
PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Running Apache™ FOP

Version 1298724

Table of contents

1 System Requirements...2

2 Installation.. 2

 2.1 Instructions..2

 2.2 Problems..2

3 Starting FOP as a Standalone Application.. 2

 3.1 Using the fop script or batch file... 2

 3.2 Writing your own script... 4

 3.3 Running with java's -jar option.. 4

 3.4 FOP's dynamical classpath construction...4

4 Using Xalan to Check XSL-FO Input... 5

5 Memory Usage... 5

6 Problems... 6

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Running Apache™ FOP

Page 2/6PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

1 System Requirements

The following software must be installed:

• Java 1.4.x or later Runtime Environment.
• Many JREs >=1.4 contain older JAXP implementations (which often contain bugs). It's usually a

good idea to replace them with a current implementation.
• Apache™ FOP. The FOP distribution includes all libraries that you will need to run a basic FOP

installation. These can be found in the [fop-root]/lib directory. These libraries include the following:
• Apache XML Graphics Commons, an shared library for Batik and FOP.
• Apache Batik, an SVG library.
• Apache Commons Logging, a logger abstraction kit.
• Apache Commons IO, a library with I/O utilities.
• Apache Excalibur/Avalon Framework, for XML configuration handling.

The following software is optional, depending on your needs:

• Graphics libraries. Generally, FOP contains direct support for the most important bitmap image
formats (including PNG, JPEG and GIF). See FOP: Graphics Formats for details.

• PDF encryption. See FOP: PDF Encryption for details.

In addition, the following system requirements apply:

• If you will be using FOP to process SVG, you must do so in a graphical environment. See FOP:
Graphics (Batik) for details.

2 Installation

2.1 Instructions

Basic FOP installation consists of first unzipping the .gz file that is the distribution medium, then
unarchiving the resulting .tar file in a directory/folder that is convenient on your system. Please consult
your operating system documentation or Zip application software documentation for instructions specific
to your site.

2.2 Problems

Some Mac OSX users have experienced filename truncation problems using Stuffit to unzip and unarchive
their distribution media. This is a legacy of older Mac operating systems, which had a 31-character
pathname limit. Several Mac OSX users have recommended that Mac OSX users use the shell command
tar -xzf instead.

3 Starting FOP as a Standalone Application

3.1 Using the fop script or batch file

The usual and recommended practice for starting FOP from the command line is to run the batch file
fop.bat (Windows) or the shell script fop (Unix/Linux). These scripts require that the environment variable
JAVA_HOME be set to a path pointing to the appropriate Java installation on your system. Macintosh

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
../download.html
http://xmlgraphics.apache.org/commons/
http://xmlgraphics.apache.org/batik/
http://commons.apache.org/logging/
http://commons.apache.org/io/
http://excalibur.apache.org/framework/
graphics.html
pdfencryption.html
graphics.html#batik
graphics.html#batik

Running Apache™ FOP

Page 3/6PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

OSX includes a Java environment as part of its distribution. We are told by Mac OSX users that the path
to use in this case is /Library/Java/Home. Caveat: We suspect that, as Apple releases new Java
environments and as FOP upgrades the minimum Java requirements, the two will inevitably not match on
some systems. Please see Java on Mac OSX FAQ for information as it becomes available.

USAGE
Fop [options] [-fo|-xml] infile [-xsl file] [-awt|-pdf|-mif|-rtf|-tiff|-png|-pcl|-ps|-txt|-at [mime]|-
print] <outfile>
 [OPTIONS]
 -version print FOP version and exit
 -d debug mode
 -x dump configuration settings
 -q quiet mode
 -c cfg.xml use additional configuration file cfg.xml
 -l lang the language to use for user information
 -r relaxed/less strict validation (where available)
 -dpi xxx target resolution in dots per inch (dpi) where xxx is a number
 -s for area tree XML, down to block areas only
 -v run in verbose mode (currently simply print FOP version and continue)

 -o [password] PDF file will be encrypted with option owner password
 -u [password] PDF file will be encrypted with option user password
 -noprint PDF file will be encrypted without printing permission
 -nocopy PDF file will be encrypted without copy content permission
 -noedit PDF file will be encrypted without edit content permission
 -noannotations PDF file will be encrypted without edit annotation permission
 -a enables accessibility features (Tagged PDF etc., default off)
 -pdfprofile prof PDF file will be generated with the specified profile
 (Examples for prof: PDF/A-1b or PDF/X-3:2003)

 -conserve Enable memory-conservation policy (trades memory-consumption for disk I/O)
 (Note: currently only influences whether the area tree is serialized.)

 [INPUT]
 infile xsl:fo input file (the same as the next)
 (use '-' for infile to pipe input from stdin)
 -fo infile xsl:fo input file
 -xml infile xml input file, must be used together with -xsl
 -atin infile area tree input file
 -ifin infile intermediate format input file
 -imagein infile image input file (piping through stdin not supported)
 -xsl stylesheet xslt stylesheet

 -param name value <value> to use for parameter <name> in xslt stylesheet
 (repeat '-param name value' for each parameter)

 -catalog use catalog resolver for input XML and XSLT files
 [OUTPUT]
 outfile input will be rendered as PDF into outfile
 (use '-' for outfile to pipe output to stdout)
 -pdf outfile input will be rendered as PDF (outfile req'd)
 -pdfa1b outfile input will be rendered as PDF/A-1b compliant PDF
 (outfile req'd, same as "-pdf outfile -pdfprofile PDF/A-1b")
 -awt input will be displayed on screen
 -rtf outfile input will be rendered as RTF (outfile req'd)
 -pcl outfile input will be rendered as PCL (outfile req'd)
 -ps outfile input will be rendered as PostScript (outfile req'd)
 -afp outfile input will be rendered as AFP (outfile req'd)
 -tiff outfile input will be rendered as TIFF (outfile req'd)
 -png outfile input will be rendered as PNG (outfile req'd)
 -txt outfile input will be rendered as plain text (outfile req'd)
 -at [mime] out representation of area tree as XML (outfile req'd)
 specify optional mime output to allow the AT to be converted
 to final format later

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://developer.apple.com/java/faq

Running Apache™ FOP

Page 4/6PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

 -if [mime] out representation of document in intermediate format XML (outfile req'd)
 specify optional mime output to allow the IF to be converted
 to final format later
 -print input file will be rendered and sent to the printer
 see options with "-print help"
 -out mime outfile input will be rendered using the given MIME type
 (outfile req'd) Example: "-out application/pdf D:\out.pdf"
 (Tip: "-out list" prints the list of supported MIME types)
 -svg outfile input will be rendered as an SVG slides file (outfile req'd)
 Experimental feature - requires additional fop-sandbox.jar.

 -foout outfile input will only be XSL transformed. The intermediate
 XSL-FO file is saved and no rendering is performed.
 (Only available if you use -xml and -xsl parameters)

 [Examples]
 fop foo.fo foo.pdf
 fop -fo foo.fo -pdf foo.pdf (does the same as the previous line)
 fop -xml foo.xml -xsl foo.xsl -pdf foo.pdf
 fop -xml foo.xml -xsl foo.xsl -foout foo.fo
 fop -xml - -xsl foo.xsl -pdf -
 fop foo.fo -mif foo.mif
 fop foo.fo -rtf foo.rtf
 fop foo.fo -print
 fop foo.fo -awt

PDF encryption is only available if FOP was compiled with encryption support and if compatible
encryption support is available at run time. Currently, only the JCE is supported. Check the Details.

3.2 Writing your own script

FOP's entry point for your own scripts is the class org.apache.fop.cli.Main. The general pattern
for the command line is: java -classpath <CLASSPATH> org.apache.fop.cli.Main
<arguments>. The arguments consist of the options and infile and outfile specifications as shown above
for the standard scripts. You may wish to review the standard scripts to make sure that you get your
environment properly configured.

3.3 Running with java's -jar option

As an alternative to the start scripts you can run java -jar path/to/build/fop.jar
<arguments>, relying on FOP to build the classpath for running FOP dynamically, see below. If you
use hyphenation, you must put fop-hyph.jar in the lib directory.

You can also run java -jar path/to/fop.jar <arguments>, relying on the Class-Path
entry in the manifest file. This works if you put fop.jar and all jar files from the lib directory in a
single directory. If you use hyphenation, you must also put fop-hyph.jar in that directory.

In both cases the arguments consist of the options and infile and outfile specifications as shown above
for the standard scripts.

3.4 FOP's dynamical classpath construction

If FOP is started without a proper classpath, it tries to add its dependencies dynamically. If the system
property fop.home contains the name of a directory, then FOP uses that directory as the base directory

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
pdfencryption.html

Running Apache™ FOP

Page 5/6PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

for its search. Otherwise the current working directory is the base directory. If the base directory is called
build, then its parent directory becomes the base directory.

FOP expects to find fop.jar in the build subdirectory of the base directory, and adds it to the classpath.
Subsequently FOP adds all jar files in the lib directory to the classpath. The lib directory is either the
lib subdirectory of the base directory, or, if that does not exist, the base directory itself.

If the system property fop.optional.lib contains the name of a directory, then all jar files in that
directory are also added to the classpath. See the methods getJARList and checkDependencies
in org.apache.fop.cli.Main.

4 Using Xalan to Check XSL-FO Input

FOP sessions that use -xml and -xsl input instead of -fo input are actually controlling two distinct
conversions: Tranforming XML to XSL-FO, then formatting the XSL-FO to PDF (or another FOP output
format). Although FOP controls both of these processes, the first is included merely as a convenience and
for performance reasons. Only the second is part of FOP's core processing. If a user has a problem running
FOP, it is important to determine which of these two processes is causing the problem. If the problem is
in the first process, the user's stylesheet is likely the cause. The FOP development team does not have
resources to help with stylesheet issues, although we have included links to some useful Specifications
and Books/Articles. If the problem is in the second process, FOP may have a bug or an unimplemented
feature that does require attention from the FOP development team.

Note:

The user is always responsible to provide correct XSL-FO code to FOP.

In the case of using -xml and -xsl input, although the user is responsible for the XSL-FO code that is FOP's
input, it is not visible to the user. To make the intermediate FO file visible, the FOP distribution includes
the "-foout" option which causes FOP to run only the first (transformation) step, and write the results to
a file. (See also the Xalan command-line below)

Note:

When asking for help on the FOP mailing lists, never attach XML and XSL to illustrate the issue. Always run the
XSLT step (-foout) and send the resulting XSL-FO file instead. Of course, be sure that the XSL-FO file is correct
before sending it.

The -foout option works the same way as if you would call the Xalan command-line:

java org.apache.xalan.xslt.Process -IN xmlfile -XSL file -OUT outfile

Note that there are some subtle differences between the FOP and Xalan command-lines.

5 Memory Usage

FOP can consume quite a bit of memory, even though this has been continually improved. This is
partly inherent to the formatting process and partly caused by implementation choices. All FO processors
currently on the market have memory problems with certain layouts.

If you are running out of memory when using FOP, here are some ideas that may help:

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
../resources.html#specs
../resources.html#articles
http://xml.apache.org/xalan-j/commandline.html

Running Apache™ FOP

Page 6/6PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

• Increase memory available to the JVM. See the -Xmx option for more information.

Warning:

It is usually unwise to increase the memory allocated to the JVM beyond the amount of physical RAM, as this
will generally cause significantly slower performance.

• Avoid forward references. Forward references are references to some later part of a document.
Examples include page number citations which refer to pages which follow the citation, tables of
contents at the beginning of a document, and page numbering schemes that include the total number
of pages in the document ("page N of TOTAL"). Forward references cause all subsequent pages to
be held in memory until the reference can be resolved, i.e. until the page with the referenced element
is encountered. Forward references may be required by the task, but if you are getting a memory
overflow, at least consider the possibility of eliminating them. A table of contents could be replaced
by PDF bookmarks instead or moved to the end of the document (reshuffle the paper could after
printing).

• Avoid large images, especially if they are scaled down. If they need to be scaled, scale them in
another application upstream from FOP. For many image formats, memory consumption is driven
mainly by the size of the image file itself, not its dimensions (width*height), so increasing the
compression rate may help.

• Use multiple page sequences. FOP starts rendering after the end of a page sequence is encountered.
While the actual rendering is done page-by-page, some additional memory is freed after the page
sequence has been rendered. This can be substantial if the page sequence contains lots of FO
elements.

6 Problems

If you have problems running FOP, please see the "How to get Help" page.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/java.html
../faq.html#pagenum
../gethelp.html

	Table of contents
	1 System Requirements
	2 Installation
	2.1 Instructions
	2.2 Problems

	3 Starting FOP as a Standalone Application
	3.1 Using the fop script or batch file
	3.2 Writing your own script
	3.3 Running with java's -jar option
	3.4 FOP's dynamical classpath construction

	4 Using Xalan to Check XSL-FO Input
	5 Memory Usage
	6 Problems

