
PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Apache™ FOP Development: Coding
Conventions

Version 1298724

Table of contents

1 Subversion Repository... 2

2 Java... 2

 2.1 Java Style..2

 2.2 Checkstyle...3

 2.3 Java Best Practices... 4

 2.4 Resources.. 4

 2.5 Related Links.. 4

3 XML... 4

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP Development: Coding Conventions

Page 2/4PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Acknowledgement: Some content in this guide was adapted from other Apache™ projects such as Avalon,
Cactus, Turbine and Velocity.

1 Subversion Repository

Conventions in this section apply to Repository content, regardless of type:

• Files checked in must conform to the code conventions for that type of file (java files must conform
to java requirements, xml to xml requirements, etc.). If a submitted patch does not conform, it is
the responsibility of the committer to bring it into conformance before checking it in. Developers
submitting patches are encouraged to follow the code conventions to reduce the work load on the
committers.

• To reduce the amount of spurious deltas, all text (non-binary) files checked into SVN must have
Unix-style line endings (LF only). Many IDEs and editors (even on non-Unix platforms) have
settings that can facilitate this convention.

• In order to be able to discern commits from a committer from those where a committer applied a
patch from a contributor, the commit message must contain a separate line following this pattern:
"Submitted by: [contributor's name] <[contributor's obfuscated e-mail address]>". This also
helps doing audits on the repository.

2 Java

2.1 Java Style

In order to facilitate the human reading of FOP source code, reduce churning in code, and prevent disputes,
the FOP developers have agreed on a set of coding conventions. The basis of these coding conventions is
documented in the Apache XML Project Guidelines, which requires that all Java Language source code
in the repository must be written in conformance to Sun's Code Conventions for the Java Programming
Language. In addition, the FOP developers have agreed to other conventions, which are summarized in
the following table:

Convention Rationale Enforced By

Every Java source file starts with the
Apache licence header.

Required by Apache. checkstyle

No tabs in content. Programmers should not have to adjust
the tab settings in their editor to be able
to read the source code.

checkstyle

Indentation of 4 spaces per level. Maximize readability. Not enforced

Comments, identifiers, and project
documentation must be in English.
In general, other languages must
not be used, except in translated
documentation and language-specific
i10n files.

To avoid the need for everyone to learn
all languages, English has become the
standard language for many technology
projects, and is the only human language
that all FOP developers are expected to
know.

Not enforced

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://xml.apache.org/source.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

Apache™ FOP Development: Coding Conventions

Page 3/4PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Convention Rationale Enforced By

American English spelling should be
used. Alternative spelling and idioms
are tolerated, but may be changed by
anyone to American.

Some standard is useful, and American
English is widely used and accepted for
technology standards and projects.

Not enforced.

Fully qualify all import statements (no
"import java.util.*")

Clarity checkstyle

No underscores in variable names
except for static finals.

Upper/lower case distinctions can be
made in all other variable names,
eliminating the need for artificial word
boundaries.

checkstyle

Opening brace for a block should be on
the same line as its control statement (if,
while, etc.).

Standardization, general preference. checkstyle

Write appropriate javadoc entries for all
public and protected classes, methods,
and variables.

Basic API documentation is needed. checkstyle

By ASF policy, @author tags are
officially discouraged. However it is
permissible to indicate the original
author(s) of an entire file or package
in a comment provided it follows the
copyright and license header.

Attribution of subsequent contributions
are recorded by the SVN commit history
logs, so should not be included.

checkstyle

For developers that dislike these conventions, one workaround is to develop using their own style, then
use a formatting tool like astyle (Artistic Style) before committing.

2.2 Checkstyle

The java syntax checker "Checkstyle" is used to enforce many of the FOP coding standards. The
standards enforced through Checkstyle are documented in its configuration file (xml-fop/checkstyle.cfg).
The conventions defined in the configuration file are an integral part of FOP's coding conventions, and
should not be changed without common consent. In other words, the configuration file contains additional
conventions that are not documented on this page, but are generally accepted as good style within the java
community (i.e. they are the default behavior of checkstyle, which the FOP developers have decided to
adopt de facto). Any apparent contradiction between the configuration file and this document should be
raised on the fop-dev mailing list so that it can be clarified.

To use the "checkstyle" target in FOP's build process, download the source from the Checkstyle
web site, place checkstyle-all-*.jar in the lib directory and call "build checkstyle". Output (in the
build directory) includes checkstyle_report.txt and checkstyle_report.xml. If you copy the file contrib/
checkstyle-noframes.xsl from Checkstyle into FOP's root directory, you will also get an HTML report.

Checkstyle is probably most useful when integrated into your IDE. See the Checkstyle web site for more
information about IDE plugins.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://mail-archives.apache.org/mod_mbox/jakarta-jmeter-dev/200402.mbox/%3C4039F65E.7020406@atg.com%3E
http://astyle.sourceforge.net/
http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net

Apache™ FOP Development: Coding Conventions

Page 4/4PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

2.3 Java Best Practices

The following general principles are a distillation of best practice expectations on the FOP project.

• Apply common sense when coding. When coding keep in mind that others will read your code and
have to understand it.

• Readability comes before performance, at least initially.
• If you can refactor some code to make it more understandable, please do so.
• Properly document code, especially where it's important.
• Use interfaces instead of implementations where possible. This favors a clearer design and makes

switching between implementations easier (Examples: List instead of ArrayList/Vector, Map instead
of HashMap/Hashtable).

• Avoid using exceptions for flow control.
• Try to catch exceptions as much as possible and rethrow higher level exceptions (meaning hiding the

low level detailed and putting a message that is more related to the function of your code).
• It is important not to lose the stack trace which contains important information. Use chained

exception for that. Avalon Framework provides CascadingException (and similar) for this.
Exception class names and stack traces must be treated like gold. Do whatever is required so that this
information is not lost. Printing error messages to System.err or System.out is useless in a server-
side environment where this info is usually lost.

• Always log the exception at the higher level (i.e. where it is handled and not rethrown).
• Try to avoid catching Throwable or Exception and catch specific exceptions instead.

2.4 Resources

• [book on code style] Code Complete by Steve McConnell.
• [code formatting software] JRefactory.

2.5 Related Links

• Apache XML Graphics Code Repositories
• Jakarta Code Conventions and Standards (see Coding Conventions and Standards section)

3 XML

Convention Rationale Enforced By

XML files must always be well-formed.
Validation is optional.

Document integrity Not enforced

No tabs in content. Users should not have to adjust tab
settings in their editor to be able to read
the content.

Not enforced

Indentation of 2 spaces per level Maximize readability Not enforced

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://jakarta.apache.org/avalon/api/org/apache/avalon/framework/CascadingException.htm
http://jrefactory.sourceforge.net
http://xmlgraphics.apache.org/repo.html
http://jakarta.apache.org/site/faqs.html#Coding%20Conventions%20and%20Standards

	Table of contents
	1 Subversion Repository
	2 Java
	2.1 Java Style
	2.2 Checkstyle
	2.3 Java Best Practices
	2.4 Resources
	2.5 Related Links

	3 XML

