AxKit - An XML Publishing Toolkit for Apache

Matt Sergeant - AxKit.com

September 24, 2000

Abstract

AxKit is a set of modules and tools that turn Apache into a complete
XML publishing and delivery environment. By integrating XML transfor-
mation into the Apache server we get a high performance framework for
dynamically generated HTML and other output formats that fits in per-
fectly with the current Apache configuration methodology. This enables
you to install AxKit into your Apache setup and maintain your current
webmaster skill sets while introducing the power of semantically rich data
using XML.

Contents

1 AxKit Introduction

1.1 What is AxKit? o 3
1.2 AxKit Implementation 4
1.2.1 Associating Stylesheets/Processors with XML Files 4

1.3 AxKit Performance o000 5

2 Developing a Web Site Using XML 6
2.1 Considerations oo 6
2.1.1 Accessibilityo 6

2.1.2 Changing Content 7

2.1.3 Imternationalization 7

2.1.4 Localization L L oL 7

2.1.5 Low Latency and Speedy Delivery 7

2.1.6 Syndication L oL o 8

2.2 Your New XML Web Site 8
2.3 Development 10
2.3.1 XPathScript 11

2.3.2 XSLT e 13

233 RSS .. e 14

24 Dynamic Content L o 16
2.5 Building Your Own Taglibs 18

3 XML Editing 19
4 Future Directions 20
A List of Links 21

1 AxKit Introduction

1.1 What is AxKit?

AxKit was born out of my desire to work with XML for my source data in the
form of articles (where I might choose to use DocBook) or FAQ’s, or some other
data format. I've now been working with XML for nearly three years, and the
lack of tools for working with it outside of the Java sphere was disappointing for
me. So I decided to at least try and correct that to some extent. Other people’s
projects have helped immensely too, and AxKit really is the plumbing between
many other XML projects and Apache.

AxKit is implemented as an Apache module, written initially in Perl us-
ing mod_perl!, with plans to port the core functionality to C if needed at a
later date. It provides content developers with an XML pipeline (which I will
describe in more detail later) that progressively renders XML to different for-
mats before finally sending to the user agent. AxKit also allows you to provide
different views of the content based on stylesheet selection, or based on user
agent media type (the official W3C media types are screen, tty, tv, projection,
handheld, print, braille and aural). The engines within AxKit that allow you
to transform your XML data sources include XSLT (based on Sablotron from
http://www.gingerall.com, or using Perl’s XML::XSLT module), XSP (XML
Server Pages, a technology originally developed for the Cocoon project), and
some custom modules written in Perl that make it easier to work with XML-
News and make more sense for Perl developers than XSLT!

In theory AxKit is very much like the Cocoon project in functionality. Since
AxKit was developed after Cocoon, it is important to point out the reasoning
behind developing such a similar project. The first and foremost reason is that
my company doesn’t run Java on our development machines. This is simply
a “three strikes and you’re out” reasoning - we have tried Java development
on Linux 3 times in the past, and while we now hear of improvements in the
stability of Java on Linux, we have since moved on and are very happy with
our current path. The second reason was that we continually heard from the
Perl community two chants fairly regularly. The first is “Why don’t we have
something like Zope?”, and the second is “Why don’t we have something like
Cocoon?”. Well now you have the latter and we are working on the former!

It is also important to note that AxKit is built from plug-in modules and
components. The main reasoning behind this is an architectural decision that we

will eventually be implementing AxKit as a complete configuration management

Many people mistakenly assume mod_perl is a way to speed up CGI scripts for Apache,
but in fact it simply provides a means to access the Apache module API from Perl, and allows
you to write Apache modules in Perl.

system, very similar in some ways to Zope. Rather than implement this as a
CMS with AxKit transformations built in, we built AxKit so that anyone else
can drop in their own CMS back end.

1.2 AxKit Implementation

As we already noted, AxKit is developed in mod_perl as an Apache module.
This gives us additional Apache configuration directives much in the same way
that mod_mime gives us the AddEncoding directive, AxKit provides you with
around 16 new directives designed to help configure how Apache then transforms
your XML data source to the target user agent.

When a request comes in for a particular URI that AxKit is enabled for, it
first checks to see if it should handle the resource. It does so by using some
simple checks to determine if the resource is actually XML or not. First it
checks for a “.xml” extension. Then it checks the outgoing Content-Type of the
resource (since mod_mime will have already been called into action) for an XML
content type (see the proposed IETF XML Mime types? document). Finally if
none of those came true, it checks the actual contents of the file for a leading
“<7xml” marker. It does so in a way independent of the document encoding,
as described in the XML 1.0 specification.

Once AxKit has determined to process a particular URI, it then goes on to
determine how it should be processed. It does so depending on the modules in
use for this request, but the default method is to check the <?xml-stylesheet?>
processing instructions at the start of the XML document (these instructions
appear before the first element, see http://www.w3.org/TR/xml-stylesheet). If
no instructions are found there it uses methods defined in the Apache configu-
ration files. The simplest of which defines the appropriate transformation based
on the name of the document element?3.

Next AxKit transforms the document using the stylesheet and instructions
obtained from the previous step, and finally it delivers the transformed content

to the browser or user agent.

1.2.1 Associating Stylesheets/Processors with XML Files

As described above, AxKit can use the <?xml-stylesheet?> processing instruc-
tion to associate stylesheets with the XML resource, however this is generally
best used as an overriding mechanism, because it doesn’t scale particularly well

- imagine changing this value in every file on a large web site! So AxKit also

2http://www.ietf.org/internet-drafts/draft-murata-xml-07.txt
3The document element is the very first element in the XML document after the preamble
and the DOCTYPE declaration.

allows you to set the stylesheets based on Apache configuration directives. For
example, the following assigns the stylesheet “/stylesheets/docbook_html.xsl” to
all files that have the DOCTYPE public identifier “-//OASIS//DTD DocBook
XML V4.1.2//EN”:

AxAddDocTypeProcessor text/xsl /stylesheets/docbook html.xsl \
¢¢-//0ASIS//DTD DocBook XML V4.1.2//EN’’

AxKit also allows you to do many more complex mappings dependent on the
root element name, the DTD file referenced, and also to group the mappings
dependent on media type and stylesheet preference.

One thing worth noting is that we have a very simple way to distinguish
between a stylesheet transformation (such as XSLT) and a processor (such as
XSP, see below). We simply use the stylesheet href of “.”. This initially looks
like a completely wrong use of the technology, but it is a very simple way to
implement things, and as we know from experience, the way to make things

successful and easy to use is to make them simple.

1.3 AxKit Performance

XML transformation can be slow. Very slow. The reasons for this are simple: It
requires fairly complex tree traversal and node matching to do complex things
with XML documents. This is where you trade off power for efficiency. In order
to make sure that your users aren’t held up by deficiencies in the model of XML,
AxKit does everything in its power to make things as fast as possible for you.

The basic premise here is to cache everything. In local memory (the memory
of each child httpd process) we store the information pertaining to what trans-
formations an XML file has to go through to be processed. We only re-determine
those details when something changes. On disk we store the generated output
(using a plug-in cache module, should you want some central cache management
that doesn’t use files, such as an RDBMS for example). This means that for
static files the path through AxKit is as follows:

e Determine if we process the URI
e Determine if anything has changed

e Deliver cached results

As you can see, this is a very short process, and we’re very quickly through to

a point where we can say:

Apache->request->filename(<cache filename>);
return DECLINED;

This provides users of AxKit who have high system demands to deliver a web
site that runs at approximately 60% of the speed of a regular Apache server.
Since we know that Apache is quite capable of saturating a T1 on a 486, this
should be sufficient for almost all sites on the Internet, especially when combined
with technology like mod_backhand to provide load balancing over a number of

servers.

2 Developing a Web Site Using XML

So now that XML will let you go and sun yourself in Ibiza for half of the year
you probably want to know exactly how to go about building that XML based
web site. Unfortunately the bad news is that designing and developing an XML
based web site will initially increase the time it takes to get your web site online.
This is because you now have many extra things to consider. On the other hand,
if you are already considering the issues I am about to outline, then you may

find this decreases your delivery time, which probably sounds like great news.

2.1 Considerations

When building your new next generation web site, there are several things to
consider which prior to now you may have bypassed, saying that it can wait for
the future to arrive. Well the future is here, and these are the things you now

need to be thinking about for a modern web site:

2.1.1 Accessibility

Up until just a couple of years ago, accessibility meant that you had to ensure
your web site looked OK in browsers for the blind, or perhaps in text only
browsers such as Lynx. However now it means much more than that. Suddenly
in 1998 we had WAP* spring onto the scene from a consortium of mobile phone
companies. Now while WAP has its faults (and they are many), it is very quickly
becoming a de-facto standard for the handheld Internet, with millions of pounds
being pumped into WAP development in this country alone.

But it doesn’t stop at WAP. Modern web site content needs to be able to
be rendered on Set Top Boxes. Current practice for this is to either provide

totally separate set-top web sites, or to provide work arounds in your HTML

4WAP is the Wireless Application Protocol. The term is generally used to describe the the
services for delivering content to wireless devices, and include WML, the Wireless Markup
Language, and WMLScript a scripting language.

that enable content to stretch to different sized user agents. While this is a
good thing, web designers aren’t always happy with this lack of control over
layout. And the alternate web site issue is a problem too. What happens when
you email a URL to your Mother who reads her email on her Sky Digibox?
Under AxKit she could just click on the URL and Apache would give her the
appropriately styled content.

2.1.2 Changing Content

In order to drive visitors to your site you need content that gets updated on a
regular basis. If you want to build an XML based web site without AxKit or
any other XML publishing framework, you can do so using command line tools
to generate content off-line. But if you have a news oriented site and only FTP
access this would start to drive you crazy. AxKit’s cache model ensures that
content is always up to date from your XML source files, even if your XML

source consists of multiple source files using external parsed entities®.

2.1.3 Internationalization

Internationalization means the support of multiple character sets, or wide char-
acter sets. For example, Japanese cannot reasonably be encoded in an ordinary
8 bit character set due to the 256 character limit. XML allows you to utilize the
numerous character sets that XML parsers support, which in AxKit’s case are
generally the most well known character sets, such as the ISO sets, shift-jis (a
Japanese encoding) and Big-5 (a Chinese encoding). AxKit by default outputs
in UTF-8, which is a character set that supports most of the world’s languages

using Unicode (and some off-world languages, like Klingon!).

2.1.4 Localization

While this is not an AxKit specific feature, it is very much a feature of Apache.
Using content negotiation Apache can deliver content in different languages

according to user preference. This process is called localization.

2.1.5 Low Latency and Speedy Delivery

It has been proven that many people are driven away from web sites simply
because they are slow to load. This is especially true in Europe where we have

relatively little broadband Internet access compared with our Stateside cousins.

5External parsed entities are like the SSI includes of the XML world. They allow you to
construct a document from various pieces, for example a book would be constructed from
various chapter components, each stored in separate files.

In order to make life easier on people’s modems AxKit supports dynamic com-
pression of content using gzip. It has been shown that approximately 95% of
browsers now support gzip compression, and HTML and other tag based markup
languages compress extremely well (up to 20% of the original size for some files).
This is very important for those with a slow link. The cache mechanism also
means that people get their content very quickly, because the pipeline from

request to delivery is very short.

2.1.6 Syndication

So called Rich Site Summary® documents are becoming more and more popular
on the Internet due to the fact that they are very easy to implement both on
the parser side and on the generator side. They are also gaining in popularity
due to the work of aggregators such as O'Reilly’s Meerkat and sites such as
XMLTree.com. Its also a great way to provide your users with more dynamic
content, both in bringing content in from off-site and delivering your content
to other web sites. While AxKit does nothing special with RSS besides provid-
ing some tools to manipulate it, the very use of XML for your content makes

generating more XML about that content a lot easier.

2.2 Your New XML Web Site

Let us postulate that your web site is a news oriented site, possibly a slashdot-
like site with a main headlines page and links off to the actual stories. We need
to think about how we would go about such a web site using XML for all the
content.

Let us imagine the layout of such a site to be very similar in design to the
current Slashdot. This is a very common layout these days, and I’'m sure you
can come up with something better, but I'm a tools developer, not a web site

designer. The design is something like this:

6There is a battle underway at the moment over a new RSS 1.0 proposal. This battle may
result in a split of the RSS name into two factions. While I am a supporter of the 1.0 proposal
I cannot unfortunately predict the outcome at this time.

o D uve Derch e Dk puts D Dew @4
R

gLyl 22

Walc:)ma to AxKit Hack - XML News in Real JENXBALINN .

Time! » Digirbuted Xk, — In

iz 5paect o the KL

Wand 20 conference
=

i1y wmoumced decimicn of teriary "bo depracete the e | 1 BOSIEN, SML.com

UIRT referemion ins MamerRos dec ks ations E‘ﬂllt"EﬂlL:U‘:'nl‘!l ghas
an quenview af e

Rtagrated future of X
and the Wab, and the
forms ROF documents | roka that S0OAF and

% statements with their RDF wil play in that
vision

Driamond anncumcsd 3
o a siguple ML ey, Bolaing the
subiechs, predicaies and

ice World -
a 'Halo
program that
raks bade* Didler Martn
has, and now ha shares
his axpanences b order
R o Us around
VakashL, a makun

» Hed
Ewar
Wa

The W2 15 pleassd [0 anUnee e
b Candid

; .
The joint IETF/W3C XML Sigrasuse Wi King Group s raleased a naw 'i""'iUi_‘!l-lﬂ'“ vk
Werking Dradt of the Canonical XML specification. nkarachons
« Schema Rownd-up
- An hiroductian b -

S T

Many apologies to the XML Hack crew, who I stole the data from for this
mock-up.

This of course is a design limited to HTML clients, we also need to think
about WAP and probably Web TV. If we are really thinking outside of the box
we could extend that to braille or aural (VoXML).

If you have seen a WAP device you know how limited they are. A Nokia
7110, one of the more popular WAP devices in Britain (mostly due to a certain
movie...) has only about 4 lines of text display on a 95 x 65 pixel screen. This
means you have to totally re-think your content. That tends to mean no banner
ads (I’d love to know what the business model is for WAP enabled web sites),
and next to no layout. Our site on WAP might look like:

AxKit Hack

Relative URI Namespace usage deprecated

New XSLT RDF Parser

XML Base advanced to Candidate Recommendation
Final Canonical XML Working Draft

More...

And there are your 4 lines before your user has to start scrolling (the line

marked “More...”

will not appear on your Nokia’s screen, it is included here for
clarity, something I often wonder if the WAP forum thinks a lot about).

The most important point to see here is that the source of this remains the
same. You can even allow the user to scroll down on this headlines page to see

your external links (in this case to XML.com), or to your site navigation links.

In short, you can recode your entire site to work transparently on a WAP phone.

And the same applies to TV Internet viewers.”

2.3 Development

Now we have an initial design in place, we can start to think of this as com-
ponents, and break it down into separate parts. The main part, is the central
headlines. And the two sub-parts are the menu item to the left, and the off-site
links to the right. What is interesting about the main headlines and the off-site
links is that their content is pretty much the same. In fact we can use the
same data model for both. This data model fits neatly into RSS®. The RSS file
used for the main headlines is also used directly for syndication to other web
sites. And it could be generated automatically very simply using a tool such
as Jonathan Eisenzopf’s XML::RSS Perl module, or just using something like
XML::XPath to query the main content pages.

The side menu bar can be a very simple XML vocabulary of your own in-
vention. I'll detail the syntax I have used below, along with a simple bit of code
to transform it.

The main content pages could be encoded in a format such as DocBook
articles or as a simple form of XHTML. This would allow for complete trans-
formation to viewing on a lower level device, and because you are transforming
the content to a more complex form, adding in tables and images to give your
preferred layout, you don’t lose any control over the formatting.

Transformation happens using either XSLT, or perhaps your developers
would choose XPathScript, a language that I invented that is specific to Perl and
AxKit, which provides a combination of the power of Perl and XPath along with
declarative stylesheet based transformations. To bring all the content together
you use the XPath document function®, and render the different components

using named stylesheet templates.

"There is some debate in the WAP and alternative device web site development community
about the validity of using the same content on such different devices. My take on this is that
while development is harder, and some refactoring may be required, the payoffs are large
when compared with having two or more separate development teams. One problem here
is that manipulating content down to the text level in a language like XSLT is non trivial
(XSLT is much better suited to manipulating elements), and we suggest XPathScript as a
very good alternative in this case because of the wide variety of tools available in Perl for text
manipulation.

8Rich Site Summary http://my.netscape.com/publish/help/

9The document() function is defined in the XSLT specification, but it is a “plugin” to the
XPath syntax. It enables you to reference files other than the source XML file using relative
or absolute URIs.

10

2.3.1 XPathScript

XPathScript is a fairly simple language designed for Perl users who want the
power of XSLT from a procedural language like Perl. It provides features for
declarative template based processing and node resolution using XPath, along
with more powerful features for executing Perl code within the template. I do
not recommend XPathScript for people who wish to only use standards on their
server, however it is a very useful language for web shops with Perl skills, or
people who have just found themselves turned off by trying to do something
complex in XSLT and found that they end up emulating a procedural language
using XSLT constructs.

XPathScript uses the same syntax as Active Server Pages to separate code
from output. While this doesn’t really fit in with the “XML Way”, it is a
pragmatic decision based on the availability of editors and other applications
that can recognize the <% %> syntax. This makes life a little bit easier for a
template editor. We also combined in some function names taken from XSLT,
in order for learning both to be that much simpler.

XPathScript can be thought of in two pieces of a puzzle. The first piece is
the procedural template, which simply looks like the output you are trying to
obtain. This can be intermingled with Perl code using the <% %> syntax. This
is useful for transforming XML sources that look more like data than documents,

for example a very simple person record:

<person>
<name>
<firstname>Matt</firstname>
<lastname>Sergeant</lastname>
</name>

</person>

We can transform that into something simple using the following XPathScript

template:

<html>
<head><title>Person</title></head>
<body>

Name: <}= findvalue(’/person/name/lastname’) %>,
<%= findvalue(’/person/name/firstname’) %>

</body>

</html>

The output this produces is:

11

<html>
<head><title>Person</title></head>

<body>
Name: Sergeant,
Matt
</body>
</html>
The part between the <%= ... %> delimiters is Perl code - a call to the

findvalue() function, which locates the nodes in the parameter and returns the
string-value of those nodes (“string-value” is a term defined by the XPath spec-
ification!?, please see that for more details).

Now imagine for a second that you have a long DocBook document that
you would like to transform. It would be extremely difficult to come up with
something that can transform XML containing mized content using the proce-
dural template model presented here. What we need is the equivalent to XSLT’s
declarative templates - a way to specify how specific elements are transformed.

To execute a declarative template in XPathScript you simply call the Perl
function apply_templates(). This function can take an XPath expression that
specifies a starting point in the source document that you would like to use.
From there, the tree structure of the source document is walked in document
order'!, and matching templates are looked for each node in the $t hash struc-
ture.

The $t hash structure contains keys which are element names. This is slightly
different to XSLT, which has templates which are indicated by XPath match
expressions. This is a performance vs functionality trade-off. We believe that
XSLT will be slightly slower because it has to do an XPath match on every node
of the tree as it walks it to try and find a matching template. In XPathScript
this is reduced to a simple Perl hash lookup on the element name.

The $t hash also has further depth, indicating what to do with a particular
node. Lets assume for a minute that your source document uses a subset of
XHTML, and you are using <a> tags for links. If you wish to make all links

appear in italics when rendered to HT'ML, you can use the following declaration:

<%
$t->{’a’ }{pre} = 2<i>’;
$t—>{’a’ }{post} = ’</i>’;
%>

10X Path Specification at the W3C http://www.w3.org/TR/xpath
1 The order that the nodes appear in the document, also can be seen as a depth-first tree
walk.

12

All we are saying here is that before an <a> tag we add the string ’<i>’, and
after an <a> tag we add the string ’</i>’. We can build this up with many

more complex expressions using the following possible sub-key’s:

e pre

® post

e prechildren

e postchildren

e prechild

e postchild

e showtag

e testcode

The *children sub-keys specify what comes on the very inside of the tags, and
the *child sub-keys specify what comes before and after child elements. Showtag
is simply a on/off flag to determine if the tag in question gets reproduced on
the output and testcode specifies a subroutine reference that will be executed
at runtime when that element is encountered. The above is by no means a
full example, so please see The XPathScript Guide http://axkit.org/docs/
xpathscript/guide.dkb for more details.

2.3.2 XSLT

XSLT is the semi-standard!'? option for transforming XML into other formats.
Should you be looking at portability to other toolkits, or even skills migration,
XSLT would be a good choice for your XML transformation. In AxKit, XSLT
is implemented by two modules. The first is the best choice for XSLT trans-
formation in AxKit, Sablotron. This module provides a C based XSLT engine
for AxKit, and is extremely quick, capable of real-time XSLT transformations.
The other choice is XML::XSLT, a pure perl module implementing only a small
subset of XSLT. This is useful for those who cannot get Sablotron to compile
on their systems.

Like XPathScript, XSLT can be an extremely in-depth subject, and it is best

covered elsewhere than in this document. In contrast, XPathScript is specific

12We refer to XSLT as a “semi-standard”, rather than standard because the W3C issue
recommendations, not standards, and XSLT is not yet widespread enough to be called a
de-facto standard.

13

to AxKit, and there will be little other documentation available about it other
than that referenced above.

A list of useful XSLT resources on the Internet are:

e Dave Pawson’s XSLT FAQ http://www.dpawson.freeserve.co.uk/xsl/
xslfaq.html

e Zvon’s Tutorial Web Site http://www.zvon.org

e James Tauber’s XSL Info site http://xslinfo.com

2.3.3 RSS

RSS stands for “Rich Site Summary”. It is a very simple format for syndicating
headlines to other web sites; however, you can also use it internally for your
own web site’s summary page. This will allow you to tag up your headlines
and provide a short summary of the main story you are linking to. If you
look at Slashdot and the copycat!® web sites that are cropping up all over the
Internet, that is basically what they have on their front pages. And now with
the RSS 1.0 proposal, you can extend that specification using XML namespaces
to include extra information that might be relevant to your particular setup.
Here is the content for our sidebar, taken direct from XML.com’s RSS feed

http://xml.com/xml/news.rss:

<7xml version="1.0"7>
<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"
"http://my.netscape.com/publish/formats/rss-0.91.dtd">
<rss version="0.91">
<channel>
<title>XML.com</title>
<description>XML.com features a rich mix of
information and services for the XML
community.</description>
<language>en-us</language>
<link>http://xml.com/pub</link>
<copyright>Copyright 1999, 0’Reilly and Associates
and Seybold Publications</copyright>
<managingEditor>dale@xml.com (Dale
Dougherty)</managingEditor>
<webMaster>peter@xml.com (Peter Wiggin)</webMaster>

13While Slashdot may not have come up with the design, because they appeal to geeks and
geeks build web sites, I attribute the popularity of this design to Malda et-al.

14


<item>
<title>Going to Extremes</title>
<1link>http://xml.com/pub/2000/09/13/extremes.html ?wwwrrr rss</link>
<description>Geeks in tweed and metadata maniacs,
shapers of the future of structured information
representation. The recent Extreme Markup Languages
conference had it all. Liora Alschuler was there and
reports back on the Topic Maps and RDF
head-to-head.</description>
</item>
<item>
<title>XSLT, Comments and Processing
Instructions</title>
<1link>http://xml.com/pub/2000/09/13/xslt/index.html?wwwrrr rss</link>
<description>XSLT isn’t just for transforming
elements and attributes. In this month’s Transforming
XML column we show how to create and transform
processing instructions and comments
too.</description>
</item>
<item>
<title>Gentrifying the Web</title>
<link>http://xml.com/pub/2000/09/13/xhtml/index . .html ?wwwrrr rss</link>
<description>XHTML promises to civilize the unruly
mass of HTML on the Web. But is anybody listening?
Leigh Dodds examines whether web developers know or
care about XHTML.</description>
</item>
</channel>

</rss>

When transformed we get a nice list of headlines. The advantage of using this

format internally for our main headlines page is that we can immediately of-

15

fer this content up for syndication - just turn on AxKit’s “passthru” plugin, and
users can request this with a simple request to the server of http://server /headlines.xml?passthru=1,
where headlines.xml is your front headlines page. Sites such as O’Reilly’s
Meerkat, and XMLTree.com can then load this syndicated content and provide

users with different views on the data.

2.4 Dynamic Content

“mostly” static web site!?,

You may be thinking that all of this is terrific for a
and is not necessarily that great for all the complex things that you like to do.
Well we provide support for you there too.

AxKit implements a taglib based XML language called XSP5. This allows
your developers to design custom tags that your content editors can insert into
their code to provide dynamic content. The tags generate data not HTML, and
so it is unlike many dynamic server side languages that could be named. That
data combined with the source XML then goes on to the next stage in the AxKit
pipeline, which most likely formats the content to HTML or WML.

XSP allows web site developers to develop a library of tags that implement
functionality for a web site. This can be done to the extent that Cold Fusion
provides tags for web content delivery, or something very simple, that perhaps
says “Good Morning” or “Good Afternoon” depending on the time of day.

XSP works by transforming the taglibs and the parameters “passed” to the
taglibs into the “raw” XSP tags, which simply output elements, attributes,
processing instructions and comments. It is possible to use these raw tags
directly in your XSP page, and this allows you to directly include Perl code in
your page, but this is not recommended, as you lose your separation of content
from presentation then (unless your Perl code is simply creating tags). The
internal implementation currently works on a DOM tree, however the aim in
the next few weeks is to convert this to a series of SAX events which will be
processed in a parallel-like manner.

The following is a very simple XSP example, that pulls information from a
database using the DBI:

<?7xml version="1.0"7>

<?7xml-stylesheet href="." type="application/x-xsp"7?>

<?xml-stylesheet href="sql.xsl" type="text/xsl"?>

<xsp:page language="Perl"
xmlns:sql="http://www.apache.org/1999/SQL"

4By “mostly” static I mean one where the content is not generated from a database on
every hit. This includes something like a news site where content may be updated every 30
minutes.

15XSP is a trademark of DataChannel corporation.

16

xmlns:xsp="http://www.apache.org/1999/XSP/Core"

>

<page title="SQL Search Results">
<sql:execute-query>
<sql:driver>Sybase</sql:driver>
<sql:username>webboard</sql :username>
<sql:password>password</sql:password>
<sql:dburl></sql:dburl>
<sql:doc-element>options</sql:doc-element>
<sql:row-element>option</sql:row-element>
<sql:tag-case>lower</sql:tag-case>
<sql:null-indicator>yes</sql:null-indicator>
<sql:id-attribute>ID</sql:id-attribute>
<sql:id-attribute-column>msgid</sql:id-attribute-column>
<sql:query>select * from Messages</sql:query>
<sql:count-attribute>count</sql:count-attribute>
</sql:execute-query>

</page>

</xsp:page>

When executed, AxKit picks up the fact that this is to initially be processed by
the XSP processor, and the results passed on to the XSLT processor. The XSP
processor has an SQL module, modeled after the Cocoon SQL processor, that
connects to a DBI database and runs the SQL. The results before transformation
using XSLT look like this:

<page title="SQL Search Results">

<options count="84">
<option ID="1">
<msgid>1</msgid>
<forumid>2</forumid>
<userid>1</userid>
<parentmsgid>0</parentmsgid>
<subject>Test post</subject>
<postdate>May 16 2000 12:55PM</postdate>
<verified>1</verified>
<timesread>1</timesread>
<anonymous>0</anonymous>
<viaemail>0</viaemail>
<threadid>1</threadid>
</option>

17

. <!-- more rows here -->
</options>
</page>

And following that, the XSLT processor transforms the results into HTML for
display using an HTML table.

The value in using a technique like this is that your query results still retain
rich semantic information - the output format you choose after returning the
results from the database is still undecided and flexible. A new taglib for SQL
is also in development that allows you much greater control over the generated
XML format, and better error handling. Other taglibs exist for forms processing,
and form value processing, and more taglibs are in development all the time.

But this doesn’t stop you building your own...

2.5 Building Your Own Taglibs

Taglibs in XSP can be separated into two separate entities: User taglibs and
Builtin taglibs. The builtin taglibs have to be shipped with AxKit, and they
have some performance benefits but are much harder to write, because you
have to work at the low level of the XSP compiler. User taglibs are merely
stylesheets. These stylesheets translate the XML into the raw XSP tags, which
then get compiled by the XSP compiler.

Writing taglibs can be a quite complex process, certainly it is not as simple
as perhaps writing a bit of Perl code that generates the same output, but the
point here is to generate something that your designers can work with, not
something for programmers. The balance is the payoff in being able to generate
dynamic content while maintaining semantic richness.

As taglibs can grow up to be quite complex, we represent here a very simple
taglib for outputting the current date/time in any choice of format (here based
on strftime format strings). The taglib is written in XPathScript, simply because
we have represented XPathScript in this documentation. It would have been

equally simple to do this in XSLT:

<%
$t->{’example:time-of-day’ }{testcode} = sub {
my ($node, $temp_t) = Q_;
get the value in the format attribute:
my $format = $node->findvalue(’@format’);
output raw XSP code:
$temp_t->{pre} = ‘<xsp:expr>use POSIX (O);
POSIX::strftime(’$format’, localtime)</xsp:expr>’’;

18

return 1;

s

%>

This is our first introduction to the “testcode” aspect of XPathScript, so we
will skip over that for now and leave it to the core XPathScript documentation
should you wish to know more. Basically, this code translates XML containing

the following:
<example:time-of-day format=’’%H:%M:%S’’/>
Into the following raw XSP code:

<xsp:expr>use POSIX (O);
POSIX::strftime(’%H:%M:%S’, localtime)</xsp:expr>

At execution time, this simply generates the string containing the current time
according to the format specified and the strftime rules. In this case it would

output something like:
18:15:36

This only gives you a brief introduction to the true power of XSP taglibs. In
effect you can build large libraries giving you complete control over custom
functionality for your web site, allowing developers and designers to totally
separate their concerns - no code will ever output HT'ML again, and no designer
will ever have to chew a developers head off because his design changes can’t
work in code. Everyone is just working with pure semantic content, and given a
fixed schema for that content, content and presentation can finally be separated

for good, with both static and dynamic content.

3 XML Editing

Anyone who works on a large content based web site knows that authors don’t
really work in tags. They work in visual concepts such as bold or italics or
section headings. This makes it extremely difficult to convince anyone who is
used to producing content in MS Word to move over to editing some new XML
format in Emacs. The solution comes in the form of XML editors. While these
editors don’t tend to provide all of the features of MS Word (is that possible?),
they provide an environment that allows your content editors to see what their
documents look like, while constraining them to your semantically rich data

format.

19

The current crop of XML editors that work this way include XMetaL. from
Softquad, Adept from Arbortext, some extensions to popular word processors,
such as Corel’s built in XML editor in WP9, and other plugins for MS Word.

By using these editors along with mod_dav!®, and Microsoft’s Web Folders
technology, your editors feel like they are editing in a perfectly natural environ-
ment and saving to a network disk. When in fact they are creating semantically
rich data which you are harvesting into Rich Site Summaries and they are writ-
ing direct to the web.

Obviously in a complex environment you have a lot more to think about,
such as content management, but these editors are really the next step towards

the semantic web.

4 Future Directions

AxKit is a very new technology. I first started working on the project in May.
Already we have a growing mailing list and some live web sites producing content
using the AxKit engine. And we have big plans for the future of AxKit. The
next step is the content management system which we are building around the
framework. This will provide several important features. The first is a very
powerful metadata feature, which allows you to add metadata to any resource
on your web site. This allows, for example, you to store the number of times a
particular URL has been “hit” right in the resource itself. We will also provide
a web based editing environment, so that setting up things like new templates
and new resource types is much easier, and you will be able to directly assign
transformations to those resource types.

We also have big plans for Apache 2.0, which I hope you get to hear lots about
at the conference (maybe they will even release it here). Apache 2.0 implements
a new filtering mechanism, which allows handlers to pass their content on to
the next handler in a chain. This will allow us to throw out some of our current
handler chaining mechanisms (though not all of them, see below) and utilize the
Apache core directly. This will reduce memory overhead and improve speed.

Finally we are now funding development of a Perl SAX2 implementation
so that we can replace the current XSP implementation with a SAX2 based
implementation. This work will hopefully be complete by the time you read

this paper!

16mod_dav is an Apache module implementing WebDAV, the Distributed Authoring and
Versioning protocol. It ships with Apache.

20

A List of Links

e AxKit Web Site http://axkit.org/

e Cocoon Web Site http://xml.apache.org/cocoon/

Apache Web Server http://www.apache.org/httpd.html

e The Apache and Perl integration project http://perl.apache.org/

Sablotron - C based XSLT processor http://www.gingerall.com

21

