Woden User Guide

Table of contents

O 1o L1 o o o VP SROSUSS 2
2 WOAEN OVEIVIEW.eeiiiieiie ettt e sttt s e et e e st e e e e e s teeeateesaeesnseeaseeenseenseesnseenseesnneens 2
3 DOWNI0A @NA SELUP.eeivieiieeciie ettt re e et e s e e s e e b e e sreeereennes 4
L = 1110 S (= o SO 4
R TSR 0o L= o N USSR 6
6 WOAEN URI RESOIVET.......ccviiieecee ettt ettt ete e saee s nae e sraesteesaaesneesnaeereesneesneenneas 11

7 MOretopiCStO DE AAUEM.cceeieieieeeeeee e 15

Woden User Guide

1. Introduction

The purpose of the Woden User Guide is to explain how to use the external interfaces of
Woden. These external interfaces currently consist of the Woden API, but as devel opment
progresses they may also include other configuration techniques, command line tools and
script-based utilities such as ANT tasks. Woden users are typically developers of other tools
and technol ogies that use Woden for parsing or manipulating WSDL documents.

The Woden User Guide will not discuss the 'internals' of the Woden implementation and it
will only touch on the Woden design where it is relevant to this discussion of how to use
Woden. A Woden Developer Guide (not yet written) will discuss the design and
implementation.

The User Guide reflects the current state of Woden's development and will be updated as
new function is added to Woden. See the "Woden Overview" section below for up-to-date
details of what function currently exists and what doesn't.

This Guide should be read in conjunction with the Woden API Javadocs included with the
milestone distribution (see the "Download and Setup” section below). Please post any
guestions or comments to the Woden devel opment mailing list, woden-dev@ws.apache.org.

2. Woden Overview

Theinitial goal of the Woden project isto develop aWSDL 2.0 processor that implements
the W3C WSDL 2.0 specification in response to the Working Group's call for
implementations. Thisincludes defining an API for Woden separate to its implementation, so
that other projects can modify or replace the Woden implementation while maintaining
consistent external interfaces. Further goals include support for high performance XML
parsing and support for WSDL 1.1.

The objectives to achieve these goals are:

« DevelopaWSDL 2.0 processor (DOM-based initially) for serializing and deserializing
WSDL 2.0 documents.

» DefineaWSDL object model that conforms to the W3C WSDL 2.0 spec, including
support for WSDL and type system extensibility.

« Enable WSDL to be created or modified programmatically viathis object model.

« Develop Woden as a configurable and extendable framework to support
implementation-specific customization, such as customization of object factories,
validation and error handling.

» Develop aframework extension mechanism that allows alternative XML parsersto be
used to support different usage scenarios and performance requirements, then develop a

Page 2

mailto:woden-dev@ws.apache.org

Woden User Guide

WSDL parser implementation based on an XML streaming "pull’ parser such as StAX
(JSR173).

Support deserializing WSDL 1.1 documents and optionally converting them into the
WSDL 2.0 object model.

Support deserializing WSDL 1.1 documents and optionally representing them with the
JWSDL object model (i.e. the WSDL 1.1 object model defined by JSR110 "Java APIs for
WSDL" and currently implemented by WSDL4J).

Develop a comprehensive Junit-based test suite that integrates the WSDL test cases from
the W3C WSDL 2.0 test suite and includes Woden-specific tests that cover its API and
the features of the Woden framework.

The functionality that currently exists in Woden and is described in this User Guide includes:

A factory mechanism used to obtain aWSDL reader (or parser) object.

A DOM implementation of the reader, based on Apache Xerces.

Configuring WSDL reader features and properties - for example, switching the validation
feature on or off.

Using the reader to parse (deserialize) aWSDL document at a specified URL into the
Woden WSDL 2.0 object model.

Two forms of the WSDL 2.0 object model; one representing the WSDL 2.0 abstract
Component model and one that maps to the XML elements and attributes in the WSDL
namespace.

Parsing of most of the elements and attributes in the WSDL 2.0 namespace (the 'extends
attribute of Interface is the only outstanding item).

Partial WSDL validation using the assertions defined in the WSDL 2.0 spec. Validation
currently exists for Types, Interface and Binding.

Manipulating the WSDL via methods of the WSDL 2.0 object model.

Support for extensibility elements and attributes (i.e. for XML elements and attributes
that extend elementsin the WSDL 2.0 namespace).

Use of this extensibility mechanism for the SOAP binding extensions defined in the
WSDL 2.0 spec.

A customizable error handling mechanism for reporting warnings, errors or fatal errors
that result from WSDL validation or Woden configuration problems.

Planned functionality that does not yet exist in Woden and is NOT described in this User
Guide includes:

Parsing of HTTP binding extensions, as defined in the WSDL 2.0 spec.

WSDL validation of import and include, SOAP and HT TP binding extensions, and
Service.

Resolving URL s with an entity or catalog resolver

A mechanism for extending Woden to support other XML parsers.

Page 3

Woden User Guide

« A StAX implementation of this parser extension mechanism.

» A mechanism for extending Woden to support types systems other than W3C XML
Schema (e.g. RelaxNG, DTD).

e Writing (serializing) the WSDL object model out to aWSDL document.

o Parsing WSDL 1.1 documents and converting them into the WSDL 2.0 object model.

e Parsing WSDL 1.1 documents and representing them using the JWSDL object model (i.e.
aWSDL 1.1 object model)

3. Download and Setup

Obtain the Apache Woden WSDL processor in one of 2 ways:

» extract the source code from the Woden Subversion (SVN) repository and compileit, or
» obtain the Woden binary distribution from the latest milestone build.

Woden's DOM-based XML parsing depends on Apache Xerces 2.7.1. Its XML Schema
support it depends on the schema parser and object model implemented by the Apache Web
Services Commons (ws-commons) X ml Schema project.

The milestone build includes all of the required libraries and these must be on the classpath:

« woden.jar contains the Woden binary code
« xercesimpl.jar and xml-apis.jar contain Apache Xerces2.7.1
o XmlSchema-SNAPSHOT .jar contains the Apache ws-commons Xml Schema

If using the Woden source code, rather than the milestone distribution, then the Apache
Xerces 2.7.1 distribution can be downloaded from the Apache Xerces project here. The
source code for Apache Web Services ws-commons Xml Schema can be extracted from its
Subversion (SVN) repository using the logon id "anoncvs'.

Woden requires Java 1.4 or higher.

4. Getting Started

This section contains a few code examples to demonstrate the Woden programming model.
See "The Woden API" section below and the Javadocs included with the milestone
distribution for more details.

The following code example shows how to obtain aWSDLFact or y object which isthen
used to obtain aWSDLReader object (the WSDL parser). WSDL validation is then enabled
on the reader, before the readWSDL method reads a WSDL document from the specified
URL and returnsthe WSDL asaDescri pti onEl enment object. The

Descri pti onEl emrent representsthe WSDL <description> element and along with its

Page 4

version_control.html
dev/1.0/builds.html
http://xerces.apache.org/xerces2-j/download.cgi
http://svn.apache.org/repos/asf/webservices/commons/modules/XmlSchema/

Woden User Guide

contained objects, it declares an API that maps to the XML elements and attributesin the
WSDL 2.0 namespace. Thiswill be referred to as the Element API. The toComponent
method on Descri pti onEl ement returnsthe WSDL asaDescr i pti on object, which
represents the Description component from the WSDL 2.0 Component model. The API
declared by Descr i pt i on and its contained objects will be referred to as the Component
API.

WEDLFact ory factory = WSDLFact ory. new nst ance() ;
WSDLReader reader = factory. newWSDLReader () ;
reader . set Feat ur e(WBDLReader . FEATURE_VALI DATI ON, true);

Descri pti onEl enrent descEl em = reader. readWsDL(wsdl url); <--
the <description> el enent
Descri pti on descConp = descEl em t oConponent () ; <--

the Description conponent
The parameter wsdl ur | isthe String representation of aURL, e.q.:

wsdl url ="http://ws. org. apache/ woden/ ser vi ces/ Booki ng. wsdl "
wsdl ur | =" C: / woden/ ser vi ces/ Booki ng. wsdl "

To obtain the top-level WSDL elements fromthe Descri pti onEl enent :

InterfaceEl enent[] interfaces = descEl em getlnterfaceEl ements();

Bi ndi ngEl ement[] bi ndi ngs = descEl em get Bi ndi ngEl ement s() ;

Servi ceEl enent[] services descEl em get Ser vi ceEl ement s() ;
This example shows how to get the global schema element declaration (represented by the
Xm SchemaEl enent class from Apache ws-commons XmlSchema) which isreferred to
by QName in the 'element’ attribute of the interface <fault> element:

InterfaceEl enent interfaceElem = interfaces[O0];
InterfaceFaul tEl ement[] faults =
i nterfaceEl em getlnterfaceFaul t El enents();
Xm SchenmaEl ement xsEl em = faul ts[0] . get El enent () ;
Where the WSDL is composed of multiple WSDL documents viaWSDL <import> and
<include>, you can navigate the WSDL modules using the methods getl mportElements and
getincludeElements of Descri pti onEl enent :

I nport El enent[] inports = descEl em get| nmport El ement s();
Descri pti onEl ement i nportedDescEl em =
i mports[0].getDescriptionEl enent();
TheDescri pti on component aso has methods to retrieve the top-level WSDL
components, but unlike thosein Descr i pti onEl enent , the behaviour hereisto 'flatten’
the WSDL. That is, to return the top-level components of the initial description and of all
imported or included descriptions as well:

Page 5

Woden User Guide

Interface[] alllnterfaces = descConp. getlnterfaces();

Bi ndi ng[] al | Bi ndi ngs = descConp. get Bi ndi ngs() ;

Service[] all Services = descConp. get Servi ces();
The next example shows how to get all of the El ement Decl ar at i on and
TypeDef i ni ti on componentsfromtheDescri pti on component. These represent the
global schema element declarations and type definitions from the XML Schemas defined
in-line or imported within the WSDL <types> element. Once again, thisis a 'flattened' view
that includes schema components from imported or included WSDL documents (assuming
the WSDL 2.0 rules about schema visibility have been followed):

El enent Decl arati on[] el enDecls = descConp. get El enent Decl ar ati ons();
TypeDefinition[] typeDefs = descConp. get TypeDefinitions();

5. The Woden API
This section provides an overview of the Woden API.

The Woden WSDL processor isimplemented as aframework with extension points for
adding user-defined behaviour. The details of thisimplementation are 'hidden' by the Woden
API. Even the extension points are exposed on the Woden API, either as Java interfaces that
can be re-implemented or as Java classes that can be extended. With the Woden extension
and programming model based on the API, there should be no need to refer to Woden
implementation classes in user code. If you think you have such a need, please post your
reguirements to the Woden devel opment mailing list.

The Woden API contains two 'sub-APIs, introduced previously in the " Getting Started"
section, which represent alternative WSDL 2.0 object models:

« The Element API which represents amodel of the XML elements and attributes in the
WSDL 2.0 namespace, as described by the XML mappingsin the WSDL 2.0
specification.

« The Component API which represents the abstract WSDL Component model described
by the WSDL 2.0 specification.

Whereas the Element and Component APIs are concerned solely with WSDL representation
and manipulation, the remainder of the Woden API is concerned with how to use, configure
and extend the Woden WSDL processor. The term Woden APl encompasses these more
general features of the Woden processor and the WSDL -specific features. However if we
need to discuss these WSDL -specific features of the API, we may use the terms Element or
Component API to be more specific.

API Packages

The Woden AP is declared by Java interfaces and a small number of Java classes within

Page 6

Woden User Guide

package names beginning with or g. apache. woden. Woden implementation package
names begin with or g. apache. woden. i nt er nal to distinguish them from the AP
packages. All other or g. apache. woden packages are part of the Woden API.

The most important APl packages are:

or g. apache. woden
This contains the core components of the Woden WSDL processor - WSDL Factory,
WSDL Reader, WSDL Exception, ErrorReporter, ErrorHandler to name a few.

or g. apache. woden. schema

This contains interfaces representing both in-lined and imported XML schemas. These
represent schemas in terms of the <xs:schema> and <xs:.import> elements that can appear
directly under the WSDL <types> element.

or g. apache. woden. wsdl 20. ext ensi ons

This represents the extension architecture to support extension elements and attributes (i.e.
those that are not in the WSDL 2.0 namespace). This includes a mechanism for registering
user-defined serializers, deserializers and Java mappings for these extensions.

or g. apache. woden. wsdl 20. ext ensi ons. soap
This contains Java classes that map to the SOAP binding extensions defined in the WSDL
2.0 spec.

or g. apache. woden. wsdl 20
Contains the Java interfaces that make up the Component API (i.e. the abstract WSDL
Component model).

or g. apache. woden. wsdl 20. xni
Contains the Java interfaces that make up the Element API (i.e. the XML mappings for
WSDL elements and attributes).

Core API Features

The core features of the Woden API include:

The factory mechanism for creating Woden objects such as

Configuring Woden behaviour by setting features or properties of the WSDLReader .

Customizing the error handling behaviour.

Registering user-defined extensions to support elements and attributes outside of the

WSDL 2.0 namespace.

« Manipulating the XML -based model of WSDL elements and attributes (i.e. viathe
Element API).

« Manipulating the abstract model of WSDL components (i.e. viathe Component API).

Page 7

Woden User Guide

The WBDLFact or y class has static methods newlnstance() and newl nstance(String
className) that return afactory object. The noarg version adopts a strategy to search for a
user-configured factory classname, defaulting to a Woden-provided factory classif noneis
found. The factory class name search strategy isto check first for a Java system property,
then check for a property file in the JAVA-HOME/lib directory (we intend also to search for
aproperty in META-INF/services but thisis not implemented yet). The Javadoc for this class
provides details of the system property and property file names. The newlnstance(String
className) version allows you to specify the factory classto be instantiated. This factory
object is used to create some of the key objects of the Woden programming model such as
WEDLReader , Descri pti onEl enent and Ext ensi onRegi stry.

The Woden parsing behaviour can be configured by setting features or properties of the
WEDLReader object. Note, these are Woden-specific configuration details, not to be
confused with the WSDL Feature and Property components. Reader features are configured
via the setFeature method with a feature name and a boolean value, indicating whether the
feature is enabled. The getFeature method is used to query whether a specified featureis
enabled. Reader properties are configured via the setProperty method with a property name
and an object representing the property. Likewise, a getProperty method returns the property
object for a specified property name. The names of the Woden-defined features and
properties are specified onthe APl aspubl i ¢ static final constantson the
WEDLReader interface. See the API Javadoc for details. These methods may also be used to
configure user-defined, implementation-specific features and properties. The "Getting
Started" section above showed an example of feature configuration - the Woden validation
feature was enabled on the reader object by the code:

r eader . set Feat ur e(WeDLReader . FEATURE_VALI DATI ON, true);

The API provides error handling through four interfaces and the WBDLExcept i on class.
System configuration errors are typically handled by throwing aWSDLExcept i on
containing appropriate error information. WSDL parsing errors are reported by the

Er r or Repor t er which delegates the reporting style to the Er r or Handl er .

Er r or Handl er recognizes 3 types of error; warnings, errors and fatal errors. A default
error handler implementation is provided with Woden which prints all 3 types of message to
Syst em out and then for fatal errors only, terminates processing with a

WEDLExcept i on. Users may provide their own implementation of Er r or Handl er to
change this behaviour. The setErrorHandler method on Er r or Report er isused to set a
user-defined custom error handler. User-defined extensions to Woden may use

Er r or Report er toreport their errorsviathe Er r or Handl er or to obtain aformatted
error message, for example to place inside an exception object. Messages are expected to
have an error id and some message text, but users have the option of defining fully formatted
messages or using parameterized strings in a Java ResourceBundle. Er r or | nf o declaresa
data object containing the error information passed to the Er r or Handl er . Thisincludes

Page 8

Woden User Guide

the Er r or Locat or which specifiesthe URI of the WSDL source document and the line
and column number where the error occurred (although this feature is not yet implemented).

Extension elements and attributes (those outside of the WSDL 2.0 namespace) are handled
by the Woden extension architecture. For each extension element, a user-defined
implementation of the Ext ensi onDeseri al i zer and Ext ensi onSeri al i zer
interfaces will map the element to/from some user-defined implementation of

Ext ensi onEl enent which represents the element. The deserializer, seridizer and Java
mapping classes are registered in the Ext ensi onRegi st ry so that the WSDLReader (or
WSDL Writer when it gets implemented) will know what to do when it encounters this
element. The Woden API includes Ext ensi onEl enment implementations to represent the
SOAP binding extensions defined in the WSDL 2.0 spec (and HTTP extensions will follow
soon). To handle extension elements that have not been registered, default behaviour is
provided by the UnknownDeseri al i zer , UnknownSeri al i zer and

UnknownExt ensi onEl enment classes. These Woden-defined extensions (SOAP and
Unknown) are pre-registered in the Ext ensi onRegi st ry by the Woden implementation.

The package or g. apache. woden. xml contains classes that represent the more common
types of extension attribute values (e.g. string, QName, boolean, etc). These are all
subclasses of XMLAt t r which defines the init method for parsing an extension attribute
value and the toExternal Form method for representing the value as a string. Users may
extend XMLAt t r to support other types of values. The XMLAt t r subclass must be
registered with its parent class name (i.e. its containing element) and the QName of the
extension attribute in the Ext ensi onRegi st ry, so that the WSDLReader will have the
information necessary to parseit correctly. The extension attributes defined in the WSDL 2.0
spec (i.e. those for the SOAP and HTTP binding extensions) will be pre-registered in the
Ext ensi onRegi st ry using the XM_At t r subclasses defined in package

or g. apache. woden. xni .

The Element and Component APIs are discussed below.
Element API

The Element API allows you to navigate the nested hierarchy of WSDL elements that would
appear inaWSDL document (as defined by the WSDL 2.0 Schema). For example,

Descri pti onEl enent declares methods getl nterfaceElements, getBindingElements and
getServiceElements which provide access to the top-level WSDL elements.

I nt er f aceEl enent declares the methods getlnterfaceFaultElements and
getlnterfaceOperationElements and so on. The Element API is described in detail in the
Javadocs included in the milestone distribution.

Withintheor g. apache. woden. wsdl 20. xm package, each WSDL element is
represented by a Javainterface. The WSDL attributes present in each WSDL element are

Page 9

http://www.w3.org/2006/01/wsdl/wsdl20.xsd

Woden User Guide

represented by appropriate methods on those interfaces. So for example,
Descri pti onEl enent hasthe method getTargetNamespace.

Note that the methods of the Element API do not ‘flatten' composite WSDL structures. For
example, the getServiceElements method returns the <service> elements defined directly
within the containing <description> element, but not those defined within any imported or
included descriptions. To retrieve al of the Ser vi ceEl enment sfrom acomposite WSDL,
you nheed to navigate the WSDL structure using the getlmportElements or
getIncludeElements methods on Descr i pt i onEl enent .

Component API

The Component API represents the abstract WSDL Component model described in the
WSDL 2.0 spec. Thisdiffers from the Element API in that certain aspects of WSDL XML
are not represented in the Component model. The <documentation> element is not captured
in the Component model. The <types> element and particular type systems like XML
Schema are not represented, however the Component API does contain

El ement Decl ar ati on and TypeDef i ni ti on which provide a general representation
for global element declarations and type definitions, such as those used in XML Schema.

The composition of WSDL documents via the <import> and <include> elementsis not
represented in the Component model. Instead, the Description component represents the
entire, composite WSDL structure and its properties which represent top-level WSDL
components, like Interface, Binding and Service, contain a 'flattened' representation of the
WSDL. For example, the getinterfaces method of Descr i pt i on will return not just the
interfaces defined within the initial description, but those defined within any imported or
included descriptions as well.

The Component APl provides aread-only view of the WSDL Component model (i.e. it
defines accessors but no mutators). The only way to create aDescr i pt i on objectisby
calling the toComponent method on aDescr i pti onEl ement object. Once you have a
Descri pti on object you can access the rest of the WSDL component model, but you
cannot modify it. WSDL can only be created or modified programmatically via the Element
APIL.

Mapping of WSDL elementsto the API

WEDL el enent El ement API
Conmponent API
<descri pti on> Descri pti onEl ement
Descri ption
<docunent at i on> Docunent at i onEl enent
<i nport > | mport El enent
<i ncl ude> I ncl udeEl enent

Page 10

Woden User Guide

6. Woden URI Resolver

Thisalows URIsreferred to in WSDL 2.0 and XML Schema documents to be redirected to
aternative URIs. Woden is equipped with such aresolver as default, and an API to define
alternative implementations.

Page 11

Woden User Guide

The Resolver API

Users are free to create their own custom URI Resolvers, by implementing the interface
or g. apache. woden. resol ver. URI Resol ver.

The resolver should be registered with the WSDL Reader object before invoking readWSDL ()
methods.

Example:

URI Resol ver nyResol ver = new Cust omJRI Resol ver () ;
WSDLFactory factory = WBDLFact ory. newl nst ance() ;
WSDLReader reader = factory. newWSDLReader () ;
reader . set URl Resol ver (myResol ver);

'r'eéder .readWsDL(....);

SimpleURI Resolver

Thisisthe URI resolver implementation provided with the Woden distribution, and it is also
the default. When a WSDL Reader object isrequested, aSi npl eURI Resol ver is
automatically instantiated and registered with it. In other words the following happens
implicitly:

reader. set URl Resol ver (new Si npl eURl Resol ver());

If required, a custom resolver can be registered programmatically in place of the default, as
shown above.

1 - Catalog file format

The catal og file follows the Java Properties file syntax: rows of entries of the form
<property nane>=<property val ue>,interspersed with comment lines starting
with the“#” character. However, with catalog notation the meaning of the left and right hand
expressionsis slightly different:

<resol ve-from URI >=<resol ve-to URI >

where resolve-from URI is the subject of the resolution, and resolve-to URI is the place
where the resolver looks for the resource. To be meaningful, the resolve-to URI should be a
valid URL (that is, areference a physical document).

By convention, URI catalog file names have the suffix . cat al og, though thisis not
mandatory.

Page 12

Woden User Guide

Note that the first “:” in the line of each entry must be escaped. See examples below.

The schema catalog is read sequentially when a Si npl eURI Resol ver isinstantiated.
Where multiple entries exist in the catalog for a given resolve-from URI, the last such entry
is used.

Absolute URI's

Examples:

Resource held locally on an NTFS file system
http\://test.cominterface.wsdl =file:///c:/resources/interface.wsdl

Simlarly on a Un*x-based file system
http\://test.cominterface.wsdl =file:///resources/interface.wsdl

Resource held renptely and accessed over http:
http\://test.cominterface.wsdl =http://apl ace. org/resources/interface. wsdl

Relative URIs

If relative URIs appear in any resolve-to entriesin the catal og, then a search path is used (on
initialisation of the resolver) to convert them to absolute URIs. Any resolve-to entry that does
include a Protocol (e.g. starting with file: or http:) isregarded as relative. Otherwiseit is
treated as absol ute.

By default, the Java classpath is searched | eft to right for a base URI to complete the relative
URI in the catalog. However, it is more useful to prepend the classpath with a user-defined
list of base locations. The System Property

or g. apache. woden. resol ver. si npl er esol ver . baseURlI s may be used to
specify such alist.

For example, say we wish to resolve to two files stored on the local file system as
/wsdl /resources/interface. wsdl,/xsd/ resources/ schena. xsd and one
file/ wi bbl e/ random wsdl containedinaJAR called/ nydocs. | ar.

We set theor g. apache. woden. resol ver. si npl eresol ver. baseURl s
property tothevaluefile:///wsdl/;file:///xsd/;file:///nydocs.jar.
Note thetrailing “/” on the first two semi-colon separated entries which indicates a base URI.
If thisis omitted the entry is assumed to be aURL of aJAR file. Now we can use the
following in the catalog to reference thefiles:

http\://test.cominportinterface. wsdl =resources/interface. wsdl
http\://test.com nmyschema. xsd=r esour ces/ schena. xsd
http\://test.com random wsdl =wi bbl e/ random wsdl

Page 13

Woden User Guide

Note that when the resolver creates its resolution table, for each relative entry the baseURIs
list is searched left-to-right and the first match that references a physical resource is used.

Typically, baseURIswill be set to asingle path from which all relative URIs in the catalog
descend.

URLsfrom JAR files

These are references to resources contained within ajar file, and may be used as absolute
resolve-to URLsin the catalog.

Example:
http\://test.comdoit.wsdl =jar:file:///wi bble/pling.jar!/doit.wsdl

2 — Configuration Properties

When a SimpleURIResolver isinstantiated, it examines two system properties:

« org.apache.woden.resolver.simpleresol ver.catalog
« org.apache.woden.resolver.simpleresolver.baseURIs

Thefirst should contain a URL for the location of the user’s catalog file. If thisis unset, no
URI resolving will occur, except for that defined in the woden schema catalog (see below).

The second is introduced in the discussion on relative URIs above.

An application using the Woden WSDL Reader to parse a document might configure the URI
resolver asin the flowing snippet:

Syst em set Property(“org. apache. woden. resol ver. si npl er esol ver. cat al og”,
"file:///nyplacel/ nyresol ves. cat al 0g”);

System set Property(“org. apache. woden. resol ver. si npl er esol ver. baseURI s”,
“file:///wsdl/;file:///xsd/;file:///mydocs.jar”);

WBDLReader reader = factory.newASDLReader(); // instantiates the
defaul t resol ver

reader.readWsDL(“file:///mydoc.wsdl”); // this is also a candi date
for the resol ver

3 — Automatic schema resolution - schema.catalog

The Woden schema catalog is a predefined catalog which is loaded automatically when a
Si mpl eURI Resol ver isinstantiated. It isloaded immediately before the user-defined
catalog (if any).

The Woden schema catal og contains resol utions of the standard XML Schema schema, and

Page 14

Woden User Guide

the WSDL 2.0 schema, necessary to allow the parser to operate when in network isolation.
Because the user catalog isloaded second, it is possible to override schema entries by
redefining them there.

The schema catalog islocated in met a- i nf / schena. cat al og in the Woden
distribution jar.

7. Moretopicsto be added...

This User Guide is a work-in-progress. The content will be expanded and restructured as the
development of the Woden project progresses. The following list indicates some topics to be
added:

More on WSDL Reader and readWSDL options (including URL resolution)
Types support (XML Schema)

Extension architecture (extension elements and attributes, extension registry)
Validation strategy (validation feature, continue-on-error feature)

Error reporting, error messages, customizing the ErrorHandler

creating or modifying WSDL programmatically

serializing WSDL with WSDL Writer

How to extend the Woden framework (details of extension points)

Page 15

	1 Introduction
	2 Woden Overview
	3 Download and Setup
	4 Getting Started
	5 The Woden API
	6 Woden URI Resolver
	7 More topics to be added...

