
WSIF Trace

1 Quick summary
To switch WSIF trace on,in your log4j.properties specify the following settings to trace to
wsif.log....

log4j.rootCategory=INFO, CONSOLE, LOGFILE

log4j.logger.org.apache.wsif.*=DEBUG
log4j.logger.com.ibm.wsif.*=DEBUG
log4j.appender.LOGFILE=org.apache.log4j.FileAppender
log4j.appender.LOGFILE.File=wsif.log
log4j.appender.LOGFILE.Append=true
log4j.appender.LOGFILE.Threshold=DEBUG

2 For those who want to know more
WSIF uses Apache commons-logging for its messages and trace. See
http://jakarta.apache.org/commons/logging.html for more information. Commons-logging is
an API which wraps various log implementations. You can configure commons-logging to
use other log implementations, or even your own. So commons-logging.jar must be on the
classpath, and log4j is the default log implementation, although commons-logging.jar
contains other log implementations. You can configure commons-logging.properties to use a
different log implementation. If using log4j, you configure log4j.properties to redirect trace
and switch it on. The log4j.properties settings above are only a subset of all possibilities.

3 Interpreting trace
Here is a sample trace output...

7951 [main] DEBUG org.apache.wsif.* -
ENTRY WSIFServiceFactory.newInstance()
8122 [main] DEBUG org.apache.wsif.* -
EXIT WSIFServiceFactory.newInstance(org.apache.wsif.base.WSIFServiceFactoryImpl@7df10a36)
8132 [main] DEBUG org.apache.wsif.* -
ENTRY WSIFServiceFactoryImpl.getService<7df10a36>(C:\wsad-5\eclipse\workspace\ws-wsif\java\samples\addressbook\wsifservice\AddressBook.wsdl,
<null>, <null>, http://wsifservice.addressbook/, AddressBook)

8252 [main] DEBUG org.apache.wsif.* -
ENTRY PrivateCompositeExtensionRegistry.<init><43000a37>()

Page 1

8893 [main] DEBUG org.apache.wsif.* -
ENTRY JavaBindingSerializer.registerSerializer<576c0a36>(com.ibm.wsdl.extensions.PopulatedExtensionRegistry@50450a37)
8913 [main] DEBUG org.apache.wsif.* -
EXIT JavaBindingSerializer.registerSerializer()
8943 [main] DEBUG org.apache.wsif.* -
ENTRY FormatBindingSerializer.<init><40b48a36>()

8943 [main] DEBUG org.apache.wsif.* -
EXIT FormatBindingSerializer.<init>()
9223 [main] DEBUG org.apache.wsif.* -
ENTRY FormatBindingSerializer.registerSerializer<40b48a36>(com.ibm.wsdl.extensions.PopulatedExtensionRegistry@50450a37)
9243 [main] DEBUG org.apache.wsif.* -
EXIT FormatBindingSerializer.registerSerializer()
9293 [main] DEBUG org.apache.wsif.* -
ENTRY EJBBindingSerializer.registerSerializer<55a24a36>(com.ibm.wsdl.extensions.PopulatedExtensionRegistry@50450a37)

9323 [main] DEBUG org.apache.wsif.* -
EXIT EJBBindingSerializer.registerSerializer()
9333 [main] DEBUG org.apache.wsif.* -
EXIT PrivateCompositeExtensionRegistry.<init>()
9353 [main] DEBUG org.apache.wsif.* -
ENTRY WSIFDynamicTypeMap.<init><32128a36>()
9353 [main] DEBUG org.apache.wsif.* - EXIT WSIFDynamicTypeMap.<init>()

9363 [main] DEBUG org.apache.wsif.* -
ENTRY WSIFServiceImpl.<init><31e38a36>(C:\wsad-5\eclipse\workspace\ws-wsif\java\samples\addressbook\wsifservice\AddressBook.wsdl,
<null>, <null>, http://wsifservice.addressbook/, AddressBook)
9363 [main] DEBUG org.apache.wsif.* - ENTRY WSIFUtils.readWSDL(<null>,
C:\wsad-5\eclipse\workspace\ws-wsif\java\samples\addressbook\wsifservice\AddressBook.wsdl)
9373 [main] DEBUG org.apache.wsif.* -
ENTRY WSIFPluggableProviders.getProvider(/)

9384 [main] DEBUG org.apache.wsif.* -
ENTRY WSIFPluggableProviders.getSupportingProviders(/, true)
9384 [main] DEBUG org.apache.wsif.* -
ENTRY WSIFPluggableProviders.getAllDynamicWSIFProviders()
9414 [main] DEBUG org.apache.wsif.* -
ENTRY WSIFPluggableProviders.readMETAINFClassNames(file:/C:/wsad-5/eclipse/workspace/ws-wsif/bin/META-INF/services/org.apache.wsif.spi.WSIFProvider)
9424 [main] DEBUG org.apache.wsif.* -
EVENT WSIFPluggableProviders.readMETAINFClassNames Reading
provider class names from URL:
file:/C:/wsad-5/eclipse/workspace/ws-wsif/bin/META-INF/services/org.apache.wsif.spi.WSIFProvider
9434 [main] DEBUG org.apache.wsif.* -
EVENT WSIFPluggableProviders.readMETAINFClassNames Found
provider class name: org.apache.wsif.providers.ejb.WSIFDynamicProvider_EJB
9444 [main] DEBUG org.apache.wsif.* -
EVENT WSIFPluggableProviders.readMETAINFClassNames Found
provider class name:
org.apache.wsif.providers.java.WSIFDynamicProvider_Java

The columns before the ENTRY/EXIT are configurable in log4j.properties. In the sample
above, the [main] shows that all these trace statements were made from the main thread. In a
multithreaded application, the trace statements from all threads are interleaved. After the

WSIF Trace

Page 2

ENTRY/EXIT is the WSIF classname.methodname indented according to stack depth. The
hex number in angle brackets (<>) after the method name is the java object id, so it is
possible to tell which object this method was run against. Methods which do not have an
object id are static methods. After the object id are the parameters passed or returned from
that method. Null parameters are represented as <null>. Some WSDL objects are represented
as their fully qualified name and their object id. For instance
definition({http://mynamespace}MyDefinition,1128e5e0). Some parameters may get traced
over multiple lines.

Occasionally a method will be indented by two (or more) spaces than the method that called
it, according to the trace. This is demonstrated in the sample trace above, by
readMETAINFClassNames being indented by 5 more spaces than getAllDynamicProviders.
This is because getAllDynamicProviders calls other private methods which aren't traced,
which in turn call readMETAINFClassNames. So the indentation is a true reflection of the
WSIF stack depth, but not all private methods get traced.

ENTRY trace statement represents a call to a method. An EXIT statement represents the
return from a method. An EVENT statement represents other interesting information which
may prove useful when diagnosing problems. An EXCEPTION trace statement represents a
java exception at the moment that it is caught by WSIF. An ignored exception also represents
a java exception at the moment that it caught by WSIF. The difference between an
EXCEPTION and an ignored exception is that an EXCEPTION represents an unexpected
problem (in the application, the WSDL, in WSIF or elsewhere), whereas an ignored
exception represents an exception that was expected to be thrown and caught routinely as
part of WSIF mainline code and does not represent a problem in itself. EXCEPTIONs are
accompanied by their stack trace.

WSIF trace statements can be made from classes that are not part of WSIF. Such trace
statements have their classname prefixed with their fully qualified package name.
Commons-logging supports package-level tracing. That enables trace to be switched on or
off for individual packages. This is not supported by WSIF. The only exception to this is
tracing of WSIF logging itself. Tracing org.apache.wsif.logging.* enables trace to trace itself.
This should be used with caution since traces produced this way are huge and difficult to use
to diagnose problems that aren't in trace itself. A trace statement that contains "****
Exception in WSIF trace statement *******" represents a trace statement that itself has a bug
in it. Such bad trace statements should not affect the normal operation of WSIF, whether or
not trace is on.

WSIF Trace

Page 3

