
Apache Web Server Transparent Content Negotiation

Transparent Content Negotiation

Lars Eilebrecht
<lars@apache.org>

The images and some of the examples in this document have been taken out of the book Apache Web−Server by Lars Eilebrecht.
They are copyright by MITP−Verlag, Germany, and are being published in this document with their kind permission.

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

1 Content Negotiation
If more than one version of the same resource, a GIF, JPEG, and PNG file of an image,
for example, is available on the server, Apache is able to select one of these files based
on the client’s preferences and capabilities. This mechanism is called Content Negotiation,
or more accurately Content Selection.

The prerequisite is that different variants of a specific resource, a HTML document, an
image, etc., have been made available on the server. For example, a web client with a
preference for PDF over Postscript documents would receive the PDF instead of the
Postscript variant.

In order to use content negotiation the module mod_negot i at i on has to be added to the
Apache server. The module includes two different implementations of content negotiation.

The normal way how Apache decides about the best variant is to read the HTTP headers
submitted by the web client. This means that the selection of a variant is solely done on
the server side. This is sometimes referred to as HTTP/1.0 Content Negotiation or
Apache Content Negotiation (ACN). Since Apache version 1.3.4, client−side content
negotiation is available, too. In this case Apache doesn’t send a variant to the client, but
responds with a list of all available variants for that resource, to allow the client itself to
select a variant that best matches the client’s capabilities. For the user the whole process
of selection is usually completely transparent, which is why this mechanism is often
referred to as Transparent Content Negotiation (TCN). Apache complies to the
specification of Transparent Content Negotiation in RFC 22951. Indeed it may happen that
a web client, dependent on the implementation of TCN, presents the user a list of all
variants allowing him to select one manually. Even if a web client supports TCN he usually
leaves the selection of a variant to the web server. Regarding this, Apache supports the
Remote Variant Selection Algorithm 1.0 (RVSA/1.0) described in RFC 2296.

1 RFC 2295 defines "Feature Negotiation" which is not yet supported by Apache 1.3.

ApacheCon Europe 2000 Lars Eilebrecht

root
Proz
eß

HTML

TXT
PDF

... PS

http://www.domain.tld/page.var

Apache Web Server Transparent Content Negotiation

1.1 Standard Apache Content Negotiation
All preferences and capabilities of a web client are submitted to the server via a number of
different HTTP headers. These headers are Accept , Accept −Char set , Accept −
Encodi ng and Accept −Language. These headers result in four different possibilities for
Apache to selecting the best variant on behalf of a client:

� MIME type
� Character set
� Encoding
� Language

There are two different mechanisms supported by Apache for resolving what to send a
client. The most flexible one is the use of Type−Maps allowing explicit definitions of a
resource’s variants. Less flexible, but simpler and more convenient to use is the
MultiViews feature.

1.1.1 Apache Negotiation Algorithm

In order to determine which one of a selection of documents or images should be returned
to a client a special negotiation algorithm is used. The following paragraphs are taken out
of the Apache documentation2 explaining the different negotiation steps of the Apache
Negotiation Algorithm:

1. First, for each dimension of the negotiation, check the appropriate Accept * header
field and assign a quality to each variant. If the Accept * header for any dimension
implies that this variant is not acceptable, eliminate it. If no variants remain, go to
step 4.

2. Select the best variant by a process of elimination. Each of the following tests is
applied in order. Any variants not selected at each test are eliminated. After each
test, if only one variant remains, select it as the best match and proceed to step 3. If
more than one variant remains, move on to the next test.

1. Multiply the quality factor from the Accept header with the quality−of−source
factor for this variant’s media type, and select the variants with the highest value.

2. Select the variants with the highest language quality factor.

3. Select the variants with the best language match, using either the order of
languages in the Accept −Language header (if present), or else else the order
of languages in the LanguagePr i or i t y directive (if present).

4. Select the variants with the highest level media parameter (used to give the
version of t ext / ht ml media types).

5. Select variants with the best character set media parameters, as given on the
Accept−Charset header line. Charset ISO−8859−1 is acceptable unless explicitly
excluded. Variants with a t ext / * media type but not explicitly associated with a
particular charset are assumed to be in ISO−8859−1.

2 ht t p: / / www. apache. or g/ docs/ manual / cont ent −negot i at i on. ht ml

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

6. Select those variants which have associated charset media parameters that are
not ISO−8859−1. If there are no such variants, select all variants instead.

7. Select the variants with the best encoding. If there are variants with an encoding
that is acceptable to the user−agent, select only these variants. Otherwise if
there is a mix of encoded and non−encoded variants, select only the unencoded
variants. If either all variants are encoded or all variants are not encoded, select
all variants.

8. Select the variants with the smallest content length.

9. Select the first variant of those remaining. This will be either the first listed in the
type−map file, or when variants are read from the directory, the one whose file
name comes first when sorted using ASCII code order.

3. The algorithm has now selected one best variant, so return it as the response. The
HTTP response header Vary is set to indicate the dimensions of negotiation
(browsers and caches can use this information when caching the resource). End.

4. To get here means no variant was selected (because none are acceptable to the
browser). Return a 406 status (meaning No acceptable representation) with a
response body consisting of an HTML document listing the available variants. Also
set the HTTP Var y header to indicate the dimensions of variance.

Fiddling with Quality Values

Apache sometimes changes the quality values from what would be expected by a strict
interpretation of the Apache negotiation algorithm above. This is to get a better result from
the algorithm for browsers which do not send full or accurate information. Some of the
most popular browsers send Accept header information which would otherwise result in
the selection of the wrong variant in many cases. If a browser sends full and correct
information these fiddles will not be applied.

Media Types and Wildcards

The Accept request header indicates preferences for media types. It can also include
wildcard media types, such as "i mage/ * " or "* / * " where the * matches any string. So a
request including:

Accept : i mage/ * , * / *

would indicate that any type starting "i mage/ " is acceptable, as is any other type (so the
first "i mage/ * " is redundant).

Some browsers routinely send wildcards in addition to explicit types they can handle. For
example:

Accept : t ext / ht ml , t ext / pl ai n, i mage/ gi f , i mage/ j peg, * / *

The intention of this is to indicate that the explicitly listed types are preferred, but if a
different representation is available, that is ok too. However under the basic algorithm, as
given above, the * / * wildcard has exactly equal preference to all the other types, so they
are not being preferred. The browser should really have sent a request with a lower
quality (preference) value for * . * , such as:

Accept : t ext / ht ml , t ext / pl ai n, i mage/ gi f , i mage/ j peg, * / * ; q=0. 01

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

The explicit types have no quality factor, so they default to a preference of 1.0 (the
highest). The wildcard * / * is given a low preference of 0.01, so other types will only be
returned if no variant matches an explicitly listed type.

If the Accept header contains no q factors at all, Apache sets the q value of "* / * ", if
present, to 0.01 to emulate the desired behavior. It also sets the q value of wildcards of
the format "t ype/ * " to 0.02 (so these are preferred over matches against "* / * ". If any
media type on the Accept header contains a q factor, these special values are not
applied, so requests from browsers which send the correct information to start with work
as expected.

(See also the explanation of the Remote Variant Selection Algorithm at the end of this
document.)

1.1.2 Type Maps

A Type Map is a simple text file containing definitions of all available variants for a specific
resource. Type maps are usually identified by the file extension ". var " as an abbreviation
for variant.

Activating Type Maps

Type maps are activated by assigning an Apache handler called "t ype−map" to a file
extension. As already mentioned this is usually the extension ". var ".

AddHandl er t ype−map var

If you use the AddHandl er directive globally in your server configuration, files with a
". var " extension in all server directories are defined as a type map. If you wish to limit the
use of type maps to a specific part of your web server this is done by using a Locat i on
or Di r ect or y directive, e.g.:

<Locat i on / t est >
AddHandl er t ype−map var
</ Locat i on>

Using Type−Maps

As mentioned before there are four different dimensions of content negotiation: Media
type (Accept header), language (Accept −Language header), character set (Accept −
Char set header) and content encoding (Accept −Encodi ng header). For every variant it
is possible to make definitions for one or more dimensions of negotiation in a type map.

A type map has the same format like an electronic mail header (see RFC 822). The
headers allowed are:

URI

A URI (Uniform Resource Identifier) entry is used to set the file name of a variant, e.g.:

URI : page. ht ml

or

URI : . . / page. ht ml

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

The file name has to be defined relative to the current directory. It is not possible to use
an absolute path.

Content−Type

The media type and quality score (qs) of a variant is defined by a Cont ent −Type entry.
Both values have to be separated by a semicolon. As an additional parameter (Char set)
the character set of the content can be defined.

The definition of a Cont ent −Type entry is mandatory for every variant, even if all variants
in a type map have the same media type.

Examples:

Cont ent −Type: t ext / ht ml
Cont ent −Type: i mage/ gi f ; qs=0. 5
Cont ent −Type: t ext / pl ai n; qs=0. 4; char set =i so−8859−5

Content−Length

This entry defines the file size (bytes) of a variant. Apache checks for the file size itself if
this entry is missing, therefore it is save to omit all Cont ent −Lengt h entries.

Content−Language

The language used for a variant is defined via Cont ent −Language. Allowed values are
double−digit abbreviations of the corresponding language as defined in ISO 639 and RFC
1766, e.g., "en" for English, "de" for German or "f r " for French.

Example:

Cont ent −Language: de

Since there can be more than just one variant for one language, e.g., American English
and British English, an additional extension, separated by a dash, may be added.

Examples:

Cont ent −Language: en−US
Cont ent −Language: en−GB

If a client requests the language "en−GB" the server replies with the "en−GB" variant, if
available. If not, he looks for other "en" variants. Accordingly a request for "en" would
yield a "en−GB" variant if no other "en" variant is available.

Content−Encoding

If a file has been encoded with compr ess or gzi p this can be defined with Cont ent −
Encodi ng.

Examples:

Cont ent −Encodi ng: gzi p
Cont ent −Encodi ng: compr ess

Description

As the name already denotes, it contains a description of the corresponding variant. A
Description entry is optional, but if there are descriptions in a type map they are used by

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

Apache if no matching variant could be found for a client request. In that case an error
message (status code 406, Not Acceptable) is returned to the client including a list of all
available variants together with their descriptions. This allows a user to manually select a
variant.

If a description contains a white space it must be quoted.

Examples:

Descr i pt i on: " Or i gi nal engl i sh ver si on"
Descr i pt i on: " Ger man HTML document "
Descr i pt i on: Post scr i pt

Every entry mentioned above may be used multiple times in a type map, but only once for
a single variant. For every variant at least an URI and Content−Type entry must be
defined in a type map. Variant entries in a type map are separated by an empty line. Lines
starting with a "#" are treated as comments and therefore ignored by Apache.

Example of a Type−Map file

#
t ype−map: / t est / page. var

URI : page. de. ht ml
Cont ent −Type: t ext / ht ml ; qs=0. 8
Cont ent −Language: de
Descr i pt i on: " Ger man HTML document "

URI : page. en. ht ml
Cont ent −Type: t ext / ht ml ; qs=0. 8
Cont ent −Language: en
Descr i pt i on: " Engl i sh HTML document "

URI : page. t xt
Cont ent −Type: t ext / pl ai n; qs=0. 1
Cont ent −Language: en
Descr i pt i on: " Engl i sh pl ai n t ext document "

URI : page. pdf
Cont ent −Type: appl i cat i on/ pdf ; qs=1
Cont ent −Language: en
Descr i pt i on: " Engl i sh PDF document "

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

A client requesting the URL ht t p: / / www. domai n. t l d/ t est / page. var would receive
one of the variants page. de. ht ml , page. en. ht ml , page. t xt or page. pdf . If the
client prefers only german documents he would receive page. de. ht ml and not the PDF
document which has a higher quality score, but is not available in German. Only if the
client accepts English documents the file page. pdf would be returned to the client.

1.1.3 Dimensions of Negotiation

Type Negotiation

A client uses the Accept header to submit a list of acceptable media types to the server,
e.g., t ext / ht ml , i mage/ png or appl i cat i on/ pdf . In addition a quality value "q" can
be specified for every media type. This value is a floating−point number in the range 0.0 to
1.0, indicating the relative quality of this media type to the other media types. The default
is 1.0 if no quality value is specified.

Example header:

Accept : i mage/ png; q=1, i mage/ gi f ; q=0. 5, i mage/ j peg; q=0. 7

This header expresses the client’s capability to handle PNG, GIF and JPG images and
shows a preference of PNG images (q=1) over all other image types. If there is no PNG
variant Apache responds with a JPG image and if there is even no JPG image he will look
for a GIF image. If there is no acceptable variant Apache responds with an 406 error
message (see example above).

Example of a type map for three image files:

#
t ype−map: pi ct ur e. var
#

URI : pi ct ur e. png
Cont ent −Type: i mage/ png; qs=0. 6
Descr i pt i on: " Tr uecol or PNG i mage"

URI : pi ct ur e. gi f
Cont ent −Type: i mage/ gi f ; qs=1
Descr i pt i on: " 256col or GI F i mage"

URI : pi ct ur e. j pg
Cont ent −Type: i mage/ j peg; qs=0. 6
Descr i pt i on: " Tr uecol or JPEG i mage wi t h 70% qual i t y−l evel "

A request for pi ct ur e. var with the Accept header given above would result in the
PNG variant being returned to the web client. The quality values of the client are
combined with the quality scores defined on the server−side. The variant with the highest
resulting value is the best variant and therefore returned to the client.

If the client changes the quality value for the media type i mage/ png from 1 to 0.5, the
result would be the GIF variant of the image.

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

Language Negotiation

If a document is available in multiple languages, e.g., German and English, the Accept −
Language header can be used to select the best matching variant.

Example header:

Accept −Language: de, en: q=0. 9, f r : q=0. 2

Expressed verbally, this header means: "I’m preferring German, but also English if there is
no German document, and if all else fails I’ll take French documents as well".

Example of a type map for a HTML document available in German, English and French:

#
t ype−map: page. var
#

URI : page. ht ml . de
Cont ent −Type: t ext / ht ml
Cont ent −Language: de
Descr i pt i on: " Ger man document (or i gi nal ver si on) "

URI : page. ht ml . en
Cont ent −Type: t ext / ht ml
Cont ent −Language: en
Descr i pt i on: " Engl i sh document (t r ansl at ed ver si on) "

URI : page. ht ml . f r
Cont ent −Type: t ext / ht ml
Cont ent −Language: f r
Descr i pt i on: " Fr ench document (t r ansl at ed ver si on) "

A request for page. var with the given Accept −Language header would yield the
German variant of the HTML document.

Charset Negotiation

A list of supported character sets can be submitted by the web client to the server via the
Accept −Char set header. The default character set for HTML documents is ISO−8859−
1.

Example header:

Accept −Char set : i so−8859−1, uni code−1; q=0. 8

Example type map for two HTML documents:

#
t ype−map: page. var
#

URI : page. ht ml
Cont ent −Type: t ext / ht ml ; qs=1; char set =i so−8859−1
Descr i pt i on: " t est document (i so) "

URI : page. uni . ht ml
Cont ent −Type: t ext / ht ml ; qs=1; char set =uni code−1−1
Descr i pt i on: " t est document (uni code) "

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

Encoding Negotiation

The Accept −Encodi ng header is used by a web client to signal the server which ways of
encoding he supports.

Example header:

Accept −Encodi ng: gzi p, compr ess

Example type map for a postscript document:

#
t ype−map: i nf o. var
#

URI : i nf o. ps. Z
Cont ent −Type: appl i cat i on/ post scr i pt ; qs=0. 8
Cont ent −Encodi ng: compr ess
Descr i pt i on: " i nf o document (compr ess) "

URI : i nf o. ps. gz
Cont ent −Type: appl i cat i on/ post scr i pt ; qs=1
Cont ent −Encodi ng: gzi p
Descr i pt i on: " i nf o document (gzi p) "

Whether a client supports compr ess or gzi p Apache either replies with i nf o. ps. Z or
with i nf o. ps. gz .

Combination of different negotiation dimensions

As shown in a previous example it is possible to combine two or more dimensions of
negotiation in a single type map.

The following example shows a type map for a resource with HTML and plain text
variants, both available in two different character sets and in German and English,
respectively:

#
t ype−map: ext r eme. var
#

URI : ext r eme−i so. ht ml . de
Cont ent −Type: t ext / ht ml ; qs=0. 9; char set =i so−8859−1
Cont ent −Language: de
Descr i pt i on: " Ger man HTML document , i so−8859−1"

URI : ext r eme−i so. ht ml . en
Cont ent −Type: t ext / ht ml ; qs=0. 9; char set =i so−8859−1
Cont ent −Language: en
Descr i pt i on: " Engl i sh HTML document , i so−8859−1"

URI : ext r eme−i so. t xt . de
Cont ent −Type: t ext / pl ai n; qs=0. 2; char set =i so−8859−1
Cont ent −Language: de
Descr i pt i on: " Ger man pl ai n t ext document , i so−8859−1"

URI : ext r eme−i so. t xt . en
Cont ent −Type: t ext / ht ml ; qs=0. 2; char set =i so−8859−1
Cont ent −Language: en

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

Descr i pt i on: " Engl i sh pl ai n t ext document , i so−8859−1"

URI : ext r eme−uni . ht ml . de
Cont ent −Type: t ext / ht ml ; qs=0. 9; char set =uni code−1−1
Cont ent −Language: de
Descr i pt i on: " Ger man HTML document , uni code−1−1"

URI : ext r eme−uni . ht ml . en
Cont ent −Type: t ext / ht ml ; qs=0. 9; char set =uni code−1−1
Cont ent −Language: en
Descr i pt i on: " Engl i sh HTML document , uni code−1−1"

URI : ext r eme−uni . t xt . de
Cont ent −Type: t ext / pl ai n; qs=0. 2; char set =uni code−1−1
Cont ent −Language: de
Descr i pt i on: " Ger man pl ai n t ext document , uni code−1−1"

URI : ext r eme−uni . t xt . en
Cont ent −Type: t ext / pl ai n; qs=0. 2; char set =uni code−1−1
Cont ent −Language: en
Descr i pt i on: " Engl i sh pl ai n t ext document , uni code−1−1"

1.1.4 MultiViews

As you can see by looking at the previous example, the creation and maintenance of type
maps is quite time consuming. Apache usually looks at the file extension to find out the
media type and encoding of a resource. Doing the same for all variants of a resource
would allow Apache to create a type map itself.

This is exactly the mechanism which is used for the MultiViews search feature. The use of
MultiViews is less flexible than a type map, but a lot simpler to configure.

MultiViews are activated in the server configuration via the option Mul t i Vi ews of the
Opt i ons directive which is usually defined inside a Locat i on or Di r ect or y section,
e.g.:

<Locat i on / t est >
Opt i ons +Mul t i Vi ews
</ Locat i on>

Please note that Opt i ons Al l does not activate MultiViews, it has to be specified
additionally.

The functionality of a MultiViews search is quite simple. If the server receives a request for
a non existing file, e.g., / t est / page, and the MultiViews feature is enabled for the
directory, Apache reads the directory looking for all files starting with "page". If he finds
files like page. ht ml , page. t xt , etc. he effectively fakes up a type map which names all
those files, assigning them the same media types and content encodings it would have if
the client had asked for one of them by name.

If the MultiViews search yields a type map, this map is used for negotiation. That way it is
possible to combine a MultiViews search with type maps. The use of type maps could be
limited to special cases, for example.

Example: A directory / t est contains the three files page. ht ml , page. t xt and
page. pdf . A client requests ht t p: / / www. domai n. t l d/ t est / page and submits the
following Accept header:

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

Accept : t ext / ht ml ; q=1, t ext / pl ai n; q=0. 5, appl i cat i on/ pdf ; q=0. 8

The server replies with the file page. ht ml , due to the higher quality value. If the client
doesn’t specify any quality values the result is not predictable. This is a drawback of using
MultiViews instead of type maps, because it is not possible to set any quality scores on
the server−side.

File name extensions and MultiViews

MultiViews are very convenient to use for language negotiation. As mentioned before the
language of a document is denoted by an additional file name extension according to the
specification in ISO 639 and RFC 1766.

A file name usually has the following syntax:

f i l ename. medi a−t ype. l anguage. char set . encodi ng

Apart from the file name itself, the ordering of all other extensions can be changed if
necessary.

Examples:

page. ht ml . de
page. de. ht ml
page. ht ml . j a. j i s
page. ht ml . j i s . j a
i nf o. t ext . de. gz
i nf o. gz. t xt . de

In order for Apache to know that "j a" means Japanese, for example, the extension has to
be defined in the server configuration. This is done with the AddLanguage directive, e.g.:

AddLanguage de . de
AddLanguage en . en
AddLanguage pl . po

If a web client does not submit an Accept −Language header the server selects a variant
according to the setting of the LanguagePr i or i t y directive. This directive sets the
priority for different language variants on the server side.

In the following example "en" has the highest and "pl " the lowest priority:

LanguagePr i or i t y en de pl

If a file has no language extension the server is not able to determine the language of it.
Via the Def aul t Language directive it is possible to define a default language for variants
according to requirements. The directive may be used globally in the server configuration,
inside a Vi r t ual Host , Di r ect or y , Locat i on or Fi l es section or inside a
. ht access file. This is very useful if you are migrating from a single to a multiple
language web site and don’t want to change all your old file names.

Example:

<Locat i onMat ch \ . ht ml $>
Def aul t Language de
</ Locat i onMat ch>

With this configuration all HTML files without a language extension are treated as being a
German HTML document. The "de" language extension may be used as well.

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

Another directive which is very useful when using MultiViews is AddChar set . It allows for
defining a different character set for file names with a specific extension. This may be
necessary if the default character set ISO−8859−1 can not or should not be used.

An example of such a case are Chinese documents with different character sets:

AddChar set BI G5 bi g5
AddChar set EUC−TW euct w
AddChar set GB2312 gb
AddLanguage zh . zh

This configuration defines the three possible character sets BIG5, EUC−TW, GB2312, and
via AddLanguage the language Chinese (zh) itself. If the content of a document is written
with the BIG5 character set, both extensions "bi g5" and "zh" must be added to the
variant’s file name.

Example:

page. ht ml . bi g5. zh
page. ht ml . zh. bi g5

Apart from AddChar set the default character set can be changed by using
AddDef aul t Char set , e.g.:

AddDef aul t Char set I SO−2022−JP

The same applies to all other unknown extensions: They have to be defined in the server
configuration. Apart from the directive mentioned above there is AddEncodi ng to define
encoding extensions and AddType to define additional media types.

Referencing MultiViews resources

It is possible to reference MultiViews resources in a hyperlink in different ways, dependent
on the ordering of its file name extensions (language, encoding, etc.).

Example:

page. ht ml . j a. j i s

This document may be referenced with one of the following names:

page
page. ht ml
page. ht ml . j a
page. ht ml . j a. j i s

If the variant has the file name

page. j a. ht ml . j i s

the following names may be used:

page
page. j a
page. j a. ht ml
page. j a. ht ml . j i s

As you can see it is possible to omit extensions starting from the right to the left, but it is
not possible to omit an other extension or to change the ordering.

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

Thus using the following names would result in a Not found error message:

page. j a. j i s
page. j i s . j a
page. ht ml

Special treatment of CGI scripts

If a MultiViews search finds a CGI script and the request was a POST, or a GET with
QUERY_ARGS or PATH_INFO, the CGI script is given an extremely high quality score
resulting in the invocation of the script. For other request types a low quality score is given
to the script which generally causes one of the other variants (if any) to be retrieved.

1.2 Transparent Content Negotiation
As already mentioned in the beginning of this chapter Apache supports Transparent
Content Negotiation (TCN) since version 1.3.4. From a configuration point of view there
are no differences compared to normal Apache Content Negotiation (ACN).

All TCN features are active if type maps are in use or the MultiViews search has been
enabled, but the use TCN is limited to web clients signaling support for TCN. This is done
by a specific HTTP header named Negot i at e.

If a web client submits the header:

Negot i at e: t r ans

he signals the server that he supports TCN and wishes to receive a list of all available
variants on every response from the server.

If there are three variants on the server, for example:

page. ht ml . d
page. ht ml . j a. j i s
page. ps. en

A request for the document page would yield the following response:

HTTP/ 1. 1 300 Mul t i pl e Choi ces
Dat e: Wed, 27 Sep 2000 23: 49: 31 GMT
Ser ver : Apache/ 1. 3. 12 (Uni x)
Al t er nat es: { " page. ht ml . de" 1 { t ype t ext / ht ml }
 { l anguage de} { l engt h 1877} } ,
 { " page. ht ml . j a. j i s" 1 { t ype t ext / ht ml }
 { char set i so−2022−j p} { l anguage j a} { l engt h 1623} } ,
 { " page. ps. de" 1 { t ype appl i cat i on/ post scr i pt }
 { l anguage de} { l engt h 2326} }
Var y: negot i at e, accept , accept −l anguage, accept −char set
TCN: l i s t
Connect i on: c l ose
Cont ent −Type: t ext / ht ml

<! DOCTYPE HTML PUBLI C " −/ / I ETF/ / DTD HTML 2. 0/ / EN" >
<HTML><HEAD>
<TI TLE>300 Mul t i pl e Choi ces</ TI TLE>
</ HEAD><BODY>
<H1>Mul t i pl e Choi ces</ H1>
Avai l abl e var i ant s:

ApacheCon Europe 2000 Lars Eilebrecht

Apache Web Server Transparent Content Negotiation

<l i ><a hr ef =" page. ht ml . de" >page. ht ml . de</ a> ,
 t ype t ext / ht ml , l anguage de
<l i ><a hr ef =" page. ht ml . j a. j i s" >page. ht ml . j a. j i s</ a> ,
 t ype t ext / ht ml , l anguage j a, char set i so−2022−j p
<l i ><a hr ef =" page. ps. de" >page. ps. de</ a> ,
 t ype appl i cat i on/ post scr i pt , l anguage de
</ ul >
<HR>
<ADDRESS>Apache/ 1. 3. 12 Ser ver at
 www. domai n. t l d Por t 80</ ADDRESS>
</ BODY></ HTML>

The most important HTTP headers related to TCN are Al t er nat es (variant list), Var y
(applied dimensions of variance), and TCN (response type). Based on these headers the
web client is able to transparently select a variant best matching its preferences and
capabilities and request this variant from the server.

If there is no matching variant the web client is not able to transparently select one and
instead displays the variant list to the user for manual selection. This list is identical to the
ACN selection list where a server couldn’t find a matching variant, but with ACN this
response has the status code 406 (Not acceptable) and with TCN it has the status code
300 (Multiple Choices).

1.2.1 Remote Variant Selection Algorithm

In most cases a client supporting TCN would use the following HTTP header in its
requests:

Negot i at e: 1. 0

This denotes that the server (if TCN is supported) should use the Remote Variant
Selection Algorithm 1.0 (RVSA/1.0) to handle negotiation on the server−side. Even if the
server selects a variant on behalf of the client the HTTP headers Al t er nat es and Var y
are always returned to the web client. This allows the client, if necessary, to select another
variant and request it from the server.

The RVSA is very similar to Apache’s negotiation algorithm. Both algorithms use the
client’s Accept headers to select the best variant. Indeed there are a few unusual
characteristics of Apache’s negotiation algorithm, like workarounds for bugs of some
commonly used web browsers and special treatment of Accept headers without any
quality values. Please see the explanation of the Apache Negotiation Algorithm for more
details.

ApacheCon Europe 2000 Lars Eilebrecht

