JavaServer Pages Fundamentals

John Zukowski

1.0

jGuru.com

(€)2000 jGuru.com

Contents

Chapter 1. JavaServer Pages Fundamentals
1.1. Introduction to JavaServer Pagestechnology
1.2. JavaServer Pages Fundamentals
1.2.1. Introduction .
1.2.1.1. JSP Advantages :
1.2.1.2. Comparing JSP with ASP
1.2.1.3. JSPor Servlets?
1.2.2. JSP Architecture
1.2.3. JSP AccessModels
1.2.4. JSP Syntax Basics
1.2.4.1. Directives
1.2.4.2. Declarations
1.2.4.3. Expressions
1.2.4.4. Scriptlets
1.2.4.5. Comments
1.2.5. Object Scopes
1.2.6. JSP Implicit Objects
1.2.7. Synchronization Issues
1.2.8. Exception Handling
1.2.9. Session Management
1.2.10. Standard Actions e e
1.2.10.1. Using JavaBean Components
1.2.10.2. Forwarding Requests
1.2.10.3. Including Requests
1.3. Resources .
1.3.1. Web Sites N
1.3.2. Documentation and Specs
1.3.3. Articles

Chapter 2. JavaServer Pages Fundamentals: Exercises
2.1. Magercise: Installing and Configuring Tomcat
2.2. Magercise: Understanding JSP object scope
2.3. Magercise: Exception Handling in JSP

(€)2000 jGuru.com

©UAWNNR R R

NN N T TR NN
NNOMNNNSNRNRooooo oo RREREOGCO

24
25
27
29

2.4. Magercise: Form processing using JSP

Appendix A.

(©)2000 jGuru.com

31

(€)2000 jGuru.com

Chapter 1. JavaServer Pages Fundamentals

1.1. Introduction to JavaServer Pagestechnology

Concepts

After completing this module you will understand:

e The advantages of JSP technology

e The JSP architecture
e Thelife-cycleof aJSP page

e JSP syntax and semantics

e Therole of JavaBean componentswithin JSP pages

Objectives

By the end of thismoduleyou will be ableto:

e Manage session-related information from JSP
e Communicate between JSP pages

e Processformswith JSP

Prerequisites

A general familiarity with object-oriented programming concepts and the Java program-
ming language. If you are not familiar with these capabilities, see the Java Tutorial (http://
java.sun.com/docs/books/tutorial/) . The exercisesrequire the ability to modify and build simple
Java programs and HTML-like pages. It may also help to understand the fundamentals of Web
computing and servlets. For help on servlet-specific issues, see the earlier Fundamentals of
Java Servlets (http://devel oper.java.sun.com/devel oper/onlineTraining/Servlets/Fundamental s/
index.html) course, though that ison the Servliets2.1 AP, instead of the newer 2.2 version.

(€)2000 jGuru.com

2 Chapter 1. JavaServer Pages Fundamentals

About the Author

John Zukowski is the content czar at jGuru.com (http://www.jguru.com) , contributing author
of Professional JSP from Wrox, as well as the Focus on Java (http://java.about.com) guide at
About, Inc.

1.2. JavaServer Pages Fundamentals

1.2.1. Introduction

While there may be numerous technologies for building Web applications that serve dynamic
content, the onethat hasreally caught the attention of the development community is JavaServer

Pages ™ (JSP). And not without ample reason either. JSP not only enjoys cross-platform and
cross-Web-server support, but effectively melds the power of server-side Java technology with
the WY SIWY G featuresof static HTML pages.

JSP pagestypically compriseof staticHTML/XML components, special JSPtags, and optionally,
snippets of code written in the Java programming language called "scriptlets'. Consequently,
JSP pages can be created and maintained by conventional HTML/XML tools. It isimportant to
note that the JSP specification is a standard extension defined on top of the Serviet API. Thus,
it leveragesall of your experience with servlets. But there are significant differences between
the two technologies. Unlike servlets, which isa programmatic technology requiring significant
developer expertise, JSP enjoys a much wider audience. It cannot only be used by devel opers,
but also by page designers who can now play a more direct role in the development lifecycle.
Another advantage of JSP isthe inherent separation of presentation from content facilitated by

the technology, due its reliance upon reusable component technologies like the JavaBeans ™

component architecture and Enterprise JavaBeans ™ technol ogy. This course provides you
with an in-depth introduction to this versatile technology, and will use the Tomcat (http://jakar-
ta.apache.org/tomcat/) JSP 1.1 Reference Implementation from the Apache group for running
the example programs.

1.2.1.1. JSP Advantages

Separation of static fromdynamic content: With servlets, thelogic for generation of the dynamic
content isan intrinsic part of the servlet itself, and is closely tied to the static presentation tem-
platesresponsible for the user interface. Thus, even minor changes made to the Ul typically re-
sult intherecompilation of the servlet. Thistight coupling of presentation and content typically
resultsin brittle, inflexible applications. However, with JSP, the logic to generate the dynamic
content iskept separate from the static presentation templatesby encapsulating it within externa
JavaBeans components. These are then created and used by the JSP page using special tagsand
scriptlets. When a page designer makes any changes to the presentation template, the JSP page

(©)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 3

Isautomatically recompiled and reloaded into the web server by the JSP engine.

Write Once Run Anywhere: JSP technol ogy bringsthe "Write Once, Run Anywhere'" paradigm to
Interactive Web pages. JSP pages can be easily moved not only across platforms, but also across
web servers, without any changes.

Dynamic content can be served in a variety of formats There is nothing that mandates the
static template data within a JSP page to be of a certain format. Consequently, JSP can service
a diverse clientele ranging from conventional browsers using HTML/DHTML, to handheld
wireless devices like mobile phones and PDAs using WML, to even other B2B applications
using XML.

Recommended Web access layer for n-tier architecture Sun's J2EE Blueprints (http:/
java.sun.com/j2ee/blueprints/) , which offers guidelines for devel oping large-scal e applications
using the enterprise Java API's, categorically recommends JSP over servletsfor serving dynamic
content.

Completely leveragesthe Serviet API: If you are a servlet developer, thereisvery little that you
have to "unlearn” in moving over to JSP. In fact, servlet developers are at a distinct advantage
because JSP is nothing but a high-level abstraction of servlets. You can do ailmost anything that
can be done with servletsusing JSP — but more easily!

1.2.1.2. Comparing JSP with ASP

Although the features offered by JSP may seem similar to that offered by Microsoft’s Active
Server Pages (ASP), they are fundamentally different technologies, as shown by the following
table:

(©)2000 jGuru.com

4 Chapter 1. JavaServer Pages Fundamentals
JavaServer Pages Active Server Pages
Web Server Support | Most popular web servers in- | Native support only within Mi-
cluding Apache, Netscape, and | crosoft IS or Personal Web
Microsoft I1S can be easily en- | Server. Support for select
abled with JSP. servers using third-party prod-
ucts.
Platform Support Platform independent. Runson | Is fully supported under Win-
al Java-enabled platforms. dows. Deployment on other
platforms is cumbersome due
to reliance on the Win32-based
component model.
Component Model Relies on reusable, crossplat- | Uses the Win32-based COM
form components like Jav- | component model.
aBeans, Enterprise JavaBeans,
and custom tag libraries.
Scripting Can use the Java programming | Supports VBScript and JScript
language or JavaScript. for scripting.
Security Works with the Java security | Canwork withthe WindowsNT
model. security architecture.
Database Access Uses JDBC for data access. Uses Active Data Objects for
data access.
CustomizableTags | JSP is extensible with custom | Cannot use custom tag libraries
tag libraries. and isnot extensible.

1.2.1.3. JSP or Serviets?

It is true that both servlets and JSP pages have numerous features in common, and can be
used for serving up dynamic Web content. Naturally, this may cause some confusion amongst
developers as to when to opt for one of the technologies over the other. Luckily, Sun's J2EE
Blueprints(http://java.sun.com/j 2ee/blueprints/) offerssome guidelinestowardsthis. According
to the Blueprints, servlets should be used strictly as a web server extension technology. This
could include the implementation of specialized controller components offering services like
authentication, database validation, and so forth. It isinteresting to note that what is commonly
known asthe " JSP engine" itself isa specialized servlet running under the control of the servlet
engine. Since JSP only deals with textual data, you will have to continue to use servlets when
communicating with Java appl ets and applications.

JSP should be the preferred technology for devel oping typical web applicationsthat are reliant
upon dynamic content. JSP should also be used in place of proprietary web server extensions
like server-sideincludes sinceit offersexcellent featuresfor handling repetitive content.

Exercise

(€)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 5

1. Installing and Configuring Tomcat (page 25)

1.2.2. JSP Architecture

The purpose of JSP is to provide a declarative, presentation-centric method of developing
serviets. Asnoted before, the JSP specification itself is defined as a standard extension on top
the Servlet API. Consequently, it should not be too surprisingly that ' under the covers, servlets
and JSP pages have alot in common.

Typically, JSP pagesare subject to atrans ation phase and arequest processing phase. Thetrans
lation phase is carried out only once, unless the JSP page changes, in which case it is repeated.
Assuming there were no syntax errors within the page, the result is a JSP page implementation
classfile that implementsthe Servlet interface, as shown below.

=% @ page Imp ori="java text *, javawil ** =

=himl-

zhody=

=

Date d = new Diate();

Siring today = DateFormatgetDateInstan e(rformai(d);
W=

Today is:
<em= <% =today%i= =fem:= .
<hody= Asp file
=/himk-
*Page Compilation
Servlet

Servlet contamer

The trandation phase is typically carried out by the JSP engine itself, when it receives an
incoming request for the JSP page for the first time. It should however be noted that the JSP
1.1 specification aso allows for JSP pages to be precompiled into class files. Precompilation
may be especially useful in removing the start-up lag that occurs when a JSP page delivered in
source form receives the first request from a client. Many details of the trandation phase, like
thelocation wherethe source and classfilesare stored, and so on, areimplementati on dependent.
The sourcefor the classfile generated by Tomcat for thisexample JSP page (shown in the above
figure) isasfollows:

package jsp;

(€)2000 jGuru.com

6 Chapter 1. JavaServer Pages Fundamentals

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Vector;

import org.apache.jasper.runtime.*;
import java.beans.*;

import org.apache.jasper.JasperException;
import java.text.*;

import java.util.*;

public class 0005cjsp 0005cjsptest 0002ejspjsptest jsp O
extends HttpJdspBase

static {
}
public 0005cjsp 0005cjsptest 0002ejspjsptest jsp 0()

}

private static boolean jspx inited = false;
public final void jspx_init() throws JasperException {

}

public void _jspService (HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

JspFactory jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;
Object page = this;
String value = null;
try {
if (_jspx_inited == false) ({
_Jspx_init () ;
_Jjspx _inited = true;
}
__JjspxFactory = JspFactory.getDefaultFactory() ;
response.setContentType ("text/html") ;
pageContext = jspxFactory.getPageContext (this,
request,response, "", true, 8192, true);

(€)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 7

application = pageContext.getServletContext () ;

config = pageContext.getServletConfig() ;

session = pageContext.getSession() ;

out = pageContext.getOut () ;

// begin

out.write ("\r\n<html>\r\n<body>\r\n") ;

// end

// begin [file="E:\\jsp\\jsptest.jsp";from=(3,2);to=(5,0)]
Date d = new Date() ;

String today = DateFormat.getDateInstance () .format (d) ;

// end

// begin
out.write ("\r\nToday is: \r\n ");

// end

// begin [file="E:\\jsp\\jsptest.jsp";from=(7,8);to=(7,13)]
out.print (today) ;

// end
// begin
out.write (" \r\n</body>\r\n</html>\r\n");
// end
} catch (Exception ex) ({
if (out.getBufferSize() != 0)

out.clear () ;
pageContext .handlePageException (ex) ;
} finally {
out.flush() ;
_JjspxFactory.releasePageContext (pageContext) ;

The JSP page implementation class file extends HttpJspBase, which in turn implements the
Servlet interface. Observe how the servicemethod of thisclass, jspservice (), essentiadly
inlines the contents of the JSP page. Although jspService () cannot be overridden, the
developer can describe initalization and destroy events by provinding implementations for the
jspInit () and jspDestroy () methodswithin their JSP pages.

Once this class file is loaded within the servlet container, the jspservice () method isthe
one responsible for replying to a client’'srequest. By default, the jspservice () method is
dispatched on a separate thread by the servlet container in processing concurrent client requests,
as shown below:

(€)2000 jGuru.com

Chapter 1. JavaServer Pages Fundamentals

o[

ﬂ PSS RSN
request xﬁ" _ispService())

responsec g4 §f>‘“

destroy event > _
ispDestroy()
“JSP” Servlet

1.2.3. JSP AccessModels

The early JSP specifications advocated two philosophical approaches, popularly known as
Model 1 and Model 2 architectures, for applying JSP technology. These approaches differed
essentially in the location at which the bulk of the request processing was performed, and offer

auseful paradigm for building applications using JSP technol ogy.

Consider the Model 1 architecture, shown below:

JSP

Fesponsze
2
3
JavaBean ‘g

Enterprise Information
Systems (EIS)

dJHSMOFg

Servlet Container

(€)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 9

In the Model 1 architecture, the incoming request from a Web browser is sent directly to the
JSP page, which is responsible for processing it and replying back to the client. There is till
separation of presentation from content, because all data access is performed using beans.
Although the Model 1 architecture should be perfectly suitable for simple applications, it may
not be desirablefor complex implementations. Indiscriminate usage of thisarchitecture usually
leadsto asignificant amount of scriptletsor Java code embedded within the JSP page, especially
iIf thereisasignificant amount of request processing to be performed. While thismay not seem
to be much of aproblem for Java developers, it iscertainly anissueif your JSP pagesare created
and maintained by designers— which is usually the norm on large projects. Another downside
of this architecture is that now, each of the JSP pages have to be individually responsible for
managing application state and verifying authentication and security.

MV C Design Pattern
1

— | (Controller)
0 Fequest Servlet
A
% 3 %%
grdj % (Model)

5 _ JavgBean
- (View) -
Fesponse JSP 4
Servlet Container EIS

The Model 2 architecture, shown above, is a server-side implementation of the popular Mod-
el/View/Controller design pattern. Here, the processingisdivided between presentationand front
components. Presentation components are JSP pages that generate the HTML/XML response
that determinesthe user interface when rendered by the browser. Front components (al so known
as controllers) do not handle any presentation issues, but rather, process all the HTTP requests.
Here, they areresponsiblefor creating any beansor objectsused by the presentation components,
aswell as deciding, depending on the user’s actions, which presentation component to forward
the request to. Front components can be implemented as either a serviet or JSP page.

The advantage of this architecture is that there is no processing logic within the presentation
component itself; it issimply responsiblefor retrieving any objects or beansthat may have been
previously created by the controller, and extracting the dynamic content within for insertion

(©)2000 jGuru.com

10 Chapter 1. JavaServer Pages Fundamentals

withinitsstatictemplates. Consequently, thisclean separation of presentationfrom content leads
to a clear delineation of the roles and responsibilities of the developers and page designers on
the programming team. Another benefit of this approach is that the front components present
a single point of entry into the application, thus making the management of application state,
security, and presentation uniform and easier to maintain.

1.2.4. JSP Syntax Basics

JSP syntax isfairly straightforward, and can be classified into directives, scripting elements, and
standard actions.

1.2.4.1. Directives

JSP directivesare messagesfor the JSP engine. They do not directly produce any visible output
but instead tell the engine what to do with the rest of the JSP page. JSP directives are always
enclosed within the < %"@" ... % > tag. The two primary directives are page and include.
(Note that JSP 1.1 also provides the taglib directive, which can be used for working with
custom tag libraries, although thiswill not be discussing it here.)

Pagedirective

Typically, the page directiveisfound at the top of almost all your JSP pages. There can be any
number of page directiveswithin a JSP page, although the attribute/value pair must be unique.
Unrecognized attributes or valuesresult in atranglation error. For example,

[)

<%@ page import="java.util.*, com.foo.*" buffer="16k" %>

makes availabl e the types declared within the included packages for scripting and sets the page
buffering to 16K.

Includedirective

The include directive lets you separate your content into more manageable elements, such as
those for including acommon page header or footer. The pageincluded could beastaticHTML
page or more JSP content. For example, the directive:

<%@ include file="copyright.html" %>

can be used to include the contents of the indicated file at any location within the JSP page.

(€)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 11

1.2.4.2. Declarations

JSP declarations let you define page-level variables to save information or define supporting
methodsthat the rest of a JSP page may need. Whileit iseasy to get led away and have alot of
codewithinyour JSP page, thismovewill eventually turn out to be a maintenancenightmare. For
that reason, and to improve reusability, it is best that logic-intensive processing is encapsulated
as JavaBean components.

Declarations are found within the < %! ... % > tag. Always end variable declarations with a
semicolon, asany content must be valid Java statements:

<%! int 1=0; %>

You can also declare methods. For example, you can override the initialization event in the JSP
lifecycle by declaring:

<%! public void jspInit() {
//some initialization code

}

o\°
v

1.2.4.3. Expressions

With expressions in JSP, the results of evaluating the expression are converted to a string and
directly included within the output page. Typically expressionsare used to display simplevalues
of variablesor return valuesby invoking a bean’s getter methods. JSP expressionsbegin within
<%= ... %> tagsand do not include semicolons:

<%= fooVariable %>

<%= fooBean.getName () %>

1.2.4.4. Sriptlets

JSP code fragmentsor scriptletsareembedded within< % ... %> tags. ThisJavacodeisthenrun
when therequest isserviced by the JSP page. You can havejust about any valid Java code within
ascriptlet, and isnot limited to one line of source code. For example, the following displaysthe
string "Hello" within H1, H2, H3, and H4 tags, combining the use of expressionsand scriptlets:

<% for (int i=1; i<=4; i++) { %>

<H<%=1%>>Hello</H<%=1i%>>

<% } %>

(€)2000 jGuru.com

12 Chapter 1. JavaServer Pages Fundamentals

1.2.4.5. Comments

Although you can alwaysinclude HTML commentsin JSP pages, users can view these if they
view the page’'s source. If you don’t want users to be able to see your comments, you would
embed them within the < %-— ... —% > tag:

<%- comment for server side only -%>

A most useful feature of JSP commentsisthat they can be used to selectively block out scriptlets
or tags from compilation. Thus, they can play a significant role during the debugging and
testing process.

1.2.5. Object Scopes

Before we take a look at JSP syntax and semantics, it is important to understand the scope
or visibility of Java objects within JSP pages that are processing a request. Objects may be
created implicitly using JSP directives, explicitly through actions, or, in rare cases, directly using
scripting code. The instantiated objects can be associated with a scope attribute defining where
there is a reference to the object and when that reference is removed. The following diagram
Indicates the various scopesthat can be associated with a newly created object:

Most & -
o 0 0 Oh jects accessible from pages thathelbng
visible ﬂPPh cation to the same application

. Oh jects accessible from pages hebnging to
SC€55101 the same session as the one in which they

were created

Te que st Oh jects accessihle from pages processing the
request where they were created

Least Pﬂ,g& Oh jects accessible only within p ages
visihle where they were created

1.2.6. JSP Implicit Objects

As a convenience feature, the JSP container makes available implicit objects that can be used
within scriptlets and expressions, without the page author first having to create them. These

(€)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 13

objects act as wrappers around underlying Java classes or interfaces typically defined within
the Servlet API. There are nine implicit objects made available to the JSP author, and are
shown below:

e reguest: representsthe HttpServletRequest triggering the service invocation. Request
scope.

e response: representsHttpServletResponseto the request. Not used often by page
authors. Page scope.

e pageContext: encapsulatesimplementation-dependent featuresin PageContext.
Page scope.

e application: representsthe ServletContext obtained from servlet configuration object.
Application scope.

e out: aJspWriter object that writesinto the output stream. Page scope.
e config: representsthe ServletConfig for the JSP. Page scope.

e page: synonym for the "this' operator, asa HttpJspPage. Not used often by page
authors. Page scope.

e session: A HttpSession. Session scope. More on sessions shortly (page 15) .

e exception: theuncaught Throwableobject that resulted in the error page being invoked.
Page scope.

It should be noted that these implicit objects are only visible within the system generated
_jspservice () method. They are not visible within methods you define yourself in decla-
rations.

1.2.7. Synchronization Issues

By default, the service method of the JSP page implementation class that services the client
request ismultithreaded. Thus, it istheresponsibility of the JSP page author to ensurethat access
to shared state is effectively synchronized. There are a couple of different ways to ensure that
the service methods are thread-safe. The easy approach isto include the JSP page directive:

<%@ page isThreadSafe="true" %>

This causes the JSP page implementation class to implement the singleThreadModel
interface, resulting in the synchronization of the service method, and having multiple instances
of the servlet to beloaded in memory. The concurrent client requestsare then distributed evenly
amongst these instancesfor processing in a round-robin fashion, as shown below:

(€)2000 jGuru.com

14 Chapter 1. JavaServer Pages Fundamentals

Reguest Servlet Instance 1
Rasponse
Request servlet Instance 2
Rasponse
Request Servlet Instance 3
Rasponse
Request
™ servlet Instance 4
Rasponse

The downside of using this approach isthat it is not scalable. If the wait queue grows due to
a large number of concurrent requests overwhelming the processing ability of the serviet
instances, then the client may suffer a significant delay in obtaining the response.

A better approach would be to explicitly synchronize access to shared objects (like those
instances with application scope, for example) within the JSP page, using scriptlets:

<%
synchronized (application) ({
SharedObject foo = (SharedObject)
application.getAttribute ("sharedObject") ;
foo.update (someValue) ;
application.setAttribute ("sharedObject", foo) ;

ECp—

1.2.8. Exception Handling

JSP provides a rather elegant mechanism for handling runtime exceptions. Although you can
provide your own exception handling within JSP pages, it may not be possible to anticipate all
situations. By making use of thepage directive’'serrorpage attribute, it ispossibleto forward
an uncaught exception to an error handling JSP page for processing. For example,

<%@ page isErrorPage="false" errorPage="errorHandler.jsp" %>

informs the JSP engine to forward any uncaught exception to the JSP page errorHan-

(€)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 15

dler.jsp.|tisthen necessary for errorHandler. jsp toflagitself asaerror processing page
using the directive:

<%@ page isErrorPage="true" %>

This allows the Throwable object describing the exception to be accessed within a scriptlet
through theimplicit exception object.

Exercise

2. Exception Handling in JSP (page 29)

1.2.9. Session Management

By default, all ISP pagesparticipateinan HTTP session. TheHttpSession object can be accessed
within scriptletsthrough the session implicit JSP object. Sessionsareagood placefor storing
beansand objectsthat need to be shared acrossother JSP pagesand servletsthat may be accessed
by theuser. Thesession objectsisidentified by asession ID and stored in the browser asacookie.
If cookies are unsupported by the browser, then the session ID may be maintained by URL
rewriting. Support for URL rewriting isnot mandated by the JSP specification and is supported
only within afew servers. Although you cannot place primitive data typesinto the session, you
can store any valid Java object by identifying it by a unique key. For example:

<%
Foo foo = new Foo() ;
session.putValue ("foo", foo) ;

o
>

makes avail able the Foo instance within all JSP pagesand servletsbel onging to the same session.
The instance may be retrieved within a different JSP page as:

<%
Foo myFoo = (Foo) session.getValue("foo");

)
>

Thecall to session.getValue () returnsareferenceto the generic object type. Thusitis
important to always cast the value returned to the appropriate data type before using it. It isnot
mandatory for JSP pages to participate in a session; they may choose to opt out by setting the
appropriate attribute of the page directive:

<%@ page session="false" %>

(€)2000 jGuru.com

16 Chapter 1. JavaServer Pages Fundamentals

Thereisno limit on the number of objectsyou can storeinto the session. However, placing large
objectsinto the session may degrade performance as they take up valuable heap space. By de-
fault, most serversset thelifetimeof asession object to 30 minutes, although you can easily reset
it on a per session basis by invoking setMaxInvalidationInterval (int secs) onthe
session object. Thefigure below highlightsthe general architecture of session management:

Browser Serviat Container

|Mﬂ=555 < w555 |sessiononi]
cookie /

onOb]

“person” | personQbi

“Rems” } flemObi
. .

The JSP engine holds a live reference to objects placed into the session aslong asthe session is
valid. If the session isinvalidated or encounters a session timeout, then the objects within are
flagged for garbage collection.

1.2.10. Standard Actions

Actions allow you to perform sophisticated tasks like instantiating objects and communicating
with server-side resources like JSP pages and servletswithout requiring Java coding. Although
the same can be achieved using Java code within scriptlets, using action tagspromotesreusability
of your components and enhances the maintainability of your application.

1.2.10.1. Using JavaBean Components

The component model for JSP technology is based on JavaBeans component architecture.
JavaBeans components are nothing but Java objects which follow a well-defined design/naming
pattern: the bean encapsulates its properties by declaring them private and provides public
accessor (getter/setter) methods for reading and modifying their val ues.

(€)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 17

Before you can access a bean within a JSP page, it is hecessary to identify the bean and obtain
areferencetoit. The< jsp:useBean > tagtriesto obtain areferenceto an existing instance
using the specified id and scope, as the bean may have been previously created and placed into
the session or application scope from within adifferent JSP page. Thebean isnewly instantiated
using the Java class name specified through the class attribute only if a reference was not
obtained from the specified scope. Consider the tag:

<jsp:useBean id="user" class="com.jguru.Person"
scope="gsession" />

In this example, the Person instance is created just once and placed into the session. If this
useBean tagislater encountered within adifferent JSP page, areferenceto the original instance
that was created before is retrieved from the session.

The< jsp:useBean > tagcan alsooptionaly includeabody, like

<jsp:useBean id="user" class="com.jguru.Person"
scope="session">
<%
user.setDate (DateFormat.getDateInstance () . format (new Date())) ;
//etc..
%>

</jsp:useBean>

Any scriptlet (or < jsp:setProperty > tagswhich areexplained shortly) present within the
body of a< jsp:useBean > tagareexecuted only when the beanisinstantiated, and are used
to initialize the bean’s properties.

Once you have declared a JavaBean component, you have accessto its properties to customize
it. The value of a bean’s property is accessed using the < jsp:getProperty > tag. With
the< jsp:getProperty > tag, you specify the name of the bean to use (from theid field of
useBean), as Well as the name of the property whose value you are interested in. The actual
valueisthen directly printed to the output:

<jsp:getProperty name="user" property="name" />

Changing the property of a JavaBean component requiresyoutousethe< jsp:setProperty
> tag. For thistag, you identify the bean and property to modify and provide the new value:

<jsp:setProperty name="user" property="name"
value="jGuru" />

or

(€)2000 jGuru.com

18 Chapter 1. JavaServer Pages Fundamentals

<jsp:setProperty name="user" property="name"
value="<%=expression %>" />

When developing beans for processing form data, you can follow a common design pattern
by matching the names of the bean properties with the names of the form input elements. You
would a'so need to define the corresponding getter/setter methods for each property within the
bean. The advantage in thisisthat you can now direct the JSP engine to parse all the incoming
values from the HTML form elements that are part of the request object, then assign them to
their corresponding bean propertieswith a single statement, like this:

<jsp:setProperty name="user" property="*"/>

Thisruntime magic is possible through a process called introspection, which lets a class expose
its properties on request. The introspection is managed by the JSP engine, and implemented
through the Java reflection mechanism. This feature alone can be a lifesaver when processing
complex forms containing a significant number of input elements.

If the names of your bean properties do not match those of the form’sinput elements, they can
still be mapped explicitly to your property by naming the parameter as:

<jsp:setProperty name="user" property="address"
param="parameterName" />

Exercises

3. Understanding JSP object scope (page 27)
4. Form processing using JSP (page 31)

1.2.10.2. Forwarding Requests

With the < jsp:forward > tag, you can redirect the request to any JSP, servlet, or static
HTML page within the same context asthe invoking page. This effectively halts processing of
the current page at the point where the redirection occurs, although all processing up to that point
will still take place:

<jsp:forward page="somePage.jsp" />

The invoking page can also pass the target resource bean parameters by placing them into the
reguest, as shown in the diagram:

(€)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 19

E

ETE’S': JSP/Servlet ~ [TCreatelpdate
o | (bean)
2 3
% Call| Forwarding L
o H;:cess.-"ﬂp daie
>)
=]

Fesponze

5 4
4 — JSP/Servlet L‘

A < jsp:forward > tagmay also have jsp:param subelementsthat can provide valuesfor
some elementsin the request used in the forwarding:

<jsp:forward page="<%= somePage %>" >

<jsp:param name="namel" value="valuel" />
<jsp:param name="name2" value="value2" />

</jsp:forward>

Request Chaining

Reguest chainingisapowerful feature and can be used to effectively meld JSP pagesand servlets
in processing HTML forms, as shown in the following figure:

(€)2000 jGuru.com

20 Chapter 1. JavaServer Pages Fundamentals

@Eate hean via Tﬂac_ﬁ@ Use hean from request

Y e P L JSP — Servlet

- J5P

e Es_eén from request

Consider the following JSP page, say Beanl. jsp, which creates a named instance £Bean of
type FormBean, placesit in the request, and forwardsthe call to the serviet Jsp2servlet. Ob-
serve the way the bean isinstantiated — here we automatically call the bean’s setter methods for

propertieswhich match the namesof the posted form elements, while passing the corrosponding
valuesto the methods.

<jsp:useBean id="fBean" class="govi.FormBean"
scope="request"/>

<jsp:setProperty name="fBean" property="*" />

<jsp:forward page="/servlet/JSP2Servlet" />

The servlet gsp2servlet now extractsthe bean passed to it from the request, makes changes
using the appropriate setters, and forwards the call to another JSP page Bean2.jsp using a

request dispatcher. Note that this servlet, acting as a controller, can also place additional beans
if necessary, within the request.

public void doPost (HttpServletRequest request,
HttpServletResponse response) {
try {
FormBean f = (FormBean) request.getAttribute ("fBean");
f .setName ("Mogambo") ;
// do whatever else necessary
getServletConfig() .getServletContext () .
getRequestDispatcher ("/jsp/Bean2.jsp") .
forward (request, response) ;

(€)2000 jGuru.com

1.2. JavaServer Pages Fundamentals 21

} catch (Exception ex) {
}
}

The JSP page Bean2 . j sp can now extract the bean £Bean (and whatever other beansthat may
have been passed by the controller servlet) from the request and extract its properties.

<html>

<body>
<jsp:useBean id="fBean" class="govi.FormBean"

scope="request"/>
<jsp:getProperty name="fBean" property="name" />

</body>
</html>

1.2.10.3. Including Requests

The< jsp:include > tagcanbeusedtoredirect therequest toany static or dynamicresource
that isin the same context as the calling JSP page. The calling page can also pass the target
resource bean parametersby placing them into the request, as shown in the diagram:

1
2
Fequest
JSP/Servlet [T€ I?_ffemp date
% Fesponze B @
O 3 Include request :
- AccessTpdate
m K
& 4
JSP/Servlet

For example:

<jsp:include page="shoppingcart.jsp" flush="true"/>

(€)2000 jGuru.com

22 Chapter 1. JavaServer Pages Fundamentals

not only allows shoppingcart.jsp to access any beans placed within the request using a <
jsp:useBean > tag, but the dynamic content produced by it isinserted into the calling page at
the point wherethe< jsp:include > tagoccurs. Theincluded resource however cannot set
any HT TP headers, which precludesit from doing thingslike setting cookies, or elsean exception
will be thrown.

1.3. Resources

1.3.1. Web Sites

The following sites have product information aswell as whitepapers on JSP and Servlets:

e Sun Microsystems, JSP Home Page (http://java.sun.com/products/jsp/)

e JSP-INTEREST Mailing List Archive (http://archives.java.sun.com/archives/jsp-in-
terest.html)

e jGuru'sJSP FAQ (http://www.jguru.com/jguru/fag/fagpage.jsp?name=JSP)
e jGuru’'s Servlets FAQ (http://www.jguru.com/jguru/fag/fagpage.jsp?name=Servlets)

1.3.2. Documentation and Specs

The Java Technology (http://java.sun.com) site at Sun Microsystems includes a Products and
APIs (http://java.sun.com/products/) page which lists enterprise-related products and APIs.
Severa of the onesrelevant to JSP arelisted here:

e JSP 1.1 Specification (http://java.sun.com/products/jsp/download.html)

e Sun Microsystems, Inc. Java 2 Enterprise Edition (J2EE) Home page (http://
java.sun.com/j2eef)

e The Tomcat Project (http://java.sun.com/products/jsp/tomcat/)

e JSP Technical Resources (http://java.sun.com/products/jsp/technical .html)
e Java Servlet API (http://java.sun.com/products/serviet/)

o JSP Whitepaper (http://java.sun.com/products/jsp/whitepaper.html)

e JSP Syntax Card (http://java.sun.com/products/jsp/syntax.html)

1.3.3. Articles

Some articleson JSP computing include:

e Advanced Form Processing using JSP (http://www.javaworld.com/javaworld/jw-

(€)2000 jGuru.com

1.3. Resources 23

03-2000/jw-0331-sg/-forms.html) by Govind Seshadri (JavawWorld, March 2000)

o JSP Architectures(http://www.brainopolis.com/jsp/book/jspBook_Architectures.html)
by Lance Lavandowska, brainopolis.com

o Java servesthe Web (http://builder.cnet.com/Programming/JSP/) by John Zukowski
(Builder.com, February 2000)

¢ Internationalize JSP-based Websites (http://www.javaworld.com/javaworld/jw-
03-2000/jw-03-sg-jsp.html) by Govind Seshadri (JavaWorld, February 2000)

e The Problemswith JSP (http://www.servlets.com/soapbox/problems-jsp.html) by
Jason Hunter (Servlets.com, January, 2000)

e Understanding JSP Model 2 Architecture (http://www.javaworld.com/javaworld/
jw-12-1999/jw-12-s5-jspmvc.html) by Govind Seshadri (Javaworld, December 1999)

e JSPfor the ASP Developer (http://www.A SPToday.com/articles/19991022.htm) by
Cindy Nordahl (ASP Today, October 1999)

(€)2000 jGuru.com

Chapter 2. JavaServer Pages Fundamentals
. Exercises

Welcometo the jGuru exercisesfor the JavaServer Pages Fundamentals course module.

These exercisesdemonstrate how to use Tomcat — the JSP 1.1 Reference | mplementation, aswell
as how to design, implement, and deploy JSPs.

When you finish these exercises, you will know the basic steps for designing, compiling, and
deploying JSP web components.

(€)2000 jGuru.com

2.1. Magercise: Installing and Configuring Tomcat

2.1. Magercise: Installingand Configuring Tomcat

This exercise steps you through the process of downloading and installing
Tomcat — the JSP 1.1 Reference Implemetation (RI), on your machine.
Tomcat comprisesof asimple HTTP server aswell asa Web container that
can run JSP pagesand servlets. Tomcat supportsthe Servlet 2.2 and JISP 1.1
specifications. We will use thisserver for the subsequent exercises.

Educational goal(s):

e Install Tomcat

¢ Configure your machine properly for compiling and deploy-
ing JSPs

Prerequisites

None

Solution Thereisno solutiontothisexercise. When thetasksinthisexercise
have been completed, Tomcat will beinstalled, running, and availablefor the
subsequent exercises.

I ntroduction

This exercise steps you through the process of downloading and installing
Tomcat — the JSP 1.1 Reference Implementation (RI) on your machine. The
exercisesare specificto Tomcat - if you wish to useadifferent server for the
remainder of these exercises, you should ensurethat it isJSP 1.1 compliant
and install it now.

Perform the following tasks:

1. Check your system requirementsto make sure you have an adequate
hardware and software platform for installing and running Tomcat.

2. Download the appropriate version of Tomcat 3.1 from the Apache

(©)2000 jGuru.com

26 Chapter 2. JavaServer Pages Fundamentals: Exercises

website (http://jakarta.apache.org/downl oads/binindex.html) .
Uncompressthefile.

4. Settheenvironmentvariable JAVA HOME to point totheroot directory
of your JDK hierarchy. Be sure the Java interpreter isin your PATH
environment variable.

5. Changetothebin directory and start Tomcat using the command-line
command startup.

6. Tomcat is now installed and running on port 8080 by default. Ex-
plorethe Tomcat documentationwithin the documentation site (http://
java.sun.com/products/jsp/tomcat/) to familiarize yourself more with
Tomcat.

(€)2000 jGuru.com

2.1. Magercise: Installing and Configuring Tomcat

2.2. Magercise: Understanding JSP object scope

In thisexercise you will observe the behavior of a Counter bean when used
within a JSP page with different scope attributes.

Educational goal(s):

e Understand the importance of the scope attribute when instantiat-
ing beansusing the useBean tag.

e Examinethe difference between session and application
scope.

Prerequisites

Installing and Configuring Tomcat (page 25)

Skeleton Files

e Counter.jsp
¢ CounterBean.java

Solution The following files contain a complete implementation of the
example demonstrating JSP variable scope:

¢ Solution/Counter.jsp

e Solution/com/jguru/CounterBean.java

I ntroduction

This exercise implements a simple JSP page (Counter. jsp), which in-
stantiates two instances of a bean which maintains a counter (Counter-
Bean.java), but with differing scope. One of the beansis attributed with
session scope, and the other with application scope. Each timethe JSP page
in invoked, the count of each of the beansisincremented by one. You can

(€)2000 jGuru.com

28 Chapter 2. JavaServer Pages Fundamentals: Exercises

observe the difference between session and application scope when you ac-
cess the counter page from different browsers. You will notice that each
browser maintains a distinct count for their session, but share the counter
with application scope, sinceit istreated asa global variable.

Perform thefollowing tasks:

Develop asimple counter bean, CounterBean. java.
Compilethe counter bean.

Deploy the bean within Tomcat.

A 0D P

Develop a JSP page, Counter. jsp, which creates two instances of
the counter bean, one with session scope, and the other with applica-
tion scope.

5. Deploy the JSP file for the example within Tomcat.

Run the example.

(€)2000 jGuru.com

2.2. Magercise: Understanding JSP object scope

2.3. Magercise: Exception Handlingin JSP

In this exercise you will learn how to redirect runtime exceptions occuring
within a JSP page to an error handling page.

Educational goal(s):

¢ Learnhow to handle runtime exceptionsoccuring within JSP pages
by automatically forwarding them to an "error handler” page

¢ Understand how exceptions can be accessed from within a JSP
"error handler" page

Prerequisites

Installing and Configuring Tomcat (page 25)

Skeleton Files
e errhandler.jsp

e errorpage.jsp

Solution The following files contain a complete implementation of the JSP
error handling example:

e Solution/errhandler.jsp
e Solution/errorpage.jsp

I ntroduction

ThisexerciseimplementsaJSP page (errhandler. jsp), which processes
aPOST operation and throws an exception in case of an "incorrect” answer.
You will see how these exceptions can be automatically forwarded by the
JSP engine to an "error handler”. You also develop an error processing JSP
page (errorpage.jsp), Which receives the exception by means of the

(€)2000 jGuru.com

29

30

Chapter 2. JavaServer Pages Fundamentals: Exercises

exception implicit variable.

Perform the following tasks:

1

Design a JSP page caled errhandler.jsp that can process a
POST operation.

Indicatean error page, errorpage . j sp, usingthepage directivefor
the JSP page.

Process the posted form elements. Throw an exception if the value
posted for the input element is not equal to an expected value, else
print an acknowledgement back to the user.

Develop an error page, errorpage.jsp, Which can access the
runtime exception.

Deploy the JSP filesfor the example within Tomcat.

Run the error handling example.

(C)2000 jGuru.com

2.3. Magercise: Exception Handling in JSP

2.4. Magercise: Form processing using JSP

In thisexercise you will learn how to processHTML formsusing JSPs, and
understand the introspective features provided by the JSP engine.

Educational goal(s):

e Understand the ease with which HTML forms can be processed
using JSP pages.

¢ Understand the role played by beansin streamling form pro-
cessing.

Prerequisites

Installing and Configuring Tomcat (page 25)

Skeleton Files

e FormBean.java

e form.jsp

Solution
The following Java source files represent a solution to thisMagercise:

¢ Solution/com/jguru/FormBean.java

e Solution/form.jsp

I ntroduction

In this exercise, you will develop a ssmple JSP page (form. jsp), which
is capable of processing an HTML form containing typical input elements
like textboxes, radio buttons and checkboxes. You will also develop a bean
(FormBean. java), whose property names mirror the input elements of

(€)2000 jGuru.com

31

32 Chapter 2. JavaServer Pages Fundamentals: Exercises

the form. You will then examine the automatic instantiation of the bean
on aform POST operation, using the introspective features provided by the
JSP engine.

Perform the following tasks:

1. You are given the JSP page containing the form. Observe that the
form poststoitself recursively. Instantiate the bean FormBean when
you recognizethat aPOST operation hastaken place. Allow the setter
methods to be called on the bean using introspection.

2. Deploy the JSP page within Tomcat.

3. Develop the bean, FormBean. java with properties matching the
form elements.

4. Compilethe bean source FormBean. java.
Deploy the bean within Tomcat.

6. Runtheexample.

(©)2000 jGuru.com

2.4. Magercise: Form processing using JSP

(©)2000 jGuru.com

33

Appendix A

About jGuru Exercises

A jGuru exercise is a flexible exercise designed to provide help according to the needs of the
student. For example, some students will simply complete the exercise given the information
and thetask list in the exercise body; some students may want afew hintswhile others may want
a step-by-step guide to successfully complete a particular exercise. Students may use as much
or aslittle help asthey need per exercise. Moreover, since complete solutionsare aso provided,
students can skip a few exercises and still be able to complete future exercises requiring the
skipped ones.

The Anatomy of An Exercise

Each exercise has a list of any prerequisite exercises, a list of skeleton code for you to start
with, links to necessary APl pages, and a text description of the exercise goal. In addition, the
following information is available via five buttons:

o Expected behavior: Launchesan applet illustrating the desired behavior from
your applet.

e Tableof contents Bringsup thetable of contentsfor the course notesand the list
of exercises.

e Help: Givesyou help or hintson the current exercise (an annotated solution).
e Solution: The< applet > tagand Javasourceresulting in the expected behavior.

e API Documentation: A link directly to the online APl documentation.

Exercise Design Goals

There are three fundamental exercise types:

" Blank screen”
The programmer isconfronted with a"blank screen”; i.e., the programmer createsthe
entire desired functionality.

Extension
The programmer extends the functionality of an existing, correctly-working
program.

(€)2000 jGuru.com

35

Repair
The programmer repairs undesirable behavior in an existing program.

Where possible, the programmer shall be relieved from chores that are irrelevant or
unrelated to thetechniqueor concept under examination.

Where reasonable, a common thread shall run through the exercisesfor each lab section.

Given the constraints of the technique or concept under examination, the exercises shall be

made asinteresting or useful aspossiblewithout presenting an overly-complex programming
problem to the student.

Exercisesshall execute via theweb unlessa particular concept related to non-web executionis
required or the browser does not support the capabilitiesyet.

In addition, exercises that must access Java features or library elements causing web security
violations are not executed on the web.

(C)2000 jGuru.com

