (granted persmission to use ClassLoader). This
fragment does not contain any notion of user codebases. This implies that
user classes are extremely restricted in their actions.

2% Add Restrictions - 3

» fileAccess.policy

xemis administrator permissions

C:\Apache\htdocs\users\admin\- = admin, action all

C:\Xemis\conf* = admin, action_all

xemis users permissions

C:\ApacheJServ\servlets\zone.properties = $EVERYBODY$, action read
C:\Apache\htdocs\users\- = $EVERYBODY$, action read
C:\Apache\htdocs\users\SUSER_NAMEs\private\— = raven, leonidm, action read
cocoon repository permissions

C:\Apache\repository_C__Apache_htdocs_users_$USER NAME$ = raven, leonidm,
action read, action write
C:\Apache\repository_C__Apache_htdocs_users_$USER NAME$\- = raven, leonidm,

action read, action write
C:\Apache\repository_C__Apache\ htdocs_users = $EVERYBODY$, action read, action write

Kirill Bolshakov, Leonid Mokrushin

28

This file grants access to file system. Please note the way Xemis users
permissions are granted. Users are even unable to write to their own

repositories. When dealing with Cocoon repository, however, we have to
grant write permission, because otherwise all compiler invocations will fail

because of the inability to write output files to the file system.

Because the layout of Cocoon’s repository directly depends on layout of
Web server file tree, we were able to write rules for access of individual
users to their and only their part of Cocoon repository. Otherwise, some
malicious code could overwrite classes of the user with higher privileges
and then gain unauthorized access to important information.

28

2% Debugging the Policy Set

» Error messages for XMS scripts

User = leonidm

Jjava. lang.SecurityExcept ions Writing to the file c:\test.txt has been denied in debug node. Use Xenis debugger.

at org.xjtek.xenis.ut ils.DebugSecuritytanager.checkr ite(DebugSecurityHanager. java: 444)
at java.io.File.createNeuFile(File. java:689)

at _C_._Apache._htdocs. users._leonidn._scripts._test2.tvyTollriteFile(_test2. java:46)
at _C_._fApache._htdocs._users._leonidn._scripts._test2.populateDocunent(_test2. java:215)
at org.apache.cocoon.processor.xsp.#5PPage.get Docunent (X5PPage. java:z96)

at org.apache.cocoon.processor.xsp.ASPProcessor.process(XSPProcessor., java: 456)

at org.apache.cocoon.Engine.handle(Engine. java:305)

at org.xjtek.xenis.Kenis.service(Renis. java:201)

at javax.servlet.http.HttpServlet .service(HttpServlet. java:588)

at org.apache. jserv.JServConnect ion.processRequest (JServConnect ion. java:317)

at org.apache. jserv.JServConnect ion. run(JServConnect ion. java:188)

at java.lang.Thread.run(Thread. java:484)

Kirill Bolshakov, Leonid Mokrushin 29

The first thing you will get when trying to tune security policies for your site
and your applications will be a SecurityException. Security exceptions are
caught by Xemis (as it serves as a handler for .xms files) and are
displayed to the user.

In this example file write operation for c:\boot.ini was denied while being in
Debug Mode.

Do not worry that you do not understand why your program has taken this
or that action and, as a result, tried to access some forbidden resource.
Go to the Admin screen and click “Install Debug Security Manager”. Next
slide explains what Debug Security Manager is.

29

2% Debugging the Policy Set - 2

= Debug SecurityManager: allows almost anything while emitting warnings...

File o:\boot.ini:

[boot loader]

timeout=2

default=multi(0)disk(0)rdisk(0)partition (1) WINNT

[operating systems]

multi(0)disk(0)rdiski(0) partition (1) TINNT="Uindows NT Workstation Version 4.00"
wulci(0)disk(0)rdisk(0)particion(1) Yy WINNT="Windows NT Workstation Version 4.00 [VG]

Problems
SecurityException

SecurityException

Affected resources
Access thread Thread-18
Reading file c:/Xemis/conf/packageAccess.policy
Reading file
C:\apache\repository_GC__aApache)_htdocs_users_leonidm’_scriptsy_testl.class
Writing file descriptor java.io.FileDescriptor@efs0as8
Reading file C:\ApachelServ\servlets\zone.properties
Accepting connection 127.0.0.1:2200

Kirill Bolshakov, Leonid Mokrushin 30

Xemis Debug Security Manager is the utility you should use not only when
you get SecurityExceptions, but also for taking a closer look at what
resources your application is trying to use. It allows almost all operations
while emitting a warning on every current policy set violation and a note on
every resource access attempt. Using it, you can easily catch unexpected
SecurityException. For example, your application can try to load some
class while you do not know about it: this is a usual situation with Java.
Also look carefully through “Affected Resources” section, for it may reveal
potential problems.

In this example, there were two security exceptions. The first one took
place because of restriction to package access. One system class was
unable to access another system class. The second one happened
because read permission of c:\boot.ini was not granted to anyone.

30

2% Debugging the Policy Set - 3

= And providing recommendation:

File c:\boot.ini:

[boot loader]

timeour=2

default=multi(0)disk(0) rdisk(0)partition (1) WINNT

[operating systems]

mulci(0)disk(0) rdisk(0) parcicion 1)\ WINNT="Windows NT Workstation Version 4.00"
rwulti(0)disk(0) rdisk(0) partition (1) WINNT="Uindows NT Workstation Version 4.00 [WG

Problems
SecurityFxcention

You should add line like:

c:\boot.ini = leonidm, action_read
to your fileAccess, policy rces
file in order to allow
user leonidm

to read this file.

writing file deg
writing file ded

Reading file c:}

TP) 124 ¥

Reading file
C:\Apache\repositoryy_C_%_Apachel_htdocs_users_leonidm‘_scriptsy_testl.class
Reading file G:\Apachelserv\servlets\zone.properties

access thread Thread-14

Access package java.lang

Access public member of class sun.io.ByteToCharCpl252

Kirill Bolshakov, Leonid Mokrushin 31

You can also click on the exception to get a suggestion on how to avoid it.

The Debug Security Manager will suggest you the line you should add to
one or another policy set to enable this operation. In this case, leonidm
was denied access to c:\boot.ini. Debug Security Manager suggested that
you should add “c:\boot.ini = leonidm, action_read” line to your
fileAccess.policy file to avoid this exception.

Currently, these tool tips work in Microsoft Internet Explorer only.

31

2% Debugging the Policy Set - 4

= Defaults are not allowed for critical operations:
= OS Command execution
= Writing to files
= Deleting files
= Command-line utility is provided
= "Default answer: Yes” mode supported

Kirill Bolshakov, Leonid Mokrushin 32

During debugging the following displeasing accident may occur: because
of the logical mistake the program will invoke “rm —rf /, or delete
“letc/passwd”, or write garbage to the same location. To avoid these
accidents, Debug Security Manager does not allow these operations until
you have console debug client running (start it by running Xemis.jar). It
shows question about whether or not should it permit OS command
execution, writing to file or deleting the file. If you are sure that nothing
horrible will happen to your system during debugging of the program, you
can switch the client to “Default answer: Yes” mode.

32

2% We Are Now At...

= Security policies notation

= Example: accessing database
» Allow everything!
= Add restrictions
» Debugging the policy set

= Benchmarking Xemis

» Project status

= Further development

Kirill Bolshakov, Leonid Mokrushin 33

In the final part of the session the benchmarking results will be presented.
Current project status as well as possible further developments will be
outlined.

33

2% Benchmarking Xemis

= Configuration:
= PPro200x2, 96M RAM, Windows NT 4
s Consumes 14ms vs. 1ms on fileAccess
check operation
= Other checks
= Contain less string comparisons
= Execute faster

Kirill Bolshakov, Leonid Mokrushin 34

We have benchmarked current version of Xemis and obtained the
following times on the most computation-intensive test. Compared to
those of Cocoon page processing, we consider these to be convenient for
totally non-optimized piece of software. © Other checks have less
computations so the difference is not that meaningful. There is a vast field
for optimizations in this area (b-trees, fast strings comparison, policy
caching, etc.)

34

2% Availability. Current State

= Available at http://xemis.sourceforge.net
= Implemented components:

» Security Manager

» Debug Security Manager

» Benchmarking sample

Kirill Bolshakov, Leonid Mokrushin 35

Stable packaged versions, as well as development version (with CVS
access) and bug database are accessible at
http://xemis.sourceforge.net.

The following components have been implemented:

1. Xemis Security Manager

2. Debug Security Manager

3. Benchmarking sample (let us know your results, please)

Using the first two components one can build secure Cocoon/XSP multi-
user hosting site.

35

2% Further Development

= Optimization of security checks
= XSP deployment tools
= GUI tool for policy specification

» Research of consistency checking for policy
sets

Kirill Bolshakov, Leonid Mokrushin 36

At the moment, the following directions of further development and

1.

enhancement of Xemis are under consideration:

Optimization of security checks. There is a huge amount of string
comparisons in certain parts of the SecurityManager, so this part can
be optimized in speed at the expense of memory.

Development of secure deployment tools for Cocoon/XSP applications.

Development of graphical tool for specifying policy sets. This can help
an administrator to faster setup and easier manage his installation of
Cocoon/Xemis blend.

. Research on consistency checking for policy sets. The results of this

research may prove to be useful for finding human mistakes when
configuring the system.

36

2% Acknowledgements

Distributed Computing and Networking Department of
Saint-Petersburg State Technical University

Experimental Object Technologies (www.xjtek.com)
Apache Software Foundation
Sun Microsystems
SourceForge.NET

Kirill Bolshakov, Leonid Mokrushin 37

We would like to thank Distributed Computing and Networking Department
of Saint-Petersburg State Technical University and Experimental Object
Technologies group for the opportunity they gave us to develop this piece
of software. We are also grateful to Sun Microsystems for the change they
have introduced to the world of heterogeneous computing and Apache
Software Foundation for their great free software. Our thanks go to
SourceForge for we are hosting our project at SourceForge.NET, and to
all of you for your attention.

37

