
ApacheCon Europe 2000: Apache 2.0 for Windows

Bill Stoddard Page 1

Apache 2.0 for Windows

Bill Stoddard
Apache Software Foundation
Senior Software Engineer, IBM Corp.
stoddard@apache.org
October 23, 2000

Introduction... 1
Apache 2.0 Major Architectural Features ... 2

The Apache MPM... 2
Apache Portable Runtime ... 3
Module Hook API... 3
Filter API .. 4

Apache 2.0 for Windows: Specializing for Win32... 4
mpm_winnt ... 4
Advanced Windows APIs used by mpm_winnt and APR.. 5

AcceptEx... 5
TransmitFile .. 6

Completion Ports .. 6
CreateIoCompletionPort()... 6
GetQueuedCompletionCompletionStatus... 7
Completion Ports and Over Scheduling.. 7

mod_file_cache ... 8
Other Enhancements in Apache 2.0 for Windows.. 8
Apache 2.0 for Windows Performance Numbers ... 10
Future Enhancements.. 10
Where to find this write-up and presentation.. 10

Introduction

Apache 1.3.0 was the first release of Apache that included support for the Windows
operating system (NT & 95). The Apache Server was designed for Unix like operating
systems by Unix developers. The Windows port illustrates the difficulties of porting a
‘classic’ Unix application to Windows.

The first major obstacle to overcome was the difference in request dispatch model.
Apache on Unix dispatches a process-per-request. While this is an acceptable model
for a classic Unix application, the process-per-request model is non-optimal for a
Windows application as Windows processes are quite heavy relative to Unix
processes. Windows applications typically use threads to do the work processes do in
classic Unix applications. Apache 1.3 and Apache 2.0 for Windows implement a
thread-per-request dispatch model, so none of the process/thread control code could
be shared between Unix and Windows. This contributed to a rat’s nest of code in
Apache 1.3’s http_main.c.

The second major obstacle is the lack of a fork() system call on Windows. Apache for
Unix relies heavily on the property of the fork() system call to create a near exact
replica of the calling (or parent) process. A running instance of Apache on Unix

mailto:stoddard@apache.org

ApacheCon Europe 2000: Apache 2.0 for Windows

Bill Stoddard Page 2

consists of a parent process (the first process started) and one or more child processes.
The child processes are responsible for handling the requests. The parent is
responsible for reading and parsing the server configuration and storing it in memory,
for opening the listening sockets, and for opening the server logs (access and error
logs). The parent never sees requests. Once the parent does all its work, it fork()’s
multiple child processes and each forked process has a near exact replica of the parent
processes address space, including open socket descriptors, memory, etc. Thus, the
child processes are saved the overhead of reading the server configuration file,
opening logs, etc. Lack of fork() on Windows is another reason Windows could not
efficiently implement a process-per-request dispatch model. Each process (and there
could be 1000’s of them) would have to suffer start-up overhead.

Overcoming these two obstacles required some major hacks to the server and once the
port was completed, the Windows server was ½ as fast as Apache on Linux running
on identical Intel hardware. This pointed out the third major difficulty that was never
addressed in the original port to Windows: performance.

We have learned that to get optimal performance out of a Windows server requires
use of advanced Windows APIs. Apache 2.0 for Windows is up to 2.5 X faster than
Apache 1.3 serving static pages

Apache 2.0 Major Architectural Features
The Apache MPM
Dean Gaudet is credited with the breakthrough notion of dedicating an Apache
module to the task of dispatching requests to an execution context. This special
purpose module is called a Multi-Processing Module, or MPM. An MPM is
responsible for starting and managing threads and/or processes, accepting connections
off TCP’s so_q and dispatching these connections to a thread or process. There is no
protocol specific code implemented in an MPM.

The MPM architecture enables developers to write MPMs that leverage platform
specific features while keeping this code out of the core server. At the time of this
writing there are at least 8 MPMs available:

• PREFORK
The prefork MPM implements the traditional Apache process-per-request
dispatch model. There is one parent process and one or more single threaded
child processes for handling requests. As in Apache 1.3 for Unix, the number
of child processes is allowed to vary with server load. This MPM offers
superior robustness: if one child process dies, only the client connected to that
process is affected.

• MPMT-PTHREAD

The mpmt-pthread MPM implements a thread-per-request dispatch model.
There is a single parent process and one or more multithreaded child
processes. The number of child processes is allowed to vary with server load.
The number of threads per child process is fixed.

ApacheCon Europe 2000: Apache 2.0 for Windows

Bill Stoddard Page 3

• DEXTER
The dexter MPM is similar to the mpmt-pthread MPM except that the number
of child processes is fixed while the number of threads is allowed to vary with
server load.

• MPM_WINNT

The winnt MPM implements a thread-per-request dispatch model. There is a
single parent and a single child with a fixed number of threads.

• OS2

• BEOS

• PERCHILD
This is an experimental MPM designed to dispatch requests to backend server
processes each running under a pre-configured user/group.

• STM

This is an experimental high performance MPM created by Mike Abbott of
SGI that implements a non-preemptive thread-per-request dispatch model.
This MPM, which currently only runs on SGI’s OS, is not currently part of the
Apache distribution.

Apache Portable Runtime
The Apache Portable Runtime (APR) implements a platform independent API for
Accessing common operating system services. The goal of APR is to enable
application developers to write code that can be seamlessly shared across multiple
operating systems while still providing access to the ‘best’ OS specific APIs for
implementation. For example, Windows implements a BSD socket API, which is
compatible with Unix. A application written to BSD sockets will not be able to
cleanly access Win32 specific APIs like TransmitFile(), AcceptEx(), WSARecv(), et.
al.

APR currently implements APIs in the following categories:

• File and pipe I/O
• Network I/O
• Process & thread management
• Memory management, including the Apache pool API
• Time keeping and conversion
• Common error status management

Module Hook API
The module hook API replaces Apache 1.3’s static module hook structure. In Apache
2.0, modules call ap_hook_*() functions to register their hooks, where * is the specific
hook. E.g. ap_hook_pre_config(), ap_hook_post_config(), etc. The essential benefit
of the new API to module writers is that adding a new hook to the core server does

ApacheCon Europe 2000: Apache 2.0 for Windows

Bill Stoddard Page 4

not require source code changes to existing modules that are not interested in the new
hook.

Filter API
Conceptually, the filter API enables the output of handlers to be chained to other
module handlers. E.g., a CGI can generate content marked up with SSI tags and that
marked up content can be directed through mod_include’s SSI filter. The details are
significantly more complex. The filter API is still in early stages of development and
will likely change significantly over the next few releases of Apache.

Apache 2.0 for Windows: Specializing for
Win32
Apache 2.0 uses advanced Windows APIs (in both mpmt_winnt MPM and APR)
and a file handle cache (mod_file_cache.c) to serve static pages at up to 150% faster
than Apache 1.3. This section will review the specific enhancements made to Apache
to achieve this performance boost. Mpmt_winnt will also run under Windows 95/98
(with some debugging) but the performance improvements will only be available
under Windows NT/2000.

mpm_winnt
Th mpm_winnt MPM implements a thread-per-request dispatch model. The parent
process (single threaded) starts exactly one multithreaded child process. The number
of threads in the child is set by a configuration directive (ThreadsPerChild) and does
not change after the server is started.

When the server is started, the parent process performs the following steps (some
steps are omitted for brevity. Read the code for all the glorious details):

• Opens and read httpd.conf
• Opens log files
• Create AcceptEx IOCompletion port
• Open listen sockets
• Associate listeners with the completion port
• Create child process
• Duplicate listen sockets and send them to the child process
• Duplicate the AcceptEx completion port and send it to the child process
• Wait for child death, shutdown or restart event

The main thread in the child process perform the following steps:

• Opens and reads httpd.conf
• Opens logs files
• Reads listen sockets off of pipe from parent
• Reads AcceptExComplationPort off of pipe from parent
• Starts ThreadsPerChild worker threads
• Creates n AcceptEx completion contexts for each listening socket and calls

AcceptEx asynchronously for each context

ApacheCon Europe 2000: Apache 2.0 for Windows

B

• Blocks waiting for exit_event (signaled by parent in response to shutdown or
restart event) or a maintenance_event signaled by one of the worker threads

Each worker thread in the child process perform the following steps:

• Conditionally resets the AcceptEx completion context if this thread has just
handled a connection.

• Blocks on GetQueuedCompletionStatus() waiting for asynchronous i/o
completion packets

• When GetQueuedCompletionStatus() unblocks, if more AcceptEx completion
contexts need to be created, signal a maintenance event

• Recover the completion context for the accepted connection
• Handle the accepted connection

The AcceptEx completion context saves state information across the asynchronous
AcceptEx call.

typedef struct CompContext {

OVERLAPPED Overlapped;
SOCKET accept_socket;
apr_socket_t *sock;
ap_listen_rec *lr;
BUFF *conn_io;
char *recv_buf;
int recv_buf_size;
apr_pool_t *ptrans;
struct sockaddr *sa_server;
int sa_server_len;
struct sockaddr *sa_client;
int sa_client_len;

 } COMP_CONTEXT, *PCOMP_CONTEXT;

Advanced Windows APIs used by mpm_winnt and APR

AcceptEx
AcceptEx is a Microsoft specific extension to the Winsock API. This call is not
currently implemented in any APR functions. AcceptEx is used exclusively by the
mpm_winnt MPM.

T

 BOOL AcceptEx(
 SOCKET sListenSocket,
 SOCKET sAcceptSocket,
 PVOID lpOutputBuffer,
 DWORD dwReceiveDataLength,
 DWORD dwLocalAddressLength,
 DWORD dwRemoteAddressLength,
 LPDWORD lpdwBytesReceived,
 LPOVERLAPPED lpOverlapped
);
ill Stoddard Page 5

he notable features of AcceptEx are:

ApacheCon Europe 2000: Apache 2.0 for Windows

B

• Can be called in asynchronous mode (i.e., call returns immediately, similar to
non-blocking I/O)

• Calling AcceptEx() asynchronously enables dispatching worker threads off of
a completion port via a call to GetQueuedCompletionStatus()

• The accept socket is explicitly passed in, which enables reusing the accept
socket in certain situations

• It can be made to receive the first data packet after accepting the connection
(a.k.a., Accept and Receive)

• It returns the local/remote addresses (saves a system call to get them when
using accept())

TransmitFile
TransmitFile is a Microsoft specific extension to the Winsock API. The
apr_sendfile() call is implemented with TransmitFile().

The notable features of the TransmitFile API are:

• Eliminates multiple buffer copies and system calls by aggregating
read()/send()/closesocket()

• If you can reliably detect if this is the last request on the connection, dwFlags
can be set to cause TransmitFile to initiate a disconnect, which will allow the
accept socket to be reused on the AcceptEx() call.

• The file handle must have been opened using the Windows specific
CreateFile() API.

• It can send chunks of header/trailer data along with the file (particularly useful
for sending HTTP headers along with the file)

• Tight integration with the OS file cache

Completion Ports
Windows completion ports are one of several objects in Windows that can be used to
receive notification that an asynchronous I/O event has completed. They are
remarkably useful for implementing high performance network servers.

CreateIoCompletionPort()
A completion port is created with the CreateIoCompletionPort() call.

BOOL TransmitFile(
 SOCKET hSocket,
 HANDLE hFile,
 DWORD nNumberOfBytesToWrite,
 DWORD nNumberOfBytesPerSend,
 LPOVERLAPPED lpOverlapped,
 LPTRANSMIT_FILE_BUFFERS lpTransmitBuffers,
 DWORD dwFlags
);
HANDLE CreateIoCompletionPort (
 HANDLE FileHandle, // handle to file
 HANDLE ExistingCompletionPort, // handle to I/O completion port
 ULONG_PTR CompletionKey, // completion key
 DWORD NumberOfConcurrentThreads // number of threads to execute concurrently
);
ill Stoddard Page 6

ApacheCon Europe 2000: Apache 2.0 for Windows

B

FileHandle can also be a SOCKET that is enabled for async I/O. Sockets created with
the sockets() call are, by default, opened in blocking mode but ‘enable’ for async I/O.

 In mpm_winnt, the parent creates the completion port, thusly:

AcceptExCompPort = CreateIoCompletionPort(INVALID_HANDLE_VALUE,
NULL, 0, 0);

A listen socket is associated with the completion port thusly:

CreateIoCompletionPort(AcceptExCompPort, listen_socket, 0, 0);

This code causes a completion port object to be created in the NT kernel. When any
asynchronous socket operations issued on the listening socket completes, NT will
queue an I/O completion packet to the port. The queuing of an I/O completion packet
causes a thread blocked on GetQueuedCompletionStatus to be awakened to handle the
completed async socket I/O. The I/O completion packet contains enough information
(the completion key) to allow the thread to regain context (what async call is
completing, what to do when the call completes, pointers to relevant storage, etc. See
COMP_CONTEXT above.) in order to correctly handle the request.

Notice the NumberOfConcurrentThreads argument. The story behind this argument
is quite interesting! See the section titled “Overscheduling” for more info.

GetQueuedCompletionCompletionStatus
All the worker threads first issue an asynchronous AcceptEx() then block on this call
awaiting notification (in the form of I/O completion packets) that a connection has
been received. In general, notification can flow to the completion port for any async
I/O issued against socket, not just AcceptEx().

C
A
t
e
w
p
d
a

C
A
c
c
i

BOOL GetQueuedCompletionStatus(
 HANDLE CompletionPort, // handle to completion port
 LPDWORD lpNumberOfBytes, // bytes transferred
 PULONG_PTR lpCompletionKey, // file completion key
 LPOVERLAPPED *lpOverlapped, // buffer
 DWORD dwMilliseconds // optional timeout value
);
ill Stoddard Page 7

ompletion Ports and Over Scheduling
 system that has too many ‘active’ threads can suffer performance degradation due

o ‘over scheduling’. In other words, having too many active threads can cause
xcessive time to be spent by the OS managing thread context switches, time that
ould better be spent doing productive work. Over scheduling is a major
erformance problem with Apache 1.3’s process-per-request model. The processes are
ispatched more or less at random to handle requests. This becomes a serious problem
s the number of concurrent clients (number of processes) increases.

ompletion ports provide an interesting feature that can help prevent over scheduling.
 completion port can be instructed (at creation) to only allow a fixed number of

oncurrently active threads (NumberOfConcurrentThreads). A value of 0 means the
ompletion port will allow one active thread per CPU in the system. An active thread
s defined as a thread that is not blocked on I/O. If an active thread blocks on I/O, the

ApacheCon Europe 2000: Apache 2.0 for Windows

Bill Stoddard Page 8

completion port will allow another thread to be dispatched to handle work pending on
the port (in our case, accepted connections).

Another interesting feature of completion ports is that threads blocked on
GetQueuedCompletionStatus() are dispatched in LIFO order. The most recently active
thread is given the next piece of work to do. If a thread calls
GetQueuedCompletionPort() and there is work available, that thread will get the work
rather than blocking. This pretty much ensures that the thread’s stack will still be
paged in, etc, which is good for performance.

An ideal server (from a performance perspective) would set the number of active
threads to the number of CPUs in the system and never block on I/O. In practice,
some threads get caught up in CPU intensive activities, so
NumberOfConcurrentThreads should be set to something greater than 0 but less than
ThreadsPerChild. We are still experimenting with the correct value in Apache 2.0
for Windows. Furthermore, Apache 2.0 for Windows will block on network I/O. The
most common case is blocking on a persistent connection read(). Even with these
limitations, Apache 2.0 for Windows is significantly faster serving static pages than
Apache 1.3 and should be reasonably competitive with Apache on Linux and MS IIS
in terms of raw performance and scalability.

mod_file_cache
Stat’ing, opening and closing files are very expensive operations on Windows.
Eliminating this overhead by caching open file handles results in a substantial
performance improvement when serving static files.

mod_file_cache is an extension of Dean Gaudet’s mod_mmap_static. It can be used
exactly like mod_mmap_static on Unix platforms (same configuration directives,
etc.). For platforms that support apr_sendfile() (Windows NT/2000 and some Unix
platforms), mod_file_cache can be directed to cache open file handles instead of
mmap’ed files.

Caching file handles offers several advantages over caching MMAP’ed files. First, the
storage used by a file handle cache entry is a few bytes as compared to the entire file
for an MMAP’ed cache entry. Second, caching the file handle offloads memory
management responsibility to the file system. An infrequently hit file in the handle
cache will be paged out, freeing up system resources. Most importantly, offloading
the memory management to the file system allows the cache to be dynamically loaded
at runtime (and eliminating a configuration step) without much danger of consuming
excessive system resources. Mod_file_cache does not implement dynamic cache
loading at this time.

Caching file handles also introduces some difficulties. The most notable is that you
should not cache file handles for content that is to be served over SSL sessions.

Other Enhancements in Apache 2.0 for
Windows

ApacheCon Europe 2000: Apache 2.0 for Windows

Bill Stoddard Page 9

There have been a number of other noteworthy enhancements to Apache 2.0 for
Windows by B. Stoddard, W. Rowe, T. Costello, G. Marr, et. al. worth mentioning.
See the code and CHANGES file for more details.

• CGI scripts running on Windows NT/2000 are now able to flush partial
responses to the network. Apache on Unix has always had this capability

• Code to manage starting stopping and running Apache as a service has been
substantially improved.

• Mod_isapi is significantly improved.
• Eliminate DLL relocation at start-up. This will help with debugging

segmentation faults in the field by allowing us to precisely locate the
offending line of code.

• Enhance the make/build environment. There is now a single, all encompassing
apache.dsw project file that can be used to compile Apache directly or it can
be used to export the project makeefiles.

• Other enhancements…

ApacheCon Europe 2000: Apache 2.0 for Windows

Bill Stoddard Page 10

Apache 2.0 for Windows Performance Numbers

Table 1 – HTTP/1.0 Connections per second w/o keep-alive

File Size
(bytes)

Apache
1.3

Apache 2.0
AeTf

Apache 2.0
Cache

Apache 2.0
socket
reuse

Apache 2.0
AeTf,
cache,
socket
reuse

500 419 470 763 592 1088
1000 416 468 750 585 1065
4000 375 450 726 556 1004
8000 340 435 664 540 918
16000 294 396 610 484 696@85%

cpu
20000 261 377@98%
32000 219
64000 147 173@55% 172@40% 178@54% 178@38%

Future Enhancements
The primary performance enhancements planned for Apache for Windows is to
handle all network I/O asynchronously. This will enable supporting 10s of thousands
of concurrent HTTP/1.1 keep-alive clients. When all network I/O can be guaranteed
to be asynchronous, it becomes feasible to consider using fibers instead of threads to
handle request processing.

Note: All of this performance work was done prior to the addition of filters to Apache
2.0. mod_file_cache, et. al. will need to be re-implemented to conform to the new
filter API. The performance improvements should not be adversely impacted by the
filter architecture.

Enhancements to mod_file_cache include support dynamic cache loading and
automatically garbage collecting files that change on disk.

Where to find this write-up and presentation

This presentation can be found on-line at http://www.wstoddard.com/ac2keurope.

mailto:696@85%
mailto:377@98%
mailto:173@55%
mailto:172@40%
mailto:178@54%

	Introduction
	Apache 2.0 Major Architectural Features
	The Apache MPM
	Apache Portable Runtime
	Module Hook API
	Filter API

	Apache 2.0 for Windows: Specializing for Win32
	mpm_winnt
	Advanced Windows APIs used by mpm_winnt and APR
	AcceptEx
	TransmitFile

	Completion Ports
	CreateIoCompletionPort()
	GetQueuedCompletionCompletionStatus
	Completion Ports and Over Scheduling

	mod_file_cache

	Other Enhancements in Apache 2.0 for Windows
	Apache 2.0 for Windows Performance Numbers
	Future Enhancements
	Where to find this write-up and presentation

