
Accessing a Tamino database

Tamino is a native XML database by Software AG. Compared to a relational database, it has
the disadvantage of being not very popular. However, if your data is structured (more
structured than conveniently expressible by relational data structures, that is) you will soon
find a lot of advantages and possibly prefer it over a traditional SQL database engine. From
within JaxMe, Tamino may be accessed in either of three ways:

• Via the XML:DB API, implemented by the XmlDbPM. This is the recommended way if
you want your application to be portable amongst various XML databases. The XML:DB
API is being described in a separate document. (To be done.)

• Via native HTTP, implemented by the InoManager. This solution is recommended, if you
need a very low memory profile, even for processing a large result set. In particular it
offers a true streaming mode.

• Via the official Tamino Java API, called TaminoAPI4J. This is recommended for
enterprise applications, as it allows to embed Tamino into the transactional context of an
EJB container.

1. Preparations

Tamino is accessible via two different query languages. The elder variant is called X-Query
and is best compared with XPath. The newer language is based on XQuery.

XPath and X-Query share an important problem when using namespaces: They have no
mapping between namespace prefixes and namespace URIs. In other words, if you perform a
query like

_xql=ad:Address

then the database must know, that the prefix ad is mapped to the namespace URI
http://ws.apache.org/jaxme/test/misc/address.

Tamino and the JaxMe managers overcome the absence of a mapping in the query by storing
the mapping from the schema and using that. In other words, if you are using namespaces,
then you should:

1. Specify a prefix for the namespace in the schema.
2. Use the same schema (and thus the same prefix) for the database schema as well as the

JaxMe generator. (Obviously this is recommended anyways.)

Page 1
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

http://www.softwareag.com/tamino/
http://www.softwareag.com/
../apidocs/org/apache/ws/jaxme/pm/xmldb/XmlDbPM.html
../apidocs/org/apache/ws/jaxme/pm/ino/InoManager.html

3. Use the same prefix for specifying queries.

2. Preparing the Tamino Resource Adapter

If you are not using the Tamino Resource Adapter (which is typically the case, if you are not
using an EJB container like JBoss, WebSphere, or the like. In that case you may very well
skip this section and proceed to the next section, which is about creating the schema file.

Adding the Tamino Resource Adapter is covered in the documentation of the TaminoAPI4J.
However, we'll provide specific details for JBoss 3.2 here, because the docs are for JBoss 3.0
only and because we disagree with the recommendation to add the Tamino jar files to the
JBoss lib directory. So here's what we've done, step by step:

• Add the jar file TaminoAPI4J.jar to the rar file, for example
TaminoJCA_localTx.rar. Copy the RAR file to the JBoss deploy directory.

• Create a deployment descriptor file tamino-service.xml with the following
contents and copy it to the JBoss deploy directory. (Of course you should adapt the
database URL, user and password to your local settings. Most probably you would also
want to change the JNDI name MyTaminoLocalTxConnector.

<?xml version="1.0" encoding="UTF-8"?>
<server>
<!-- == -->
<!-- New ConnectionManager setup for Tamino -->
<!-- == -->
<mbean code="org.jboss.resource.connectionmanager.LocalTxConnectionManager"

name="jboss.jca:service=LocalTxCM,name=MyTaminoLocalTxConnector">
<attribute name="JndiName">MyTaminoLocalTxConnector</attribute>

<depends optional-attribute-name="ManagedConnectionPool">
<!--embedded mbean-->
<mbean code="org.jboss.resource.connectionmanager.JBossManagedConnectionPool"

name="jboss.jca:service=LocalTxPool,name=MyTaminoLocalTxConnector">
<attribute name="MinSize">0</attribute>

<attribute name="MaxSize">50</attribute>
<attribute name="BlockingTimeoutMillis">5000</attribute>
<attribute name="IdleTimeoutMinutes">15</attribute>
<!-- criteria indicates if Subject (from security domain) or app supplied

parameters (such as from getConnection(user, pw)) are used to distinguish
connections in the pool. Choices are
ByContainerAndApplication (use both),
ByContainer (use Subject),
ByApplication (use app supplied params only),
ByNothing (all connections are equivalent, usually if adapter supports
reauthentication)-->

<attribute name="Criteria">ByContainer</attribute>

<depends optional-attribute-name="ManagedConnectionFactoryName">
<!--embedded mbean-->

<mbean code="org.jboss.resource.connectionmanager.RARDeployment"

Accessing a Tamino database

Page 2
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

name="jboss.jca:service=LocalTxDS,name=MyTaminoLocalTxConnector">
<attribute name="ManagedConnectionFactoryProperties">
<properties>

<config-property name="TaminoURL" type="java.lang.String">http://localhost/tamino/test</config-property>
<config-property name="UserName" type="java.lang.String">ejb</config-property>
<config-property name="Password" type="java.lang.String">xxx</config-property>

</properties>
</attribute>

<!--Below here are advanced properties -->
<depends optional-attribute-name="OldRarDeployment">jboss.jca:service=RARDeployment,name=Tamino Resource Adapter for local transactions</depends>

</mbean>
</depends>

</mbean>
</depends>
<depends optional-attribute-name="CachedConnectionManager">jboss.jca:service=CachedConnectionManager</depends>
<depends optional-attribute-name="JaasSecurityManagerService">jboss.security:service=JaasSecurityManager</depends>
<depends optional-attribute-name="TransactionManagerService">jboss:service=TransactionManager</depends>

<!--make the rar deploy! hack till better deployment-->
<depends>jboss.jca:service=RARDeployer</depends>

</mbean>
</server>

• The Tamino driver is internally using the method
XMLReaderFactory.createXMLReader(). Unfortunately this method is using
Class.forName(String) internally to load the SAX driver class. This won't work
in an environment with complex class loaders. In order to make sure, that the latest SAX
version is used, I did the following:
1. Downloaded the jar file sax2r2.jar and extracted the jar file sax.jar from it.
2. Moved that file to the directory jre/lib/endorsed in my Java SDK directory.

3. An example schema for TaminoAPI4J

As an example, we'll reuse the schema from the marshaller examples, Address.xsd:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:ad="http://ws.apache.org/jaxme/test/misc/address"
xmlns:inoapi="http://ws.apache.org/jaxme/namespaces/jaxme2/TaminoAPI4J"
xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
jaxb:extensionBindingPrefixes="xjc inoapi"
xml:lang="EN"
targetNamespace="http://ws.apache.org/jaxme/test/misc/address"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:annotation>

Accessing a Tamino database

Page 3
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

<xs:documentation>
A simple JaxMe example: Personal address collection.

</xs:documentation>
<xs:appinfo>
<jaxb:globalBindings>
<xjc:serializable/>
<inoapi:raDetails collection="adr" jndiReference="java:MyTaminoLocalTxConnector"/>
<!-- If you are not using the Tamino Resource Adapter, then the following

will fit for you:
<inoapi:dbDetails collection="adr" url="http://127.0.0.1/tamino/adrDb"
user="me" password="MySecretPassword"/>

-->
</jaxb:globalBindings>
<tsd:schemaInfo name="Address">
<tsd:collection name="adr"></tsd:collection>

</tsd:schemaInfo>
</xs:appinfo>

</xs:annotation>

<xs:element name="Address">
<xs:complexType>
<xs:sequence>
<xs:element name="Name">

...
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Ignoring the details of the actual Address type, we only note the differences in the schema
header:

• A namespace prefix ad is specified for the target namespace. In the previous section we
have discussed, that this is a precondition.

• The element xjc:serializable element requests, that the generated classes
implement the interface java.io.Serializable. This is required for use within an
EJB container, as the objects wouldn't be serializable otherwise. The
xjc:serializable is a vendor extension from the JAXB RI and supported by
JaxMe too.

• The element tsd:schemaInfo fixes the schema and collection name. This element is
read by Tamino when creating the schema. It is ignored by JaxMe.

• The element inoapi:raDetails specifies the same collection name and a JNDI
name. The latter name is used to lookup the Tamino resource adapter.

• The JAXB specification requires, that the element jaxb:globalBindings contains
no elements from other namespace than jaxb. To add vendor extensions like
xjc:serializable and inoapi:raDetails, we need to add the attribute
jaxb:extensionBindingPrefixes="jaxb inoapi" to xs:schema.

Accessing a Tamino database

Page 4
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

4. Build your own JaxMe distribution

For licensing reasons, we cannot add the files TaminoAPI4J.jar and TaminoJCA.jar
to the JaxMe SVN repository. In particular we cannot offer compiled classes based on these
files in the JaxMe distribution. Unfortunately that means, that you have to build your own
distribution. Fortunately, this is quite simple:

• Download the JaxMe source distribution (to be distinguished from the JaxMe binary
distributon) and extract it.

• Download the TaminoAPI4J distribution and install it. Copy the files
TaminoAPI4J.jar and TaminoJCA.jar to the subdirectory prerequisites in
the JaxMe directory.

• Change to the JaxMe directory and run ant. The build script will automatically detect
the presence of the Tamino API files.

Note:
As of this writing, there is no official JaxMe distribution available, which includes the Tamino support. In other words, rather
than downloading the sources you have to extract them from the JaxMe SVN repository.

5. Creating an Ant task

To invoke the JaxMe generator, use an Ant task like the following:

<target name="generate">
<taskdef name="xjc" classname="org.apache.ws.jaxme.generator.XJCTask">
<classpath>

<fileset dir="lib" includes="jaxme*.jar"/>
<fileset dir="lib" includes="log4j-1.2.8.jar"/>

</classpath>
</taskdef>

<mkdir dir="${build.src}"/>
<xjc target="${build.src}">
<schema dir="${etc}" includes="*.xsd"/>
<produces dir="${build.src}" includes="org/apache/ws/jaxme/test/misc/address/**/*"/>
<sgFactoryChain className="org.apache.ws.jaxme.generator.ino.api4j.TaminoAPI4JSG"/>
<schemaReader className="org.apache.ws.jaxme.generator.sg.impl.JaxMeSchemaReader"/>

</xjc>
</target>

6. Using the native HTTP API

Not yet documented. (To be done.)

Accessing a Tamino database

Page 5
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

	1 Preparations
	2 Preparing the Tamino Resource Adapter
	3 An example schema for TaminoAPI4J
	4 Build your own JaxMe distribution
	5 Creating an Ant task
	6 Using the native HTTP API

