
Code Generator Wizard - Eclipse Plug-in
Introduction

The Axis2 code generator comes built- in with an Eclipse plug- in. This document explains the
installation and usage of the Axis2 code generator plug- in.

Installation

The easiest way to obtain the plug- in would be the binary distribution. The full Axis binary
distribution contains the compiled version of this plug- in under the tools directory.

If one needs to build the plugin from source it is not as trivial as running the Maven build.
The reason is that the plug- in depends heavily on the Eclipse classes, which are only
available in an Eclipse environment. The recommended procedure is to run the create-
project.xml build file which will create two folders (the other one for the Service Archiver
tool) and copy the necessary files to relevant folders. Then Eclipse should be configured to
open the contents in a PDE project. Please go through the Eclipse documentation to learn
how to open projects in the PDE format.

Once you've obtained the plug- in just unzip the content of the plug- in archive to the eclipse
plug- in directory (if it is the zipped-binary version) or copy the necessary folders to the
eclipse plug- in directory and restart Eclipse.

Note - This plug-in works on Eclipse version 3.0 and upwards

Operation

If the plug- in is properly installed you should see a new wizard under the "New" section.(use
the File -> New -> Other or Ctrl + N)

Selecting the wizard and pressing the next button will start the code generator wizard.
Following is the first wizard page.

To move on to the next page the WSDL file location must be given. The browse button can
be used to easily browse for a file rather than typing the whole path.

Once the WSDL file is selected, codegen options are to be selected. By far this is the most
important page in this wizard, which determines the characteristics of the code being
generated. Novices need not worry about these options since the most common options are
defaulted, But advanced users will find it very easy to "turn the knobs" using these options.

Once the options are taken care of, only the final step of the code generation is left. it is the
selection of the output file location.

When the output file location is selected, the Finish button will be enabled. Pressing the
finish button will generate the code and a message box will pop up acknowledging the
success. Well Done!

Code Generator Wizard - Command Line
Tool

Introduction

Just as old times there will be users who wish to use the command line version of the tool.
This basic tool is implemented by the WSDL2Code class and just for the convenience in the
java case (which would be the majority) there is another WSDL2Java class. One can choose
to run the main classes directly or use one of the scripts to run the WSDL2Code and
WSDL2Java appropriately. (the scripts are found in the bin directory of the binary
distribution)

Option Reference

-uri <Location of WSDL> WSDL file location. This should point to a

WSDL file in the local file system

-o <output Location> :

output file location. This is where the files
would be copied once the code generation is
done. If this option is omitted the generated
files would be copied to the working directory.

-l <language>

Output language. Currently the code generator
can generate code in Java and CSharp.
(CSharp support is limited) When omitted
defaults to Java.

Allowed options are

• java
• cs

-p <package name>
The target package name. If omitted, a default
package (formed using the target namespace
of the WSDL) will be used.

-a

Generate code only for async style . when this
option is used the generated stubs will have
only the asynchronous invocation methods.
Switched off by default.

-s

Generate code only for sync style . when this
option is used the generated stubs will have
only the synchronous invocation methods.
Switched off by default. When used with the -
a option, this takes precedence.

-t Generates a test case. In the case of Java it
would be a junit test case.

-ss Generates server side code (i.e. skeletons).
Default is off

-sd Generates the service descriptor (i.e.
server.xml). Default is off. only valid with -ss

Code Generator Wizard - Ant Task
The code generator also comes bundled with an Ant task. The ant task is implemented by the
org.apache.axis.tool.ant.AntCodegenTask class. Following are the ant task attributes.

Ant Task Reference

wsdlfilename WSDL file location. Maps to the uri option of
the command line tool

output

output file location. This is where the files
would be copied once the code generation is
done. If this option is omitted the generated
files would be copied to the working directory.
. Maps to the -o option of the command line

tool

language

Output language. Currently the code generator
can generate code in Java and CSharp.
(CSharp support is limited) When omitted
defaults to Java.

Allowed options are

• java
• cs

Maps to the -l option of the command line tool

packagename

The target package name. If omitted, a default
package (formed using the target namespace
of the WSDL) will be used. Maps to the -p
option of the command line tool.

asynconly

Generate code only for async style . when this
option is used the generated stubs will have
only the asynchronous invocation methods.
Defaults to false if omitted Only true and false
are applicable as values. Maps to the -a option
of the command line tool.

testcase Generates a test case

synconly

Generate code only for sync style . when this
option is used the generated stubs will have
only the synchronous invocation methods.
Defaults to false if omitted. Only true and
false are applicable as values. Maps to the -s
option of the command line tool.

serverside

Generates server side code (i.e. skeletons).
Only true and false are applicable as values.
Default is false. Maps to the -ss option of the
command line tool

generateserverxml

Generates server side code (i.e. skeletons).
Only true and false are applicable as values.
Default is false. Maps to the -sd option of the
command line tool.

Example build file using the custom Ant task

Following is an example ant build file that uses the custom Ant task.

<?xml version="1.0"?>
<project name="CodegenExample" default="main" basedir=".">
<target name="declare" >
<taskdef name="codegen"
 classname="org.apache.axis.tool.ant.AntCodegenTask"

 classpath="classes"/>
</target>
<target name="main" depends="declare">
<codegen
 wsdlfilename="C:\test\wsdl\CombinedService.wsdl"
 output="C:\"
 serverside="true"
 generateserverxml="true"
/>
</target>
</project>

Notice the taskdef that declares the codegen Ant task.

For this Ant task to work the following jars need to be in the class path.

• axis-wsdl-M2.jar (from the Axis2 distribution)
• axis-wsdl4j-1.2.jar (The WSDL4J implementation jar. Bundled with the Axis2

distribution)
• stax-api-1.0.jar (The StAX API's that contain the javax.xml.namespace.QName class.

This jar may be replaced by any other jar that contains the
javax.xml.namespace.QName implementation. However Axis2 uses this class from
the stax-api-1.0.jar which comes bundled with the Axis2 distribution)

Appendix
• Eclipse reference - http://www.eclipse.org/
• Custom Ant Tasks - http://ant.apache.org/manual/develop.html

