
jUDDI Architecture for UDDI v3 Project

The diagram above shows the software layers and components employed in the jUDDI
project implementation for UDDI v3. Here is a brief description of each item in the diagram
and how they all work together to create the UDDI-compliant registry that is jUDDI:

Transport - the transport layer provides the means to receive and send out requests via a
network or messaging service. The UDDI specification details an interface where XML
messages are exchanged between client and server but is agnostic as to how those
messages are relayed. By default, jUDDI uses Apache CXF to transport messages via SOAP
over HTTP, however, the system is designed so other methods of transport can be easily
plugged in (for example, JMS).

Security - security is provided by the UDDI specification and is based on policies defined in
the specification. jUDDI implements all the mandatory policies and can be extended to
support the optional policies. Chief among these policies is access control to the UDDI API
exposed by jUDDI. jUDDI fully implements this policy, per the specification, which allows

users to easily plug in their own third-party authentication framework.

UDDI Interface - the UDDI interface defines the methods set forth by the UDDI specification
to interact with the registry. Within jUDDI, the interface classes are generated from the UDDI
WSDL and they are implemented as POJOs. These classes are annotated with JAX-WS
annotations allowing end-users to easily employ any suitable JAX-WS container to expose
the interface.

In general, the interface implementation accepts incoming UDDI-based requests and
ummarshals these requests to the appropriate schema object. This object is then served to
the proceeding layers so the necessary logic can be performed to fulfill the request. After the
request is fulfilled, this layer is responsible for marshalling the result and sending the
response to the requesting party.

As the interface is implemented as POJOs, it can be accessed via an "embedded" mode. In
this scenario, the methods of the implementation classes can be called directly. This allows
users to embed jUDDI directly into their application without having to deploy a full-blown
jUDDI server.

UDDI Schema Objects - The UDDI specification comes equipped with an XML schema for its
many data structures. jUDDI employs XML-binding technology (JAXB) to generate objects
from the schema (contained within the WSDL) that are then used as the arguments for the
UDDI Interface layer. These objects needn't originate from XML – they can also be
instantiated directly to make UDDI calls directly in java code.

Validation – the validation layer reads the schema object input from the UDDI interface layer
and, based on rules defined in the specification, makes sure the input is valid for the given
UDDI method. Failed validation results in an exception and an immediate return from the
method call.

Mapping – the mapping layer is responsible for mapping the UDDI schema objects to the
persistence layer model. For all intents and purposes, the mapping layer simply copies data
from a schema object to the similar model object. This occurs in both directions, as input
objects must be mapped to the model to perform the necessary logic and results obtained
from the call must be mapped back to the schema as output to the caller.

Business Logic - the business logic layer is responsible for performing all the business logic
associated with the UDDI calls. The logic layer works with objects from the persistence layer
and generally consists of querying the model based on user input.
.
Persistence - the persistence layer, as its name implies, is responsible for persisting registry
data to a storage medium. To this end, a third-party persistence service that implements the
Java Persistence API (Apache OpenJPA, Hibernate) is utilized to manage transactions with
the storage medium and also to facilitate the plugging-in of various storage types. By default,
jUDDI is packaged with Apache OpenJPA as the persistence provider and Apache Derby as
the storage medium. This can easily be configured.

