
©1996-2000 jGuru.com

Developing Dynamic Web Sites
with JavaServer Pages

John Zukowski
jGuru.com

2

Agenda

• Introduction
• Architecture
• Syntax
• Usage
• Q&A

3

Who is in Attendance?

• Background Check
– System/Web Administrator?
– Page Designers?
– Programmer? VB/C/C++? Perl? ASP?
– Java 1.0/1.1/1.2/1.3/2?
– Read Java Books/Magazine Articles?

4

JavaServer Pages

5

Understanding Dynamic Content

• A typical web page consists of static
(template) and dynamic (personalized)
content

• Static elements include images,
navigational elements, descriptive text, etc.

• Dynamic content varies based on user
• Page layout is usually handled via a markup

language like HTML or DHTML

6

Servlets Are Great, But...

• Servlet technology is more suited for
developers, not designers

• Servlets cannot be developed using HTML
editors

• Minor changes in HTML UI needs
recompilation of servlet

• Tight coupling of presentation and content
leads to brittle, inflexible applications

7

Server-side Scripting

• Attempts to separate presentation from content
• Composite page consists of static presentation

templates with ‘scripts’ and special tags
responsible for extracting and inserting dynamic
content

• Composite page is fully processed on the server
before a response is sent to the client

• Popular server-side scripting technologies include
JavaServer Pages (JSP) and Active Server Pages
(ASP)

8

JSP vs. ASP

• Available for multiple
platforms

• JavaBeans component
model

• Supports Java for
scripting

• Works with the Java
security model

• Fully supported only on
Win32

• COM-based
component model

• Supports VBScript and
JScript scripting

• Uses Windows NT
security

9

Understanding JSP

• Integral part of Java 2 Enterprise Edition
• Write Once Run Anywhere
• JSP is a standard extension defined on top

of the servlet extension
• Recommended web access layer for N-tier

architecture
• Enables a clean partition between static and

dynamic content

10

Understanding JSP

• Emphasizes reusable components like
JavaBeans, EJB, and custom tags

• Dynamic content generated by JSP can be
HTML, DHTML, XHTML, XML, etc.

• JSP (*.jsp) files include snippets of Java
code within static HTML files

• JSP 1.1 and Servlet 2.2 API can be used
with JDK 1.1 or Java 2

11

Anatomy of a JSP Page

<html>
<head> <title>Order Information </title></head>
<body>

<%@ page import=“com.foo.*” buffer=“16k” %>

<jsp:useBean id=cust class=Customer scope=session>

<jsp:setProperty name=cust property=itemNumber param=“item”>

</jsp:useBean>

<% if (cust.powerShopper()) {
out.println(“Shipping is free! Thanks for your order.”);

} else {
out.println(“Thank you. We appreciate your business.”);

}
%>
</body>
</html>

template

action

directive

scripting element

12

<HTML>
<BODY> <H1>
<% name=request.getParameter(“name”);

if (name == null) {
out.println(“Hello World”);

} else {
out.println(“Hello “+name);

}
%>
</H1> </BODY>
</HTML>

.jsp file

servlet
servlet engine

JavaServer Pages Visual

web
server

request

response

Page compilation

13

Page Compilation

• JSP engine creates an implementation class
file for each page

• Page implementation class implements the
HttpJspPage interface if protocol is HTTP

• Many details of the translation phase are
implementation dependent

• Fatal translation error results in client
receiving “Status code 500”

14

jspInit()

_jspService()

jspDestroy()

init event

request
response

destroy event

JSP Page

Request Processing Phase

15

B
R

O
W

SER

JSP

JavaBean

Request

Response

Enterprise Servers/
Data Sources

1

4

Application Server

2

3

Basic JSP Architecture - Model 1

16

(Controller)
Servlet

(View)
JSP

(Model)
JavaBean

Request

Response

Enterprise Servers/
Data Sources

MVC Design Pattern

1

23
instantiate

4

5

Application Server

B
R

O
W

SER

Basic JSP Architecture - Model 2

17

JavaBean
Request

Response
DB

JDBC

JSP Engine

B
R

O
W

SER

JSP

2-tier JSP Architecture

18

JSP

JavaBean

Request

Response

RMI/
IIOP EJB Server

JSP Engine

B
R

O
W

SER

N-tier JSP Architecture

19

Implicit JSP Objects
• request - represents HttpServletRequest triggering

service invocation
– Request scope

• response - represents HttpServletResponse to
request
– Not used often by page authors
– Page scope

• pagecontext - encapsulates implementation-
dependent features as PageContext
– Page scope

20

Implicit JSP Objects/2

• application - represents the ServletContext
obtained from servlet configuration object
– Application scope

• out - represents a JspWriter object that
writes into the output stream
– Page scope.

• config - represents the ServletConfig for the
JSP
– Page scope

21

Implicit JSP Objects/3

• page - synonym for the “this” operator,
HttpJspPage
– Not used often by page authors
– Page scope

• exception - the uncaught Throwable object
that resulted in the error page being invoked
– Page scope

22

JSP Object Scopes

• page - reference is discarded upon
completion of the current request by the
page body

• request - reference is released upon
completing the client request. Named object
can be obtained from the ServletRequest
using getAttribute(name).

23

JSP Object Scopes/2

• session - references are stored in the
session object and are released when
session is invalidated

• application - references are released when
runtime reclaims SessionContext
– Pages need not be session aware

24

JSP Standard Directives

• Directives are messages to the JSP engine
• Directive have scope of the entire JSP file
• They do not produce any output into the

current out stream
• Directive Syntax

<%@ directive {attr="value"}* %>

25

include Directive

• Useful for including static resources
• Inclusion performed during translation

phase
• Syntax

<%@ include file="relativeURL" %>

• Example
<%@ include file="header.html" %>

26

page Directive

• A translation unit can contain any number of
page directives

• The attribute/value pair must be unique for
each translation unit

• Unrecognized attributes or values result in a
translation error

27

page Directive Syntax
<%@ page page_directive_attr_list %>

page_directive_attr_list ::=
{ language = "scriptingLanguage"}

{ extends = "className"}

{ import = "importList"}

{ session = "true|false"}

{ buffer = "none| sizekb"}

{ autoFlush = "true| false"}

{ isThreadSafe= "true|false"}

{ info = "info_text"}

{ errorPage = "error_url"}

{ isErrorPage = "true|false"}

{ contentType = "ctinfo"}

• Examples
<%@ page info="hello world jsp example" %>

<%@ page import="com.foo.*" buffer="16k" %>

28

JSP Exception Handling

• For translation errors, the browser is returned
status code 500 indicating server error

• Uncaught exceptions during request processing
may be automatically forwarded to an errorPage
URL

• Throwable object describing the exception may be
accessed within the error page via the exception
implicit object

• Example
<%@ page isErrorPage="false" errorPage="/errors.jsp" %>

29

Synchronization Issues

• JSP authors must ensure synchronized
access to shared page state

• To have page implement
SingleThreadModel set directive:
<%@ page isThreadSafe="false" %>

• Access to shared objects within HttpSession
or ServletContext must always be
synchronized

30

Scripting Elements: Comments

• JSP-style comments document what the
page is doing

<%-- this does not appear at the client --%>

• You can also use comment mechanism of
the scripting language

<% /** this is a comment **/ %>

• Comments can also be made to appear
within generated content sent to client

<!-- this comment is visible at the client -->

31

Scripting Elements: Declarations

• Used for defining variables and methods
• Are initialized during the translation phase
• Syntax

<%! declaration(s) %>

• Examples
<%! int foo=10, bar=20; %>
<%! public void jspInit() {

. . .
}

%>
<%! public void jspDestroy() {

. . .
}

%>

32

Scripting Elements: Scriptlets

• Scriptlets contain valid code fragments that
are executed during the request phase
– Can modify any visible object
– May send output to the out stream

• Syntax
<% scriptlet %>

33

Scriptlet Example
<%

Date d = new Date();

DateFormat df = DateFormat.getDateInstance();

out.println("Today is " +df.format(d));

%>

34

Scripting Elements: Expressions

• An expression is evaluated, the result
converted to a String and then sent to the
response stream
– Expressions are evaluated during the translation

phase
• Syntax

<%= this is an expression %>

• Example
<%= java.text.DateFormat.getDateInstance().format(

new java.util.Date())
%>

35

Standard Actions

• Actions usually depend on the details of the
specific request object received by JSP
page

• May affect the current out stream
• May read, create, or modify visible objects
• Action syntax is based on XML
• Most attributes for JSP 1.1 actions have

translation time semantics

36

JSP and JavaBeans

• A JSP page can access a JavaBean
component using the <jsp:useBean> action

• Syntax
<jsp:useBean id="name"

scope="page|request|session|application" typeSpec
/>

– typeSpec ::= class="className" | class="className"
type="typeName" | beanName="beanName"
type="typeName" | type="typeName"
beanName="beanName" | type="typeName"

37

JSP and JavaBeans Body

• If the action has a body, it is of the form:
<jsp:useBean id="name"

scope="page|request|session|application" typeSpec>

body

</jsp:useBean>

• The body is invoked after bean created
• Body usually contains scriptlets or

<jsp:setProperty> tags to initialize newly
created bean

38

JSP and JavaBeans Examples

• A reference named “connection” to a bean
of type “com.foo.db.Connection” is obtained.
If the bean was not previously created, it is
newly instantiated
<jsp:useBean id="connection"

class="com.foo.db.Connection" />

• If bean instantiated, Timeout property is set
to 1800
<jsp:useBean id="connection"

class="com.foo.db.Connection" >

<% connection.setTimeout(1800); %>

</jsp:useBean>

39

Setting Properties

• The <jsp:setProperty> action sets the
values of properties in a bean.

• Syntax
<jsp:setProperty name=" beanName" prop_expr />

– prop_expr ::= property="*" |

property="propertyName" |

property="propertyName" param="parameterName" |

property="propertyName" value="propertyValue"

– propertyValue ::= string

– propertyValue ::= expr_scriptlet

40

Setting Properties/2

• Examples
<jsp:setProperty name="order" property="*" />

<jsp:setProperty name="user" property="user"
param="username" />

<jsp:setProperty name="res" property="row"
value="<%= i+1 %>" />

41

Getting Properties

• The <jsp:getProperty> action gets the values
of properties in a bean

• Places the value of the bean instance
property into the implicit out object

• Bean must been previously defined
• Syntax

<jsp:getProperty name="name"
property="propertyName" />

42

Forwarding Requests

JSPRequest

Response
JSP/Servlet

Call Forwarding

B
R

O
W

SER

43

Forwarding Requests

• Requests can be redirected based on client
properties or user profile info to a static
page, JSP, or servlet

• If page is buffered, then buffer is cleared
prior to forwarding

• Syntax
<jsp:forward page="relativeURL" />

• Example
<% String someURL="/jsp/resource.html" %>
<jsp:forward page='<%=someURL %>' />

44

Including Requests

JSPRequest

Response
JSP/Servlet

B
R

O
W

SER

include

45

Including Requests

• Included contents may be static or be
dynamically generated by servlet or JSP

• Processed during the request handling
phase

• Included resource cannot set headers
• Syntax

<jsp:include page="relativeURL" flush="true"/>

• Example
<jsp:include page="/examples/jsp/copyright.jsp"

flush="true"/>

46

JSP Complete Example

47

JSP Example Results

48

JSP Example Source
<html>
<head><title>JSP Example</title></head>
<body>
<p>Welcome:
<%= request.getParameter("name") %>
</p>
<p>You flew in on:
<%= request.getParameter("airline") %>
</p>
<p>You've played pool at:</p>
<%! String poolhall[]; %>
<%
poolhall=request.getParameterValues("poolhall");

if (poolhall != null) {
%>

49

JSP Example Source/2

<%

for (int i=0, n=poolhall.length; i<n; i++) {
%>
<%= poolhall[i] %>
<%

}
%>

<%

} else {
%>
<p>Nowhere</p>
<%

}
%>
</p></body></html>

50

Installing Tomcat with Apache

• Key things:
– Add to <ApacheInstallDir>/Apache

Group/Apache/conf/httpd.conf
• Include "<TomcatInstallDir>/conf/tomcat.conf"

– Uncomment lines in <TomcatInstallDir>/conf/tomcat.conf
• LoadModule jserv_module modules/ApacheModuleJServ.dll
• ApJServDefaultHost localhost

– Be sure you have ApacheModuleJServ.dll
• See http://www.jguru.com/jguru/faq/view.jsp?EID=56994

51

JSP Summary

• JSP technology is an excellent cross-
platform method of generating dynamic
content

• JSPs effectively separate presentation
from content by emphasizing reusable
components

• Expect to see more JSP-aware
WYSIWYG editors in the near future
(HomeSite now)

52

Resources

• Servlets FAQ
– http://www.jguru.com/faq/Servlets

• Servlets Home
– http://java.sun.com/products/servlet/

• JSP FAQ
– http://www.jguru.com/faq/JSP

• JSP Home
– http://java.sun.com/products/jsp

• Tomcat (Reference Implementation)
– http://jakarta.apache.org

53

More Resources

• JDC JSP Tutorial
– http://developer.java.sun.com/developer/onlineTrai

ning/
• JSP-Interest Mailing List

– http://archives.java.sun.com/archives/jsp-
interest.html

• JRun
– http://www.allaire.com/products/jrun/

54

JSP Books

• October JavaWorld Issue has
comprehensive review of JSP books
– Best: Web Development with JavaServer Pages

(Manning)
– Good but short: Pure JSP (Sams)
– Servlets and JSP mix: Core Servlets and

JavaServer Pages (Prentice Hall)
– Honorable Mention: Professional JSP (Wrox)

• I’m one of 21 authors of book.
[Too many voices/styles in book]

55

Questions

?

56

Contact Information

• John - jaz@jguru.com
– http://www.jguru.com
– http://java.about.com

