The syntax parser

1. The syntax parser

JaxMeX S mainly consists of three parts: A generic parser, which is by no means restricted to
XML schema, a syntax parser, which is is dedicated to the syntactical aspects of XML
schema, and a structure parser, which understands the logic. Extending JaxMeXS will always
imply extending the syntax parser. In the most cases this will even be sufficient: Who's
interested in creating a language as complex as XML schema?

The syntax parser is an application of the generic parser. This means, that it converts any
element in the XML schema into a Java bean. The attributes and elements are mapped to
bean properties. Attributes have simple values like strings or integers, but a child element is
yet another bean. In what follows, we'll discuss the following aspects:

1. Using the syntax parser.

2. Making the schema parser to use your own beans.

3. Adding new attributes to an existing schema element.
4. Handling different namespaces.
5
2

. Adding new child elements.

. Using the syntax par ser

To use the syntax parser, instantiate the class X SParser and invoke its par se() method, for
example likethis:

i mport java.io.Fil el nputStream
i mport org.xm . sax. | nput Sour ce;
i mport org.apache. ws. | axne. xs. XSPar ser :

public class MyParser {
public static void main(String[] args) throws Exception {

Fil el nput Stream fs = new Fil el nput Strean{args[O0]);

| nput Source is = new | nput Source(fs);

is.setSystemd(fs.toURL().toString()); // This is inmportant, if you use a DTD,
/] external entities, schema validation,
/1 in other words: Other files

XSPar ser parser = new XSParser();

XsESchena schema = parser. parseSyntax(is);

Page 1

generic.html
generic.html
../apidocs/org/apache/ws/jaxme/xs/XSParser.html

The syntax parser

That's it! The returned instance of XsESchema is a standard schema with methods like
get Tar get Nanespace() or get Chi |l ds() . For example, the list of global types can
be retrieved as follows:

oject[] childs = schema. get Chil ds();
for (int i =0; i < childs.length; i++) {
hject o = childs[i];
if (o instanceof XsETopLevel Simpl eType) {
XsETopLevel Si mpl eType t = (XsETopLevel Si npl eType) o;
Systemout.println("Sinple type: " + t.getName());
} else if (o instanceof XsTCompl exType) {
XsTConpl exType t = (XsTConpl exType) o;
System out. println("Conplex type: " + t.getNanme());

}
}

This is not very comfortable, but the intent of the syntax parser is simplicity, and not
comfort.

3. Forcing the schema par ser to use your own beans

The beans returned by the schema parser are instances of XsObjectimpl, implementing the
interface XsObject. The XsCbj ect interface allows access to the SAX location.

However, you might replace these completely with own implementations. The object factory
makes it possible.

Any of the standard XML schema beans is created by the object factory. For example, the
method newXSESchema() isinvoked to create the schema bean. We take this bean as an
example and change the behaviour of its attribute t ar get Nanespace. For compatibility
reasons we want to replace the namespace
http://conpany. com nanmespaces/ versi onl with
htt p:// conpany. com nanmespaces/ ver si on2. To achieve that, we have to create
three classes:

1. A subclass of XsESchemalmpl with amodified set Tar get Nanespace() method,

2. an updated object factory, that doesn't create an instance of the base class, but an instance
of our subclass,

3. and, finally, a parser that uses our own object factory.

Let's begin with the first task:

i mport org.xm.sax.Locator;
i mport org.apache. ws. jaxmne. xs. xm . XsObj ect Fact ory;
i mport org.apache. ws. | axnme. xs. xnl . i mpl . XsESchenmal npl ;

Page 2

../apidocs/org/apache/ws/jaxme/xs/xml/XsESchema.html
../apidocs/org/apache/ws/jaxme/xs/xml/impl/XsObjectImpl.html
../apidocs/org/apache/ws/jaxme/xs/xml/XsObject.html
../apidocs/org/apache/ws/jaxme/xs/xml/XsObjectFactory.html
../apidocs/org/apache/ws/jaxme/xs/xml/impl/XsESchemaImpl.html

The syntax parser

public class MySchenma ext ends XsESchenmal npl
protected MySchema(XsObj ect Factory pFactory, Locator pLocator) ({
super (pFactory, pLocator);

public void set Target Nanespace(XsAnyURI pURI) {

if (pURI.equal s("http://conpany. conl nanespaces/versionl")) {
pURI = "http://conmpany. com nanmespaces/versi on2";

}
super . set Tar get Nanespace(pURl) ;

}

}
Neat, isn't it? Now, here's the object factory:

i mport org.apache. ws. jaxme. xs. xm . XsESchena;
i mport org.apache. ws. jaxme. xs. xnl . i mpl . XsObj ect Fact oryl npl ;

public class MyXsObj ect Factory extends XsObj ect Factoryl npl {
publ i c XsESchema newXsESchema() {
return new MySchema(this, getlLocator());

}
Y ou probably already guess how the parser looks like:

i mport org.apache. ws. j axme. xs. XSPar ser ;

public class M/Parser extends XSParser ({
public MyParser() {
get Dat a() . set XsObj ect Fact ory(new MyXsCbj ect Factory());

}

Now we have a paser, which does no longer distinguish between
http://conpany. com nanmespaces/ ver si on2 and
htt p:// conpany. com nanmespaces/ ver si onl inthe target namespace.

4. Adding new attributesto an existing schema element.

We adready know how to extend the parser.This knowledge will be applied in the following
example: We'll have an an additional attribute "ignore" in the element definition. It ought to
have a boolean value. (For example, the attribute might indicate that a custom program
should ignore the element.)

The attribute is introduced by adding a property "ignore" to the "element” bean. This might
look like this:

Page 3

The syntax parser

i mport org.xm .sax.Locator;
i mport org.apache. ws. jaxmne. xs. xm . XsObj ect Fact ory;
i mport org.apache. ws. | axne. xs. xnl . i npl . XsTEl enent | npl ;

public class M/ElI enent extends XsTEl enent| npl {
private bool ean i gnorelMe;

prot ected MyEl enent (XsCbj ect Factory pFactory, Locator pLocator) {
super (pFactory, pLocator);

public void setlgnore(bool ean plgnore) ({
i gnoreMe = plgnore;

publ i c bool ean getlgnore() {
return ignoreMe;

}

We are not yet done. As we are using an own bean, we have to extend the object factory to
return this bean, if the method newXsTEl enent | npl () is invoked. We also have to
extend the parser to use the extended object factory. These steps have aready been described
in the previous section, so we omit it here.

5. Handling different namespaces

What we did in the previous section on adding attributes, wasn't really conforming to XML
Schema. Our attribute had the default namespace, as the standard XML Schema attributes do.
Any other namespace had been a better choice. XML Schema allows to include arbitrary
attributes into a schema, as long as they do not have the XML schema namespace.
Surprisingly, the default namespace isn't implicitly forbidden. Anyways, such behaviour
cannot be recommended.

To support attributes from other namespaces, we'll have to add another method to our bean.
The method is called

public bool ean setAttribute(String pQNane, String pNanespaceURI
String pLocal Nanme, String pVal ue)
t hr ows SAXExcepti on;

The boolean return value allows the method a decision to handle an attribute (for example, if
it isdefined in a particular additional namespace) by returning t r ue or to leave the attribute
to the standard mechanisms by returning f al se. A typical implementation might look like
this:

if (!"http://conpany. conl nanespaces/ nynanespace". equal s(pNanespaceURI)) {
return false;

Page 4

The syntax parser

}
if ("ignore".equal s(pLocal Nane)) {

set | gnor e(Bool ean. val ueXf (pVal ue) . bool eanVal ue());
} else {

t hrow new SaxPar seException("Invalid attribute: " + pValue, getLocation());
}

The meaning is obviouss We fed responsible for the namespace
http:// conpany. com nanmespaces/ nynanespace. If the attributes namespace is
different, we simply return false. If the namespace matches, we accept the attribute "ignore”,
and refuse all others by throwing a SAXExcept i on.

6. Adding new child elements

The handling of a new child is no more complex than the handling of attributes. In fact, it
works quite the same. Basically one creates a new bean and adds a bean property to the
parent element, asin the following example:

MyChi | dBean chi | dBean;

public MyChil dBean createM/Child() {
if (childBean != null) {
throw new I || egal St at eException("Multiple '"nyChild elements are forbidden.");

}
chi | dBean = new MyChi | dBean();
}

public MyChil dBean get MyChi l d() {
return chil dBean;

}

This code is added to the parent bean. For example, if we want to have a new element
xs: schema/ xs: myChi | d, we could create a new subclass of XsESchemalmpl with the
above code. By extending the object factory to use our updated schema bean and extending
the parser to use our private object factory, we would be done. (The latter steps are asin the
first example section on using our own beans.)

There are two possible reasons, why the above code might be insufficient: First of all, the
example obviously doesn't care for namespaces. Second, there's a chance that we do not want
to create a simple bean. For example, the standard behaviour of XsEAppinfo is to convert
child elementsinto DOM documents.

Both becomes possible by the following example:

i mport org.xm .sax. Content Handl er;
i mport org.apache. ws. j axme. xs. par ser. i nmpl . XsSAXPar ser | npl ;

Page 5

../apidocs/org/apache/ws/jaxme/xs/xml/impl/XsESchemaImpl.html
../apidocs/org/apache/ws/jaxme/xs/xml/impl/XsEAppinfoImpl.html

The syntax parser

MyChi | dBean chi | dBean;

publ i ¢ Cont ent Handl er get Chi | dHandl er (String pQNane, String pNanmespaceURI,
String pLocal Nane) throws SAXException {
if (!"http://conpany. conl nanmespaces/ nynanespace". equal s(pNanespaceURI)) {
return null;

if ("myChild".equal s(pLocal Nanme)) {
if (childBean !'= null)
throw new |11 egal St at eException("Miltiple "myChild" child elenents are forb

}
chi | dBean = new MyChi | dBean();
return new XsSAXPar ser | npl (chil dBean);
} else {
throw new ||| egal St at eExcepti on("Unknown child elenment: " + pQNane);

}
}

public MyChil dBean get MyChil d() {
return chil dBean;

Besides the different namespace, the example is functionally equivalent to the previous
example.

Page 6

	1 The syntax parser
	2 Using the syntax parser
	3 Forcing the schema parser to use your own beans
	4 Adding new attributes to an existing schema element.
	5 Handling different namespaces
	6 Adding new child elements

