How to write a provider

1What isaWSIF Provider?

WSIF, as its name suggests is an open-ended framework for invoking WSDL described
services. As long as a WSDL description of the endpoint exists, it should be possible to use
this framework to invoke that piece of software, whatever it may be.

As has been described in this introductory article, the WSIF API is driven by the abstract
WSDL description of the service, and thus operates at a protocol-independent level. When an
invocation takes place at runtime, the invocation of the abstract operation offered by the
service needs to be converted into a protocol-specific mechanism for contacting the service
endpoint, conveying the input message or other required information to the service, and
receiving the response if any that results from the invocation. This result is eventualy
returned to the application that uses the high-level, protocol-independent WSIF API.

The protocol-specific piece of software that enables the invocation to take place is the WSIF
provider. There is one WSIF provider for each kind of WSDL binding supported by a
particular installation of WSIF. For example, a particular installation may include the WSIF
core along with the SOAP and EJB providers only. This would allow clients using WSIF at
that site to invoke WSDL -described service that have SOAP or EJB bindings. Providers are
pluggable and can be added to the installation at runtime.

So far we understand that when the code using the WSIF API (let's call it the application,
even though this code might actually be WSIF's dynamic proxy which provides an additional
layer of abstraction for the real application) to invoke a service with a SOAP binding, the
invocation takes place through a WSIF provider that supports this binding. How is a provider
discovered? What happens if multiple providers support the same binding? (This is indeed
the case for SOAP, since WSIF includes a SOAP provider based on Axis and one based on
Apache SOAP). We will not address these issues in this document, here we will concentrate
on the provider architecture itself, without regard to how WSIF knows about their existence.

2 Writing your own WSIF provider

A pre-condition for a working provider is that there should be a well-defined WSDL binding
that it supports, along with the associated WSDL4J code that is capable of parsing the
binding. Note that WSDL4J, by default, supports only the standard WSDL 1.1 bindings:

Page 1

http://www-106.ibm.com/developerworks/webservices/library/ws-appwsif.html?loc=dwmain

How to write a provider

SOAP, HTTP and MIME. To add support for other providersin WSIF, one would first need
to define the WSDL binding extensions, define the corresponding WSDL4J extensibility
elements, and then register the serializers and deserializers for these extensibility elements
with the WSDL4J extension registry. Details on this are available here. The WSIF provider
will use the WSDL4J extensibility elements defined since these are the in memory
representation of the datain the binding.

3 TheWSIFProvider interface

Let's discuss the specifics of a WSIF provider. A provider must implement the following
interface:

/**
* For the given WSDL definition, service and port
* try to provide dynam c port,
* or return null if this provider can not do it.
* |t is required to pass definition and service in addition to port
* as in current WeDL4J it is not possible to retrieve service to
* which port belongs and definition in which it was defined.
*/

public WSl FPort createDynam cWSl FPor t (
Definition def,
Servi ce service
Port port,
WSl FDynam cTypeMap typeMap)
t hrows WSl FExcept i on

/**
* Returns the WBDL nanespace URIs of any bindings this provider
supports.
* The assunption is nmade that the provider supports all conbinations
of
* bindi ng and address nanespaces returned by this and the
* get Addr essNanespaceURl s net hod.
* @eturn an array of all binding namespaces supported by this
provi der
*/
public String[] getBindi ngNanmespaceURI s();
/**
* Returns the WBDL nanmespace URIs of any port addresses this provider
supports.
* The assunption is nmade that the provider supports all conbinations
of
* bindi ng and address nanespaces returned by this and the
* get Bi ndi ngNanespaceURI s net hod.
* @eturn an array of all address namespaces supported by this
provi der

*/
public String[] get AddressNanespaceURI s();

Page 2

how_to_wsdl_extensions.html

How to write a provider

OK, that's all you need to know. What, you mean the above wasn't self-explanatory?

So let's get into a little more detail. Let's start with the simpler methods:
get Bi ndi ngNanespaceURI s() and get AddressNanespaceURIs(). Each
binding extension in WSDL is defined in a particular XML namespace. For example, the
SOAP binding IS defined in the namespace
http://schemas. xm soap. or g/ wsdl / soap/ , and similarly, so are the extensions
under the <port > section of a WSDL document (often, as in the case with the SOAP
extensions, the namespace is the same as the one in which binding extensions are defined).
S0, as the javadoc comments suggest, the WSIF runtime assumes that the provider supports
invocation of any service with a namespace URI for binding extensions that is one of those
returned by get Bi ndi ngNanmespaceURI s() and a namespace URI for address
extensibility elements that is one of those returned by get Addr essNanespaceURI s() .

The core of the provider is the method cr eat eDynam cW8SI FPort (..). Thisreturns a
WEBIl FPor t object that is constructed dynamically using:

« thedefinition of the service we areinvoking (thej avax. wsdl . Definition
parameter)

» theservice we are invoking within that particular WSDL (thej avax. wsdl . Servi ce
parameter)

» the port offered by the service that lets us know the specific service endpoint, the binding
and the port type that is being invoked (thej avax. wsdl . Port parameter)

« atype map that maps abstract schematypesin the WSDL messages for the operations in
the port type being invoked to javatypes that correspond to them. WSIF will expect
messages provided at the time of invocation to have parts that are java objects of the
required type, as specified by the type map (it of course allows the object used for the
invocation to be of aless specific type as well).

Let's consider how a specific provider implements this and other interfaces. We will
concentrate on identifying patterns that most provider implementations follow. Consider, for
example, the Apache SOAP provider. Here is the source code for this implementation of the
WEI FPr ovi der interface. It is fairly straightforward. The constructor usually does very
little, in most cases nothing. In this particular case it has a mechanism to set up the binding
and address namespace URIs supported by this provider. It aso adds to the WSDL4J
extension registry used by WSIF the capability to parse IMS extensions. The capability to
parse SOAP, EJB and java extensions are pre-registered, all other binding extensions may be
registered in this fashion. The cr eat eDynam cW5l FPort method in the Apache Axis
provider parses the binding associated with the port being invoked and verifies that it is
indeed a SOAP binding. If this is the case, it creates a W5l FPort _ApacheAxi s object,
which implements the W5l FPor t interface.

Page 3

http://svn.apache.org/viewvc/webservices/wsif/trunk/java/src/org/apache/wsif/providers/soap/apacheaxis/WSIFDynamicProvider_ApacheAxis.java?view=co

How to write a provider

4 The WSl FPort interface

The main function of the WSIF port that is to create a W5l FQper at i on object at runtime
when a WSDL operation needs to be invoked. At the minimum, the WBI FPort needs to
know the name of the operation. If there is a possibility of overloaded operations, the
application may invoke the form that takes the names of the input and output messages in
addition to the name of the operation. W5l FOper at i on objects are the brains of the outfit;
they actually perform the invocation based on a specific protocol. But more on that later, first
let's see how the Axis provider implements the WBI FPor t interface. The implementation in
the constructor itself parses the binding being invoked, doing some processing based on the
transport being used (since WSIF's Axis provider supports SOAP messages over HTTP or
JMS). In addition, it also verifies that the binding is indeed supported (for example WSIF
does not support SOAP bindings that use document style instead of RPC style invocations
using the Axis provider (document style is supported when using the Apache SOAP provider
to handle SOAP bindings). Finally, the Axis implementation of the port actually iterates
through the binding, creating a WSl FOperati on_ApacheAxi s object (the
protocol-specific implementation of the WSl FOper at i on interface) for each operation in
the binding. These WBI FOper at i on objects are cached so that they don't have to be
created each time. Of course that is optional, a bare-bones version of a provider could do
very little in the constructor. The most useful method implemented here is
creat eQper ati on, which creates the appropriate WSl FOper at i on_ApacheAxi s
object (based on the operation name and input and output names, if provided, to resolve the
exact operation the application wants to invoke). The method first looks up the cache
containing previously created instances and may reuse them or may create a new one.

5 The WSIFOperation interface

The real brains of the outfit is the WSl FQper at i on object. This interface has a number of
useful methods, so let'sdo it in some detail:

*

/
A WSl FOQperation is a handle on a particul ar operation of a portType
that can be used to i nvoke web service nethods. This interface is

i mpl enent ed by each provider. A WSl FOperation can be created using
{@ink WBI FPort #creat eOperation(String)}.

@ut hor Ownen Burroughs <owenb@pache. or g>
@ut hor Ant El der <antel der @pache. or g>
@ut hor Jereny Hughes <hughes) @pache. or g>
@ut hor Mark Wi tl ock <whitl ock@pache. or g>

* %k X X X X F X F

*

*/
public interface WSl FOperation extends Serializable {

Page 4

http://svn.apache.org/viewvc/webservices/wsif/trunk/java/src/org/apache/wsif/providers/soap/apacheaxis/WSIFPort_ApacheAxis.java?view=co

How to write a provider

*

/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
u

*

/

*
*
*
*
*
*
*
*
*
u

*

/

*
*
*
*
*
*
*
*
*
*
*
u

Execut e a request-response operation. The signature allows for
i nput, output and fault nessages. WBDL in fact allows one to
descri be the set of possible faults an operation may result
in, however, only one fault can occur at any one tine.

@ar am op nanme of operation to execute

@aram input input nmessage to send to the operation

@ar am out put an enpty nessage which will be filled in if
t he operation invocation succeeds. If it does not
succeed, the contents of this nessage are undefi ned.
(This is a return value of this nethod.)

@aram fault an enpty nessage which will be filled in if
the operation invocation fails. If it succeeds, the
contents of this nessage are undefined. (This is a
return value of this nethod.)

@eturn true or false indicating whether a fault nessage was
generated or not. The truth val ue indicates whether
the output or fault message has useful information

@xception W5l FException if something goes w ong.

/
publ i c bool ean execut eRequest ResponseQper ati on(

WSl FMessage i nput
WEl FMessage out put,
WSl FMessage fault)
t hr ows WSl FExcept i on;

Execut e an asynchronous request
@ar am i nput i nput message to send to the operation

@eturn the correlation ID or the request. The correlation ID
is used to associate the request with the WSl FOperation

@xception WSl FException if something goes w ong.

/
public WSl FCorrel ati onl d execut eRequest ResponseAsync(W5l FMessage i nput)

t hrows WSl FExcept i on;

Execut e an asynchronous request

@ar am i nput i nput nmessage to send to the operation

@ar am handl er the response handler that will be notified
when t he asynchronous response becones avail abl e.

@eturn the correlation ID or the request. The correlation ID
is used to associate the request with the WSl FOperation

@xception WSl FException i f somethi ng goes w ong.

/
public WSl FCorrel ati onl d execut eRequest ResponseAsync(

W5l FMessage i nput

Page 5

/

*
*
*
*
*

*/

How to write a provider

W5l FResponseHandl er handl er)
t hrows WSl FExcepti on

fireAsyncResponse is called when a response has been received
for a previous execut eRequest ResponseAsync cal l .

@ar am r esponse an (bject representing the response
@xcepti on WSl FException i f somethi ng goes w ong

public void fireAsyncResponse(Cbj ect response) throws W5l FExcepti on

/**

*

¥k X Ok F 3k X Sk X X 3k X X F Xk X X *

*/

Processes the response to an asynchronous request.

This is called for when the asynchronous operati on was
initiated without a W5l FResponseHandl er, that is, by calling
t he execut eRequest ResponseAsync(W5l FMessage i nput) net hod.

@ar am r esponse an (Object representing the response

@ar am out put an enpty nessage which will be filled in if
t he operation invocation succeeds. If it does not
succeed, the contents of this nmessage are undefined.
(This is a return value of this nethod.)

@aram fault an enpty nmessage which will be filled in if
the operation invocation fails. If it succeeds, the
contents of this nessage are undefined. (This is a
return value of this nethod.)

@eturn true or false indicating whether a fault nessage was
generated or not. The truth val ue indicates whether
the output or fault message has useful information

@xcepti on WSl FException i f somethi ng goes w ong

publ i c bool ean processAsyncResponse(

/**

*
*
*
*

*/

oj ect response,

WEl FMessage out put,
WSl FMessage fault)

t hr ows WSl FExcept i on;

Execute an input-only operation.

@aram input input nmessage to send to the operation
@xception WSl FException if something goes w ong.

public void executel nput Onl yOper ati on(Wsl FMessage i nput) throws
WSl FExcepti on

/

* %k X X X

*

Al ows the application progranmer or stub to pass context
information to the binding. The Port inplenentation may use
this context - for exanple to update a SOAP header. There is
no definition of how a Port may utilize the context.

Page 6

How to write a provider

* @aram cont ext context information
*/
public void set Cont ext (W5l FMessage cont ext);
/**
* Gets the context information for this binding.
* @eturn context
*/
publ i c WSl FMessage get Cont ext () ;

/**

* Create an input nmessage that will be sent via this port.
* |t is responsibility of caller to set nessage nane.

* @eturn a new nessage

*/

publ i c WSl FMessage creat el nput Message() ;

/**

* Create an input nessage that will be sent via this port.
* @aram nane for the new nessage

* @eturn a new nmessage

*/

public WSl FMessage creat el nput Message(String nane);

/**

* Create an output nessage that will be received into via this port.
* |t is responsibility of caller to set nessage nane.

* @eturn a new nessage

*/

publ i c W5l FMessage creat eCut put Message() ;

/**

* Create an output nmessage that will be received into via this port.
*

* @aram nane for the new nessage

* @eturn a new nmessage

*/

publ i c WSl FMessage creat eQut put Message(Stri ng nane);

/**

* Create a fault nessage that may be received into via this port.
* It is responsibility of caller to set nessage nane.

* @eturn a new nessage

*/

publ i c W5l FMessage creat eFaul t Message() ;

/**

* Create a fault nessage that nmay be received into via this port.
*

* @aram nane for the new nessage

* @eturn a new nessage

*/

public WSl FMessage creat eFaul t Message(String nane);

Page 7

How to write a provider

}

Most of the above is self-explanatory. The important things to note is that the invocation is
achieved through this object. It also is capable of creating the messages (input, output, fault)
that are associated with any invocation; such messages can be populated with data and then
provided to methods such as execut eRequest ResponseQper at i on. Note also that as
operations are designed right now, instances may not be reused since they often carry state
that interferes with subsequent invocations using the same object. To prevent such misuse,
the default implementation of the interface (which is extended by other implementations
including W5l FQper at i on_ApacheAxi s) hasacl ose method which must be invoked
at the end of an invocation and sets a flag preventing further use. Applications may create a
new operation instance using the WSl FPor t . At some point we expect to modify the way
operation instances are handled to allow reuse except in specific cases, hopefully ssimplifying
the provider contract and improving performance.

The Axis provider implementation of this interface is here. Everything the class does boils
down to the use of the i nvokeRequest ResponseQper at i on method. We won't get
into detail, but this uses a protocol-specific library (in this case JAX-RPC, which is the client
programming model supported by Axis) to invoke the service. Note how the provider code
handles the type map that was provided at the time of creating the W5l FPor t for invoking
this service. For Axis, we need to register serializers and deserializers to marshall and
unmarshall java objects into SOAP messages. This must be done prior to an invocation for it
to work. Other providers may have to take similar steps to make sure they are capable of
handling the java-typed data that populate the input and output messages used for invocation.

So far we have not touched on W51 FMessage objects which are ubiquitous in the provider
code. It's enough to think of a W8I FMessage as a map of WSDL message part names to
java objects representing the value of that particular part. The type of the java object must
match the expected type according to the type mapping supplied to the WSIF provider. WSIF
also alows for creation of messages using primitive java types. The WSIF message interface
isavailable here.

That'sit!

The protocol-specific implementation of the W5l FPr ovi der interface, the WSl FPor t
interface and the WSI FOper at i oninterface are al that are generally required to implement
aWSIF provider. Supporting classes may also be included - for example the SOAP providers
(both, Apache SOAP and Apache Axis providers) have utility classes to handle message
exchanges using the JM S transport.

6 Open Issues
Performance and stateful operations (for examplein JCA connectors):

Page 8

http://svn.apache.org/viewvc/webservices/wsif/trunk/java/src/org/apache/wsif/providers/soap/apacheaxis/WSIFOperation_ApacheAxis.java?view=co
http://svn.apache.org/viewvc/webservices/wsif/trunk/java/src/org/apache/wsif/WSIFMessage.java?view=co

How to write a provider

from Paul Fremantle email

How about explicitly identifying which providers require
stateful operations and which dont. Those that dont could
reuse operations froma cache, ignore closes etc. |I'mnot sure
this wll help us either. At the noment our HITP support is
not efficient because we don't reuse HITP connections. If we
updated it to be nuch nore closely bound to the real HITP
interactions then maybe close() mght be useful?? | havent
really thought this through, but | know that close() was
designed to allow I ong runni ng connecti ons.

Page 9

