
AxKit - An XML Publishing Toolkit for Apache

Matt Sergeant - AxKit.com

September 24, 2000

Abstract

AxKit is a set of modules and tools that turn Apache into a complete

XML publishing and delivery environment. By integrating XML transfor-

mation into the Apache server we get a high performance framework for

dynamically generated HTML and other output formats that fits in per-

fectly with the current Apache configuration methodology. This enables

you to install AxKit into your Apache setup and maintain your current

webmaster skill sets while introducing the power of semantically rich data

using XML.

1

Contents

1 AxKit Introduction 3

1.1 What is AxKit? . 3

1.2 AxKit Implementation . 4

1.2.1 Associating Stylesheets/Processors with XML Files 4

1.3 AxKit Performance . 5

2 Developing a Web Site Using XML 6

2.1 Considerations . 6

2.1.1 Accessibility . 6

2.1.2 Changing Content . 7

2.1.3 Internationalization . 7

2.1.4 Localization . 7

2.1.5 Low Latency and Speedy Delivery 7

2.1.6 Syndication . 8

2.2 Your New XML Web Site . 8

2.3 Development . 10

2.3.1 XPathScript . 11

2.3.2 XSLT . 13

2.3.3 RSS . 14

2.4 Dynamic Content . 16

2.5 Building Your Own Taglibs . 18

3 XML Editing 19

4 Future Directions 20

A List of Links 21

2

1 AxKit Introduction

1.1 What is AxKit?

AxKit was born out of my desire to work with XML for my source data in the

form of articles (where I might choose to use DocBook) or FAQ’s, or some other

data format. I’ve now been working with XML for nearly three years, and the

lack of tools for working with it outside of the Java sphere was disappointing for

me. So I decided to at least try and correct that to some extent. Other people’s

projects have helped immensely too, and AxKit really is the plumbing between

many other XML projects and Apache.

AxKit is implemented as an Apache module, written initially in Perl us-

ing mod perl1, with plans to port the core functionality to C if needed at a

later date. It provides content developers with an XML pipeline (which I will

describe in more detail later) that progressively renders XML to different for-

mats before finally sending to the user agent. AxKit also allows you to provide

different views of the content based on stylesheet selection, or based on user

agent media type (the official W3C media types are screen, tty, tv, projection,

handheld, print, braille and aural). The engines within AxKit that allow you

to transform your XML data sources include XSLT (based on Sablotron from

http://www.gingerall.com, or using Perl’s XML::XSLT module), XSP (XML

Server Pages, a technology originally developed for the Cocoon project), and

some custom modules written in Perl that make it easier to work with XML-

News and make more sense for Perl developers than XSLT!

In theory AxKit is very much like the Cocoon project in functionality. Since

AxKit was developed after Cocoon, it is important to point out the reasoning

behind developing such a similar project. The first and foremost reason is that

my company doesn’t run Java on our development machines. This is simply

a “three strikes and you’re out” reasoning - we have tried Java development

on Linux 3 times in the past, and while we now hear of improvements in the

stability of Java on Linux, we have since moved on and are very happy with

our current path. The second reason was that we continually heard from the

Perl community two chants fairly regularly. The first is “Why don’t we have

something like Zope?”, and the second is “Why don’t we have something like

Cocoon?”. Well now you have the latter and we are working on the former!

It is also important to note that AxKit is built from plug-in modules and

components. The main reasoning behind this is an architectural decision that we

will eventually be implementing AxKit as a complete configuration management

1Many people mistakenly assume mod perl is a way to speed up CGI scripts for Apache,
but in fact it simply provides a means to access the Apache module API from Perl, and allows
you to write Apache modules in Perl.

3

system, very similar in some ways to Zope. Rather than implement this as a

CMS with AxKit transformations built in, we built AxKit so that anyone else

can drop in their own CMS back end.

1.2 AxKit Implementation

As we already noted, AxKit is developed in mod perl as an Apache module.

This gives us additional Apache configuration directives much in the same way

that mod mime gives us the AddEncoding directive, AxKit provides you with

around 16 new directives designed to help configure how Apache then transforms

your XML data source to the target user agent.

When a request comes in for a particular URI that AxKit is enabled for, it

first checks to see if it should handle the resource. It does so by using some

simple checks to determine if the resource is actually XML or not. First it

checks for a “.xml” extension. Then it checks the outgoing Content-Type of the

resource (since mod mime will have already been called into action) for an XML

content type (see the proposed IETF XML Mime types2 document). Finally if

none of those came true, it checks the actual contents of the file for a leading

“<?xml” marker. It does so in a way independent of the document encoding,

as described in the XML 1.0 specification.

Once AxKit has determined to process a particular URI, it then goes on to

determine how it should be processed. It does so depending on the modules in

use for this request, but the default method is to check the <?xml-stylesheet?>

processing instructions at the start of the XML document (these instructions

appear before the first element, see http://www.w3.org/TR/xml-stylesheet). If

no instructions are found there it uses methods defined in the Apache configu-

ration files. The simplest of which defines the appropriate transformation based

on the name of the document element3.

Next AxKit transforms the document using the stylesheet and instructions

obtained from the previous step, and finally it delivers the transformed content

to the browser or user agent.

1.2.1 Associating Stylesheets/Processors with XML Files

As described above, AxKit can use the <?xml-stylesheet?> processing instruc-

tion to associate stylesheets with the XML resource, however this is generally

best used as an overriding mechanism, because it doesn’t scale particularly well

- imagine changing this value in every file on a large web site! So AxKit also

2http://www.ietf.org/internet-drafts/draft-murata-xml-07.txt
3The document element is the very first element in the XML document after the preamble

and the DOCTYPE declaration.

4

allows you to set the stylesheets based on Apache configuration directives. For

example, the following assigns the stylesheet “/stylesheets/docbook html.xsl” to

all files that have the DOCTYPE public identifier “-//OASIS//DTD DocBook

XML V4.1.2//EN”:

AxAddDocTypeProcessor text/xsl /stylesheets/docbook html.xsl \

‘‘-//OASIS//DTD DocBook XML V4.1.2//EN’’

AxKit also allows you to do many more complex mappings dependent on the

root element name, the DTD file referenced, and also to group the mappings

dependent on media type and stylesheet preference.

One thing worth noting is that we have a very simple way to distinguish

between a stylesheet transformation (such as XSLT) and a processor (such as

XSP, see below). We simply use the stylesheet href of “.”. This initially looks

like a completely wrong use of the technology, but it is a very simple way to

implement things, and as we know from experience, the way to make things

successful and easy to use is to make them simple.

1.3 AxKit Performance

XML transformation can be slow. Very slow. The reasons for this are simple: It

requires fairly complex tree traversal and node matching to do complex things

with XML documents. This is where you trade off power for efficiency. In order

to make sure that your users aren’t held up by deficiencies in the model of XML,

AxKit does everything in its power to make things as fast as possible for you.

The basic premise here is to cache everything. In local memory (the memory

of each child httpd process) we store the information pertaining to what trans-

formations an XML file has to go through to be processed. We only re-determine

those details when something changes. On disk we store the generated output

(using a plug-in cache module, should you want some central cache management

that doesn’t use files, such as an RDBMS for example). This means that for

static files the path through AxKit is as follows:

• Determine if we process the URI

• Determine if anything has changed

• Deliver cached results

As you can see, this is a very short process, and we’re very quickly through to

a point where we can say:

5

Apache->request->filename(<cache filename>);

return DECLINED;

This provides users of AxKit who have high system demands to deliver a web

site that runs at approximately 60% of the speed of a regular Apache server.

Since we know that Apache is quite capable of saturating a T1 on a 486, this

should be sufficient for almost all sites on the Internet, especially when combined

with technology like mod backhand to provide load balancing over a number of

servers.

2 Developing a Web Site Using XML

So now that XML will let you go and sun yourself in Ibiza for half of the year

you probably want to know exactly how to go about building that XML based

web site. Unfortunately the bad news is that designing and developing an XML

based web site will initially increase the time it takes to get your web site online.

This is because you now have many extra things to consider. On the other hand,

if you are already considering the issues I am about to outline, then you may

find this decreases your delivery time, which probably sounds like great news.

2.1 Considerations

When building your new next generation web site, there are several things to

consider which prior to now you may have bypassed, saying that it can wait for

the future to arrive. Well the future is here, and these are the things you now

need to be thinking about for a modern web site:

2.1.1 Accessibility

Up until just a couple of years ago, accessibility meant that you had to ensure

your web site looked OK in browsers for the blind, or perhaps in text only

browsers such as Lynx. However now it means much more than that. Suddenly

in 1998 we had WAP4 spring onto the scene from a consortium of mobile phone

companies. Now while WAP has its faults (and they are many), it is very quickly

becoming a de-facto standard for the handheld Internet, with millions of pounds

being pumped into WAP development in this country alone.

But it doesn’t stop at WAP. Modern web site content needs to be able to

be rendered on Set Top Boxes. Current practice for this is to either provide

totally separate set-top web sites, or to provide work arounds in your HTML

4WAP is the Wireless Application Protocol. The term is generally used to describe the the
services for delivering content to wireless devices, and include WML, the Wireless Markup
Language, and WMLScript a scripting language.

6

that enable content to stretch to different sized user agents. While this is a

good thing, web designers aren’t always happy with this lack of control over

layout. And the alternate web site issue is a problem too. What happens when

you email a URL to your Mother who reads her email on her Sky Digibox?

Under AxKit she could just click on the URL and Apache would give her the

appropriately styled content.

2.1.2 Changing Content

In order to drive visitors to your site you need content that gets updated on a

regular basis. If you want to build an XML based web site without AxKit or

any other XML publishing framework, you can do so using command line tools

to generate content off-line. But if you have a news oriented site and only FTP

access this would start to drive you crazy. AxKit’s cache model ensures that

content is always up to date from your XML source files, even if your XML

source consists of multiple source files using external parsed entities5.

2.1.3 Internationalization

Internationalization means the support of multiple character sets, or wide char-

acter sets. For example, Japanese cannot reasonably be encoded in an ordinary

8 bit character set due to the 256 character limit. XML allows you to utilize the

numerous character sets that XML parsers support, which in AxKit’s case are

generally the most well known character sets, such as the ISO sets, shift-jis (a

Japanese encoding) and Big-5 (a Chinese encoding). AxKit by default outputs

in UTF-8, which is a character set that supports most of the world’s languages

using Unicode (and some off-world languages, like Klingon!).

2.1.4 Localization

While this is not an AxKit specific feature, it is very much a feature of Apache.

Using content negotiation Apache can deliver content in different languages

according to user preference. This process is called localization.

2.1.5 Low Latency and Speedy Delivery

It has been proven that many people are driven away from web sites simply

because they are slow to load. This is especially true in Europe where we have

relatively little broadband Internet access compared with our Stateside cousins.

5External parsed entities are like the SSI includes of the XML world. They allow you to
construct a document from various pieces, for example a book would be constructed from
various chapter components, each stored in separate files.

7

In order to make life easier on people’s modems AxKit supports dynamic com-

pression of content using gzip. It has been shown that approximately 95% of

browsers now support gzip compression, and HTML and other tag based markup

languages compress extremely well (up to 20% of the original size for some files).

This is very important for those with a slow link. The cache mechanism also

means that people get their content very quickly, because the pipeline from

request to delivery is very short.

2.1.6 Syndication

So called Rich Site Summary6 documents are becoming more and more popular

on the Internet due to the fact that they are very easy to implement both on

the parser side and on the generator side. They are also gaining in popularity

due to the work of aggregators such as O’Reilly’s Meerkat and sites such as

XMLTree.com. Its also a great way to provide your users with more dynamic

content, both in bringing content in from off-site and delivering your content

to other web sites. While AxKit does nothing special with RSS besides provid-

ing some tools to manipulate it, the very use of XML for your content makes

generating more XML about that content a lot easier.

2.2 Your New XML Web Site

Let us postulate that your web site is a news oriented site, possibly a slashdot-

like site with a main headlines page and links off to the actual stories. We need

to think about how we would go about such a web site using XML for all the

content.

Let us imagine the layout of such a site to be very similar in design to the

current Slashdot. This is a very common layout these days, and I’m sure you

can come up with something better, but I’m a tools developer, not a web site

designer. The design is something like this:

6There is a battle underway at the moment over a new RSS 1.0 proposal. This battle may
result in a split of the RSS name into two factions. While I am a supporter of the 1.0 proposal
I cannot unfortunately predict the outcome at this time.

8

Many apologies to the XML Hack crew, who I stole the data from for this

mock-up.

This of course is a design limited to HTML clients, we also need to think

about WAP and probably Web TV. If we are really thinking outside of the box

we could extend that to braille or aural (VoXML).

If you have seen a WAP device you know how limited they are. A Nokia

7110, one of the more popular WAP devices in Britain (mostly due to a certain

movie...) has only about 4 lines of text display on a 95 x 65 pixel screen. This

means you have to totally re-think your content. That tends to mean no banner

ads (I’d love to know what the business model is for WAP enabled web sites),

and next to no layout. Our site on WAP might look like:

AxKit Hack

Relative URI Namespace usage deprecated

New XSLT RDF Parser

XML Base advanced to Candidate Recommendation

Final Canonical XML Working Draft

More...

And there are your 4 lines before your user has to start scrolling (the line

marked “More...” will not appear on your Nokia’s screen, it is included here for

clarity, something I often wonder if the WAP forum thinks a lot about).

The most important point to see here is that the source of this remains the

same. You can even allow the user to scroll down on this headlines page to see

your external links (in this case to XML.com), or to your site navigation links.

9

In short, you can recode your entire site to work transparently on a WAP phone.

And the same applies to TV Internet viewers.7

2.3 Development

Now we have an initial design in place, we can start to think of this as com-

ponents, and break it down into separate parts. The main part, is the central

headlines. And the two sub-parts are the menu item to the left, and the off-site

links to the right. What is interesting about the main headlines and the off-site

links is that their content is pretty much the same. In fact we can use the

same data model for both. This data model fits neatly into RSS8. The RSS file

used for the main headlines is also used directly for syndication to other web

sites. And it could be generated automatically very simply using a tool such

as Jonathan Eisenzopf’s XML::RSS Perl module, or just using something like

XML::XPath to query the main content pages.

The side menu bar can be a very simple XML vocabulary of your own in-

vention. I’ll detail the syntax I have used below, along with a simple bit of code

to transform it.

The main content pages could be encoded in a format such as DocBook

articles or as a simple form of XHTML. This would allow for complete trans-

formation to viewing on a lower level device, and because you are transforming

the content to a more complex form, adding in tables and images to give your

preferred layout, you don’t lose any control over the formatting.

Transformation happens using either XSLT, or perhaps your developers

would choose XPathScript, a language that I invented that is specific to Perl and

AxKit, which provides a combination of the power of Perl and XPath along with

declarative stylesheet based transformations. To bring all the content together

you use the XPath document function9, and render the different components

using named stylesheet templates.

7There is some debate in the WAP and alternative device web site development community
about the validity of using the same content on such different devices. My take on this is that
while development is harder, and some refactoring may be required, the payoffs are large
when compared with having two or more separate development teams. One problem here
is that manipulating content down to the text level in a language like XSLT is non trivial
(XSLT is much better suited to manipulating elements), and we suggest XPathScript as a
very good alternative in this case because of the wide variety of tools available in Perl for text
manipulation.

8Rich Site Summary http://my.netscape.com/publish/help/
9The document() function is defined in the XSLT specification, but it is a “plugin” to the

XPath syntax. It enables you to reference files other than the source XML file using relative
or absolute URIs.

10

2.3.1 XPathScript

XPathScript is a fairly simple language designed for Perl users who want the

power of XSLT from a procedural language like Perl. It provides features for

declarative template based processing and node resolution using XPath, along

with more powerful features for executing Perl code within the template. I do

not recommend XPathScript for people who wish to only use standards on their

server, however it is a very useful language for web shops with Perl skills, or

people who have just found themselves turned off by trying to do something

complex in XSLT and found that they end up emulating a procedural language

using XSLT constructs.

XPathScript uses the same syntax as Active Server Pages to separate code

from output. While this doesn’t really fit in with the “XML Way”, it is a

pragmatic decision based on the availability of editors and other applications

that can recognize the <% %> syntax. This makes life a little bit easier for a

template editor. We also combined in some function names taken from XSLT,

in order for learning both to be that much simpler.

XPathScript can be thought of in two pieces of a puzzle. The first piece is

the procedural template, which simply looks like the output you are trying to

obtain. This can be intermingled with Perl code using the <% %> syntax. This

is useful for transforming XML sources that look more like data than documents,

for example a very simple person record:

<person>

<name>

<firstname>Matt</firstname>

<lastname>Sergeant</lastname>

</name>

</person>

We can transform that into something simple using the following XPathScript

template:

<html>

<head><title>Person</title></head>

<body>

Name: <%= findvalue(’/person/name/lastname’) %>,

<%= findvalue(’/person/name/firstname’) %>

</body>

</html>

The output this produces is:

11

<html>

<head><title>Person</title></head>

<body>

Name: Sergeant,

Matt

</body>

</html>

The part between the <%= ... %> delimiters is Perl code - a call to the

findvalue() function, which locates the nodes in the parameter and returns the

string-value of those nodes (“string-value” is a term defined by the XPath spec-

ification10, please see that for more details).

Now imagine for a second that you have a long DocBook document that

you would like to transform. It would be extremely difficult to come up with

something that can transform XML containing mixed content using the proce-

dural template model presented here. What we need is the equivalent to XSLT’s

declarative templates - a way to specify how specific elements are transformed.

To execute a declarative template in XPathScript you simply call the Perl

function apply templates(). This function can take an XPath expression that

specifies a starting point in the source document that you would like to use.

From there, the tree structure of the source document is walked in document

order11, and matching templates are looked for each node in the $t hash struc-

ture.

The $t hash structure contains keys which are element names. This is slightly

different to XSLT, which has templates which are indicated by XPath match

expressions. This is a performance vs functionality trade-off. We believe that

XSLT will be slightly slower because it has to do an XPath match on every node

of the tree as it walks it to try and find a matching template. In XPathScript

this is reduced to a simple Perl hash lookup on the element name.

The $t hash also has further depth, indicating what to do with a particular

node. Lets assume for a minute that your source document uses a subset of

XHTML, and you are using <a> tags for links. If you wish to make all links

appear in italics when rendered to HTML, you can use the following declaration:

<%

$t->{’a’}{pre} = ’<i>’;

$t->{’a’}{post} = ’</i>’;

%>

10XPath Specification at the W3C http://www.w3.org/TR/xpath
11The order that the nodes appear in the document, also can be seen as a depth-first tree

walk.

12

All we are saying here is that before an <a> tag we add the string ’<i>’, and

after an <a> tag we add the string ’</i>’. We can build this up with many

more complex expressions using the following possible sub-key’s:

• pre

• post

• prechildren

• postchildren

• prechild

• postchild

• showtag

• testcode

The *children sub-keys specify what comes on the very inside of the tags, and

the *child sub-keys specify what comes before and after child elements. Showtag

is simply a on/off flag to determine if the tag in question gets reproduced on

the output and testcode specifies a subroutine reference that will be executed

at runtime when that element is encountered. The above is by no means a

full example, so please see The XPathScript Guide http://axkit.org/docs/

xpathscript/guide.dkb for more details.

2.3.2 XSLT

XSLT is the semi-standard12 option for transforming XML into other formats.

Should you be looking at portability to other toolkits, or even skills migration,

XSLT would be a good choice for your XML transformation. In AxKit, XSLT

is implemented by two modules. The first is the best choice for XSLT trans-

formation in AxKit, Sablotron. This module provides a C based XSLT engine

for AxKit, and is extremely quick, capable of real-time XSLT transformations.

The other choice is XML::XSLT, a pure perl module implementing only a small

subset of XSLT. This is useful for those who cannot get Sablotron to compile

on their systems.

Like XPathScript, XSLT can be an extremely in-depth subject, and it is best

covered elsewhere than in this document. In contrast, XPathScript is specific

12We refer to XSLT as a “semi-standard”, rather than standard because the W3C issue
recommendations, not standards, and XSLT is not yet widespread enough to be called a
de-facto standard.

13

to AxKit, and there will be little other documentation available about it other

than that referenced above.

A list of useful XSLT resources on the Internet are:

• Dave Pawson’s XSLT FAQ http://www.dpawson.freeserve.co.uk/xsl/

xslfaq.html

• Zvon’s Tutorial Web Site http://www.zvon.org

• James Tauber’s XSL Info site http://xslinfo.com

2.3.3 RSS

RSS stands for “Rich Site Summary”. It is a very simple format for syndicating

headlines to other web sites; however, you can also use it internally for your

own web site’s summary page. This will allow you to tag up your headlines

and provide a short summary of the main story you are linking to. If you

look at Slashdot and the copycat13 web sites that are cropping up all over the

Internet, that is basically what they have on their front pages. And now with

the RSS 1.0 proposal, you can extend that specification using XML namespaces

to include extra information that might be relevant to your particular setup.

Here is the content for our sidebar, taken direct from XML.com’s RSS feed

http://xml.com/xml/news.rss:

<?xml version="1.0"?>

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"

"http://my.netscape.com/publish/formats/rss-0.91.dtd">

<rss version="0.91">

<channel>

<title>XML.com</title>

<description>XML.com features a rich mix of

information and services for the XML

community.</description>

<language>en-us</language>

<link>http://xml.com/pub</link>

<copyright>Copyright 1999, O’Reilly and Associates

and Seybold Publications</copyright>

<managingEditor>dale@xml.com (Dale

Dougherty)</managingEditor>

<webMaster>peter@xml.com (Peter Wiggin)</webMaster>

13While Slashdot may not have come up with the design, because they appeal to geeks and
geeks build web sites, I attribute the popularity of this design to Malda et-al.

14



<item>

<title>Going to Extremes</title>

<link>http://xml.com/pub/2000/09/13/extremes.html?wwwrrr rss</link>

<description>Geeks in tweed and metadata maniacs,

shapers of the future of structured information

representation. The recent Extreme Markup Languages

conference had it all. Liora Alschuler was there and

reports back on the Topic Maps and RDF

head-to-head.</description>

</item>

<item>

<title>XSLT, Comments and Processing

Instructions</title>

<link>http://xml.com/pub/2000/09/13/xslt/index.html?wwwrrr rss</link>

<description>XSLT isn’t just for transforming

elements and attributes. In this month’s Transforming

XML column we show how to create and transform

processing instructions and comments

too.</description>

</item>

<item>

<title>Gentrifying the Web</title>

<link>http://xml.com/pub/2000/09/13/xhtml/index.html?wwwrrr rss</link>

<description>XHTML promises to civilize the unruly

mass of HTML on the Web. But is anybody listening?

Leigh Dodds examines whether web developers know or

care about XHTML.</description>

</item>

</channel>

</rss>

When transformed we get a nice list of headlines. The advantage of using this

format internally for our main headlines page is that we can immediately of-

15

fer this content up for syndication - just turn on AxKit’s “passthru” plugin, and

users can request this with a simple request to the server of http://server/headlines.xml?passthru=1,

where headlines.xml is your front headlines page. Sites such as O’Reilly’s

Meerkat, and XMLTree.com can then load this syndicated content and provide

users with different views on the data.

2.4 Dynamic Content

You may be thinking that all of this is terrific for a “mostly” static web site14,

and is not necessarily that great for all the complex things that you like to do.

Well we provide support for you there too.

AxKit implements a taglib based XML language called XSP15. This allows

your developers to design custom tags that your content editors can insert into

their code to provide dynamic content. The tags generate data not HTML, and

so it is unlike many dynamic server side languages that could be named. That

data combined with the source XML then goes on to the next stage in the AxKit

pipeline, which most likely formats the content to HTML or WML.

XSP allows web site developers to develop a library of tags that implement

functionality for a web site. This can be done to the extent that Cold Fusion

provides tags for web content delivery, or something very simple, that perhaps

says “Good Morning” or “Good Afternoon” depending on the time of day.

XSP works by transforming the taglibs and the parameters “passed” to the

taglibs into the “raw” XSP tags, which simply output elements, attributes,

processing instructions and comments. It is possible to use these raw tags

directly in your XSP page, and this allows you to directly include Perl code in

your page, but this is not recommended, as you lose your separation of content

from presentation then (unless your Perl code is simply creating tags). The

internal implementation currently works on a DOM tree, however the aim in

the next few weeks is to convert this to a series of SAX events which will be

processed in a parallel-like manner.

The following is a very simple XSP example, that pulls information from a

database using the DBI:

<?xml version="1.0"?>

<?xml-stylesheet href="." type="application/x-xsp"?>

<?xml-stylesheet href="sql.xsl" type="text/xsl"?>

<xsp:page language="Perl"

xmlns:sql="http://www.apache.org/1999/SQL"

14By “mostly” static I mean one where the content is not generated from a database on
every hit. This includes something like a news site where content may be updated every 30
minutes.

15XSP is a trademark of DataChannel corporation.

16

xmlns:xsp="http://www.apache.org/1999/XSP/Core"

>

<page title="SQL Search Results">

<sql:execute-query>

<sql:driver>Sybase</sql:driver>

<sql:username>webboard</sql:username>

<sql:password>password</sql:password>

<sql:dburl></sql:dburl>

<sql:doc-element>options</sql:doc-element>

<sql:row-element>option</sql:row-element>

<sql:tag-case>lower</sql:tag-case>

<sql:null-indicator>yes</sql:null-indicator>

<sql:id-attribute>ID</sql:id-attribute>

<sql:id-attribute-column>msgid</sql:id-attribute-column>

<sql:query>select * from Messages</sql:query>

<sql:count-attribute>count</sql:count-attribute>

</sql:execute-query>

</page>

</xsp:page>

When executed, AxKit picks up the fact that this is to initially be processed by

the XSP processor, and the results passed on to the XSLT processor. The XSP

processor has an SQL module, modeled after the Cocoon SQL processor, that

connects to a DBI database and runs the SQL. The results before transformation

using XSLT look like this:

<page title="SQL Search Results">

<options count="84">

<option ID="1">

<msgid>1</msgid>

<forumid>2</forumid>

<userid>1</userid>

<parentmsgid>0</parentmsgid>

<subject>Test post</subject>

<postdate>May 16 2000 12:55PM</postdate>

<verified>1</verified>

<timesread>1</timesread>

<anonymous>0</anonymous>

<viaemail>0</viaemail>

<threadid>1</threadid>

</option>

17

... <!-- more rows here -->

</options>

</page>

And following that, the XSLT processor transforms the results into HTML for

display using an HTML table.

The value in using a technique like this is that your query results still retain

rich semantic information - the output format you choose after returning the

results from the database is still undecided and flexible. A new taglib for SQL

is also in development that allows you much greater control over the generated

XML format, and better error handling. Other taglibs exist for forms processing,

and form value processing, and more taglibs are in development all the time.

But this doesn’t stop you building your own...

2.5 Building Your Own Taglibs

Taglibs in XSP can be separated into two separate entities: User taglibs and

Builtin taglibs. The builtin taglibs have to be shipped with AxKit, and they

have some performance benefits but are much harder to write, because you

have to work at the low level of the XSP compiler. User taglibs are merely

stylesheets. These stylesheets translate the XML into the raw XSP tags, which

then get compiled by the XSP compiler.

Writing taglibs can be a quite complex process, certainly it is not as simple

as perhaps writing a bit of Perl code that generates the same output, but the

point here is to generate something that your designers can work with, not

something for programmers. The balance is the payoff in being able to generate

dynamic content while maintaining semantic richness.

As taglibs can grow up to be quite complex, we represent here a very simple

taglib for outputting the current date/time in any choice of format (here based

on strftime format strings). The taglib is written in XPathScript, simply because

we have represented XPathScript in this documentation. It would have been

equally simple to do this in XSLT:

<%

$t->{’example:time-of-day’}{testcode} = sub {

my ($node, $temp t) = @ ;

get the value in the format attribute:

my $format = $node->findvalue(’@format’);

output raw XSP code:

$temp t->{pre} = ‘‘<xsp:expr>use POSIX ();

POSIX::strftime(’$format’, localtime)</xsp:expr>’’;

18

return 1;

};

%>

This is our first introduction to the “testcode” aspect of XPathScript, so we

will skip over that for now and leave it to the core XPathScript documentation

should you wish to know more. Basically, this code translates XML containing

the following:

<example:time-of-day format=’’%H:%M:%S’’/>

Into the following raw XSP code:

<xsp:expr>use POSIX ();

POSIX::strftime(’%H:%M:%S’, localtime)</xsp:expr>

At execution time, this simply generates the string containing the current time

according to the format specified and the strftime rules. In this case it would

output something like:

18:15:36

This only gives you a brief introduction to the true power of XSP taglibs. In

effect you can build large libraries giving you complete control over custom

functionality for your web site, allowing developers and designers to totally

separate their concerns - no code will ever output HTML again, and no designer

will ever have to chew a developers head off because his design changes can’t

work in code. Everyone is just working with pure semantic content, and given a

fixed schema for that content, content and presentation can finally be separated

for good, with both static and dynamic content.

3 XML Editing

Anyone who works on a large content based web site knows that authors don’t

really work in tags. They work in visual concepts such as bold or italics or

section headings. This makes it extremely difficult to convince anyone who is

used to producing content in MS Word to move over to editing some new XML

format in Emacs. The solution comes in the form of XML editors. While these

editors don’t tend to provide all of the features of MS Word (is that possible?),

they provide an environment that allows your content editors to see what their

documents look like, while constraining them to your semantically rich data

format.

19

The current crop of XML editors that work this way include XMetaL from

Softquad, Adept from Arbortext, some extensions to popular word processors,

such as Corel’s built in XML editor in WP9, and other plugins for MS Word.

By using these editors along with mod dav16, and Microsoft’s Web Folders

technology, your editors feel like they are editing in a perfectly natural environ-

ment and saving to a network disk. When in fact they are creating semantically

rich data which you are harvesting into Rich Site Summaries and they are writ-

ing direct to the web.

Obviously in a complex environment you have a lot more to think about,

such as content management, but these editors are really the next step towards

the semantic web.

4 Future Directions

AxKit is a very new technology. I first started working on the project in May.

Already we have a growing mailing list and some live web sites producing content

using the AxKit engine. And we have big plans for the future of AxKit. The

next step is the content management system which we are building around the

framework. This will provide several important features. The first is a very

powerful metadata feature, which allows you to add metadata to any resource

on your web site. This allows, for example, you to store the number of times a

particular URL has been “hit” right in the resource itself. We will also provide

a web based editing environment, so that setting up things like new templates

and new resource types is much easier, and you will be able to directly assign

transformations to those resource types.

We also have big plans for Apache 2.0, which I hope you get to hear lots about

at the conference (maybe they will even release it here). Apache 2.0 implements

a new filtering mechanism, which allows handlers to pass their content on to

the next handler in a chain. This will allow us to throw out some of our current

handler chaining mechanisms (though not all of them, see below) and utilize the

Apache core directly. This will reduce memory overhead and improve speed.

Finally we are now funding development of a Perl SAX2 implementation

so that we can replace the current XSP implementation with a SAX2 based

implementation. This work will hopefully be complete by the time you read

this paper!

16mod dav is an Apache module implementing WebDAV, the Distributed Authoring and
Versioning protocol. It ships with Apache.

20

A List of Links

• AxKit Web Site http://axkit.org/

• Cocoon Web Site http://xml.apache.org/cocoon/

• Apache Web Server http://www.apache.org/httpd.html

• The Apache and Perl integration project http://perl.apache.org/

• Sablotron - C based XSLT processor http://www.gingerall.com

21

