
WebServices - Axis

1. Axis Reference Guide

1.2 Version
Feedback: axis-dev@ws.apache.org

1.1. Table of Contents
• Tools Reference

• WSDL2Java Reference
• Java2WSDL Reference

• Deployment (WSDD) Reference
• Global Axis Configuration
• Individual Service Configuration
• Axis Logging Configuration

• Log Categories
• Pre-Configured Axis Components Reference

• On the server
• On the client

1.2. Tools Reference

1.2.1. WSDL2Java Reference

Usage: java org.apache.axis.wsdl.WSDL2Java [options] WSDL-URI
Options:
-h, --help
print this message and exit

-v, --verbose
print informational messages

-n, --noImports
only generate code for the immediate WSDL document

-O, --timeout <argument>
timeout in seconds (default is 45, specify -1 to disable)

-D, --Debug
print debug information

-W, --noWrapped
turn off support for "wrapped" document/literal

-s, --server-side

Page 1
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



emit server-side bindings for web service
-S, --skeletonDeploy <argument>
deploy skeleton (true) or implementation (false) in
deploy.wsdd.
Default is false. Assumes --server-side.

-N, --NStoPkg <argument>=<value>
mapping of namespace to package

-f, --fileNStoPkg <argument>
file of NStoPkg mappings (default NStoPkg.properties)

-p, --package <argument>
override all namespace to package mappings, use this package
name instead

-o, --output <argument>
output directory for emitted files

-d, --deployScope <argument>
add scope to deploy.xml: "Application", "Request", "Session"

-t, --testCase
emit junit testcase class for web service

-a, --all
generate code for all elements, even unreferenced ones

-T, --typeMappingVersion
indicate 1.1 or 1.2. The default is 1.1 (SOAP 1.1 JAX-RPC compliant.
1.2 indicates SOAP 1.1 encoded.)

-F, --factory <argument>
name of a custom class that implements GeneratorFactory interface
(for extending Java generation functions)

-i, --nsInclude <namespace>
namescape to specifically include in the generated code (defaults to
all namespaces unless specifically excluded with the -x option)

-x, --nsExclude <namespace>
namespace to specifically exclude from the generated code (defaults to
none excluded until first namespace included with -i option)

-p, --property <name>=<value>
name and value of a property for use by the custom GeneratorFactory

-H, --helperGen
emits separate Helper classes for meta data

-U, --user <argument>
username to access the WSDL-URI

-P, --password <argument>
password to access the WSDL-URI

-c, --implementationClassName <argument>
use this as the implementation class
-h, --help
Print the usage statement and exit
-v, --verbose
See what the tool is generating as it is generating it.
-n, --noImports
Only generate code for the WSDL document that appears on the command line.
The default behaviour is to generate files for all WSDL documents, the immediate
one and all imported ones.
-O, --timeout

WebServices - Axis

Page 2
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



Timeout in seconds. The default is 45. Use -1 to disable the timeout.
-D, --Debug
Print debug information, which currently is WSDL2Java's symbol table. Note that
this is only printed after the symbol table is complete, ie., after the WSDL is
parsed successfully.
-W, --noWrapped
This turns off the special treatment of what is called "wrapped" document/literal
style operations. By default, WSDL2Java will recognize the following conditions:
• If an input message has is a single part.
• The part is an element.
• The element has the same name as the operation
• The element's complex type has no attributes
When it sees this, WSDL2Java will 'unwrap' the top level element, and treat each
of the components of the element as arguments to the operation. This type of
WSDL is the default for Microsoft .NET web services, which wrap up RPC style
arguments in this top level schema element.
-s, --server-side
Emit the server-side bindings for the web service:
• a skeleton class named <bindingName>Skeleton. This may or may not be emitted

(see -S, --skeletonDeploy).
• an implementation template class named <bindingName>Impl. Note that, if this class

already exists, then it is not emitted.
• deploy.wsdd
• undeploy.wsdd
-S, --skeletonDeploy <argument>
Deploy either the skeleton (true) or the implementation (false) in deploy.wsdd. In
other words, for "true" the service clause in the deploy.wsdd file will look
something like:
<service name="AddressBook" provider="java:RPC">
<parameter name="className" value="samples.addr.AddressBookSOAPBindingSkeleton"/>
...
</service>
and for "false" it would look like:
<service name="AddressBook" provider="java:RPC">
<parameter name="className" value="samples.addr.AddressBookSOAPBindingImpl"/>
...

</service>
The default for this option is false. When you use this option, the --server-side
option is assumed, so you don't have to explicitly specify --server-side as well.
-N, --NStoPkg <argument>=<value>
By default, package names are generated from the namespace strings in the
WSDL document in a magical manner (typically, if the namespace is of the form

WebServices - Axis

Page 3
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



"http://x.y.com" or "urn:x.y.com" the corresponding package will be "com.y.x"). If
this magic is not what you want, you can provide your own mapping using the
--NStoPkg argument, which can be repeated as often as necessary, once for
each unique namespace mapping. For example, if there is a namespace in the
WSDL document called "urn:AddressFetcher2", and you want files generated
from the objects within this namespace to reside in the package samples.addr,
you would provide the following option to WSDL2Java:
--NStoPkg urn:AddressFetcher2=samples.addr
(Note that if you use the short option tag, "-N", then there must not be a space
between "-N" and the namespace.)
-f, --fileNStoPkg <argument>
If there are a number of namespaces in the WSDL document, listing a mapping
for them all could become tedious. To help keep the command line terse,
WSDL2Java will also look for mappings in a properties file. By default, this file is
named "NStoPkg.properties" and it must reside in the default package (ie., no
package). But you can explicitly provide your own file using the --fileNStoPkg
option.
The entries in this file are of the same form as the arguments to the --NStoPkg
command line option. For example, instead of providing the command line option
as above, we could provide the same information in NStoPkg.properties:
urn\:AddressFetcher2=samples.addr
(Note that the colon must be escaped in the properties file.)
If an entry for a given mapping exists both on the command line and in the
properties file, the command line entry takes precedence.
-p, --package <argument>
This is a shorthand option to map all namespaces in a WSDL document to the
same Java package name. This can be useful, but dangerous. You must make
sure that you understand the effects of doing this. For instance there may be
multiple types with the same name in different namespaces. It is an error to use
the --NStoPkg switch and --package at the same time.
-o, --output <argument>
The root directory for all emitted files.
-d, --deployScope <argument>
Add scope to deploy.wsdd: "Application", "Request", or "Session". If this option
does not appear, no scope tag appears in deploy.wsdd, which the Axis runtime
defaults to "Request".
-t, --testCase
Generate a client-side JUnit test case. This test case can stand on its own, but it
doesn't really do anything except pass default values (null for objects, 0 or false
for primitive types). Like the generated implementation file, the generated test

WebServices - Axis

Page 4
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



case file could be considered a template that you may fill in.
-a, --all
Generate code for all elements, even unreferenced ones. By default,
WSDL2Java only generates code for those elements in the WSDL file that are
referenced.
A note about what it means to be referenced. We cannot simply say: start with
the services, generate all bindings referenced by the service, generate all
portTypes referenced by the referenced bindings, etc. What if we're generating
code from a WSDL file that only contains portTypes, messages, and types? If
WSDL2Java used service as an anchor, and there's no service in the file, then
nothing will be generated. So the anchor is the lowest element that exists in the
WSDL file in the order:
1. types
2. portTypes
3. bindings
4. services
For example, if a WSDL file only contained types, then all the listed types would
be generated. But if a WSDL file contained types and a portType, then that
portType will be generated and only those types that are referenced by that
portType.
Note that the anchor is searched for in the WSDL file appearing on the command
line, not in imported WSDL files. This allows one WSDL file to import constructs
defined in another WSDL file without the nuisance of having all the imported
WSDL file's constructs generated.
-T, --typeMappingVersion <argument>
Indicate 1.1 or 1.2. The default is 1.2 (SOAP 1.2 JAX-RPC compliant).
-F, --factory <argument>
Used to extend the functionality of the WSDL2Java emitter. The argument is the
name of a class which extends JavaWriterFactory.
-H, --helperGen
Emits separate Helper classes for meta data.
-U, --user <argument>
This username is used in resolving the WSDL-URI provided as the input to
WSDL2Java. If the URI contains a username, this will override the command line
switch. An example of a URL with a username and password is:
http://user:password@hostname:port/path/to/service?WSDL
-P, --password <argument>
This password is used in resolving the WSDL-URI provided as the input to
WSDL2Java. If the URI contains a password, this will override the command line
switch.

WebServices - Axis

Page 5
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



-c, --implementationClassName <argument>
Set the name of the implementation class.Especially useful when exporting an
existing class as a web service using java2wsdl followed by wsdl2java. If you are
using the skeleton deploy option you must make sure, after generation, that your
implementation class implements the port type name interface generated by
wsdl2java. You should also make sure that all your exported methods throws
java.lang.RemoteException.

1.2.2. Java2WSDL Reference

Here is the help message generated from the current tool:

Java2WSDL emitter
Usage: java org.apache.axis.wsdl.Java2WSDL [options] class-of-portType
Options:
-h, --help
print this message and exit

-I, --input <argument>
input WSDL filename

-o, --output <argument>
output WSDL filename

-l, --location <argument>
service location url

-P, --portTypeName <argument>
portType name (obtained from class-of-portType if not specified)

-b, --bindingName <argument>
binding name (--servicePortName value + "SOAPBinding" if not specified)

-S, --serviceElementName <argument>
service element name (defaults to --servicePortName value + "Service")

-s, --servicePortName <argument>
service port name (obtained from --location if not specified)

-n, --namespace <argument>
target namespace

-p, --PkgtoNS <argument>=<value>
package=namespace, name value pairs

-m, --methods <argument>
space or comma separated list of methods to export

-a, --all
look for allowed methods in inherited class

-w, --outputWsdlMode <argument>
output WSDL mode: All, Interface, Implementation

-L, --locationImport <argument>
location of interface wsdl

-N, --namespaceImpl <argument>
target namespace for implementation wsdl

-O, --outputImpl <argument>
output Implementation WSDL filename, setting this causes
--outputWsdlMode to be ignored

-i, --implClass <argument>
optional class that contains implementation of methods in class-of-portType.

WebServices - Axis

Page 6
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



The debug information in the class is used
to obtain the method parameter names, which are used to set
the WSDL part names.

-x, --exclude <argument>
space or comma separated list of methods not to export

-c, --stopClasses <argument>
space or comma separated list of class names which will stop
inheritance search if --all switch is given

-T, --typeMappingVersion <argument>
indicate 1.1 or 1.2. The default is 1.1 (SOAP 1.1 JAX-RPC
compliant 1.2 indicates SOAP 1.1 encoded.)

-A, --soapAction <argument>
value of the operations soapAction field. Values are DEFAULT,
OPERATION or NONE. OPERATION forces soapAction to the name
of the operation. DEFAULT causes the soapAction to be set
according to the operations meta data (usually ""). NONE forces
the soapAction to "". The default is DEFAULT.

-y, --style <argument>
The style of binding in the WSDL, either DOCUMENT, RPC, or WRAPPED.

-u, --use <argument>
The use of items in the binding, either LITERAL or ENCODED

-e, --extraClasses <argument>
A space or comma separated list of class names to be added to
the type section.

-C, --importSchema
A file or URL to an XML Schema that should be physically
imported into the generated WSDL

-X, --classpath
additional classpath elements

Details:
portType element name= <--portTypeName value> OR <class-of-portType name>
binding element name= <--bindingName value> OR <--servicePortName value>

Soap Binding
service element name= <--serviceElementName value> OR <--portTypeName value>

Service
port element name= <--servicePortName value>
address location = <--location value>
-h , --help
Prints the help message.
-I, --input <WSDL file>
Optional parameter that indicates the name of the input wsdl file. The output wsdl
file will contain everything from the input wsdl file plus the new constructs. If a
new construct is already present in the input wsdl file, it is not added. This option
is useful for constructing a wsdl file with multiple ports, bindings, or portTypes.
-o, --output <WSDL file>
Indicates the name of the output WSDL file. If not specified, a suitable default
WSDL file is written into the current directory.
-l, --location <location>
Indicates the url of the location of the service. The name after the last slash or

WebServices - Axis

Page 7
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



backslash is the name of the service port (unless overridden by the -s option).
The service port address location attribute is assigned the specified value.
-P, --portTypeName <name>
Indicates the name to use for the portType element. If not specified, the
class-of-portType name is used.
-b, --bindingName <name>
Indicates the name to use for the binding element. If not specified, the value of
the --servicePortName + "SoapBinding" is used.
-S, --serviceElementName <name>
Indicates the name of the service element. If not specified, the service element is
the <portTypeName>Service.
-s, --servicePortName <name>
Indicates the name of the service port. If not specified, the service port name is
derived from the --location value.
-n, --namespace <target namespace>
Indicates the name of the target namespace of the WSDL.
-p, --PkgToNS <package> <namespace>
Indicates the mapping of a package to a namespace. If a package is
encountered that does not have a namespace, the Java2WSDL emitter will
generate a suitable namespace name. This option may be specified multiple
times.
-m, --methods <arguments>
If this option is specified, only the indicated methods in your interface class will
be exported into the WSDL file. The methods list must be comma separated. If
not specified, all methods declared in the interface class will be exported into the
WSDL file.
-a, --all
If this option is specified, the Java2WSDL parser will look into extended classes
to determine the list of methods to export into the WSDL file.
-w, --outputWSDLMode <mode>
Indicates the kind of WSDL to generate. Accepted values are:
• All --- (default) Generates wsdl containing both interface and implementation WSDL

constructs.
• Interface --- Generates a WSDL containing the interface constructs (no service

element).
• Implementation -- Generates a WSDL containing the implementation. The interface

WSDL is imported via the -L option.
-L, --locationImport <url>
Used to indicate the location of the interface WSDL when generating an
implementation WSDL.

WebServices - Axis

Page 8
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



-N, --namespaceImpl <namespace>
Namespace of the implementation WSDL.
-O, --outputImpl <WSDL file>
Use this option to indicate the name of the output implementation WSDL file. If
specified, Java2WSDL will produce interface and implementation WSDL files. If
this option is used, the -w option is ignored.
-i, --implClass <impl-class>
Sometimes extra information is available in the implementation class file. Use
this option to specify the implementation class.
-x, --exclude <list>
List of methods to not exclude from the wsdl file.
-c, --stopClasses <list>
List of classes which stop the Java2WSDL inheritance search.
-T, --typeMappingVersion <version>
Choose the default type mapping registry to use. Either 1.1 or 1.2.
-A, --soapAction <argument>
The value of the operations soapAction field. Values are DEFAULT,
OPERATION or NONE. OPERATION forces soapAction to the name of the
operation. DEFAULT causes the soapAction to be set according to the
operation's meta data (usually ""). NONE forces the soapAction to "". The default
is DEFAULT.
-y, --style <argument>
The style of the WSDL document: RPC, DOCUMENT or WRAPPED. The default
is RPC. If RPC is specified, an rpc wsdl is generated. If DOCUMENT is specified,
a document wsdl is generated. If WRAPPED is specified, a document/literal wsdl
is generated using the wrapped approach. Wrapped style forces the use attribute
to be literal.
-u, --use <argument>
The use of the WSDL document: LITERAL or ENCODED. If LITERAL is
specified, the XML Schema defines the representation of the XML for the
request. If ENCODED is specified, SOAP encoding is specified in the generated
WSDL.
-e, --extraClasses <argument>
Specify a space or comma seperated list of class names which should be
included in the types section of the WSDL document. This is useful in the case
where your service interface references a base class and you would like your
WSDL to contain XML Schema type defintions for these other classes. The
--extraClasses option can be specified duplicate times. Each specification results
in the additional classes being added to the list.

WebServices - Axis

Page 9
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



-C, --importSchema
A file or URL to an XML Schema that should be physically imported into the
generated WSDL
-X, --classpath
Additional classpath elements

1.3. Deployment (WSDD) Reference

Note : all the elements referred to in this section are in the WSDD namespace, namely
"http://xml.apache.org/axis/wsdd/".

<deployment>
The root element of the deployment document which tells the Axis engine that
this is a deployment. A deployment document may represent EITHER a complete
engine configuration OR a set of components to deploy into an active engine.
<GlobalConfiguration>
This element is used to control the engine-wide configuration of Axis. It may
contain several subelements:
• <parameter> : This is used to set options on the Axis engine - see the Global Axis

Configuration section below for more details. Any number of <parameter> elements
may appear.

• <role> : This is used to set a SOAP actor/role URI which the engine will recognize.
This allows SOAP headers targeted at that role to be successfully processed by the
engine. Any number of <role> elements may appear.

• <requestFlow> : This is used to configure global request Handlers, which will be
invoked before the actual service on every request. You may put any number of
<handler> or <chain> elements (see below) inside the <requestFlow>, but there may
only be one <requestFlow>.

• <responseFlow> : This is used to configure global response Handlers, which will be
invoked after the actual service on every request. You may put any number of
<handler> or <chain> elements (see below) inside the <responseFlow>, but there may
only be one <responseFlow>.

<undeployment>
The root element of the deployment document which tells Axis that this is an
undeployment.
<handler [name="name"] type="type"/>
Belongs at the top level inside a <deployment> or <undeployment>, or inside a
<chain>, <requestFlow>, or <responseFlow>. Defines a Handler, and indicates
the type of the handler. "Type" is either the name of another previously defined
Handler, or a QName of the form "java:class.name". The optional "name"
attribute allows you to refer to this Handler definition in other parts of the

WebServices - Axis

Page 10
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



deployment. May contain an arbitrary number of <parameter name="name"
value="value"> elements, each of which will supply an option to the deployed
Handler.
<service name="name" provider="provider" >
Deploys/undeploys an Axis Service. This is the most complex WSDD tag, so
we're going to spend a little time on it.
Options may be specified as follows : <parameter name="name" value="value"/>,
and common ones include:
• className : the backend implementation class
• allowedMethods : Each provider can determine which methods are allowed to be

exposed as web services.
To summaries for Axis supplied providers:

Java RPC Provider (provider="java:RPC") by default all public methods specified by
the class in the className option, including any inherited methods are available as
web services.
For more details regarding the Java Provider please see WHERE???.

Java MsgProvder (provider="java:MSG")

In order to further restrict the above methods, the allowedMethods option may be
used to specify in a space delimited list the names of only those methods which are
allowed as web services. It is also possible to specify for this option the value "*"
which is functionally equivalent to not specify the option at all. Also, it is worth
mentioning that the operation element is used to further define the methods being
offered, but it does not affect which methods are made available.

Note, while this is true for Axis supplied providers, it is implementation dependent on
each individual provider. Please review your providers documentation on how or if it
supports this option.

Note, Exposing any web service has security implications.
As a best practices guide it is highly recommend when offering a web service in
unsecure environment to restrict allowed methods to only those required for the
service being offered. And, for those that are made available, to fully understand their
function and how they may access and expose your systems's resources.

• allowedRoles : comma-separated list of roles allowed to access this service (Note that
these are security roles, as opposed to SOAP roles. Security roles control access,
SOAP roles control which SOAP headers are processed.)

• extraClasses : Specify a space or comma seperated list of class names which should
be included in the types section of the WSDL document. This is useful in the case
where your service interface references a base class and you would like your WSDL

WebServices - Axis

Page 11
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



to contain XML Schema type defintions for these other classes.
If you wish to define handlers which should be invoked either before or after the
service's provider, you may do so with the <requestFlow> and the
<responseFlow> subelements. Either of those elements may be specified inside
the <service> element, and their semantics are identical to the <chain> element
described below - in other words, they may contain <handler> and <chain>
elements which will be invoked in the order they are specified.
To control the roles that should be recognized by your service Handlers, you can
specify any number of <role> elements inside the service declaration.
Example:
<service name="test">
<parameter name="className" value="test.Implementation"/>
<parameter name="allowedMethods" value="*"/>
<namespace>http://testservice/</namespace>
<role>http://testservice/MyRole</role>
<requestFlow> <!-- Run these before processing the request -->
<handler type="java:MyHandlerClass"/>
<handler type="somethingIDefinedPreviously"/>

</requestFlow>
</service>
Metadata may be specified about particular operations in your service by using
the <operation> tag inside a service. This enables you to map the java parameter
names of a method to particular XML names, to specify the parameter modes for
your parameters, and to map particular XML names to particular operations.
<operation name="method">
</operation>
<chain name="name"> <subelement/>... </chain>
Defines a chain. Each handler (i.e. deployed handler name) in the list will be
invoked() in turn when the chain is invoked. This enables you to build up
"modules" of commonly used functionality. The subelements inside chains may
be <handler>s or <chain>s. <handler>s inside a <chain> may either be defined in
terms of their Java class:
<chain name="myChain">
<handler type="java:org.apache.axis.handlers.LogHandler"/>

</chain>
or may refer to previously defined <handlers>, with the "type" of the handler
referring to the name of the other handler definition:
<handler name="logger" type="java:org.apache.axis.handlers.LogHandler"/>
<chain name="myChain"/>

<handler type="logger"/>
</chain>
<transport name="name">
Defines a transport on the server side. Server transports are invoked when an
incoming request arrives. A server transport may define <requestFlow> and/or
<responseFlow> elements to specify handlers/chains which should be invoked

WebServices - Axis

Page 12
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



during the request (i.e. incoming message) or response (i.e. outgoing message)
portion of processing (this function works just like the <service> element above).
Typically handlers in the transport request/response flows implement
transport-specific functionality, such as parsing protocol headers, etc.
For any kind of transport (though usually this relates to HTTP transports), users
may allow Axis servlets to perform arbitrary actions (by means of a "plug-in")
when specific query strings are passed to the servlet (see the section Axis
Servlet Query String Plug-ins in the Axis Developer's Guide for more information
on what this means and how to create a plug-in). When the name of a query
string handler class is known, users can enable it by adding an appropriate
<parameter> element in the Axis server configuration's <transport> element. An
example configuration might look like the following:
<transport name="http">
<parameter name="useDefaultQueryStrings" value="false" />
<parameter name="qs.name" value="class.name" />

</transport>
In this example, the query string that the Axis servlet should respond to is ?name
and the class that it should invoke when this query string is encountered is
named class.name. The name attribute of the <parameter> element must start
with the string "qs." to indicate that this <parameter> element defines a query
string handler. The value attribute must point to the name of a class
implementing the org.apache.axis.transport.http.QSHandler
interface. By default, Axis provides for three Axis servlet query string handlers
(?list, ?method, and ?wsdl). See the Axis server configuration file for their
definitions. If the user wishes not to use these default query string handlers (as in
the example), a <parameter> element with a name attribute equal to
"useDefaultQueryStrings" should have its value attribute set to false. By
default it is set to true and the element is not necessary if the user wishes to
have this default behavior.
<transport name="name" pivot="handler type">
Defines a transport on the client side, which is invoked when sending a SOAP
message. The "pivot" attribute specifies a Handler to be used as the actual
sender for this transport (for example, the HTTPSender). Request and response
flows may be specified as in server-side transports to do processing on the
request (i.e. outgoing message) or response (i.e. incoming message).
<typeMapping qname="ns:localName" type="java:classname"
serializer="classname" deserializer="classname"/>
Each typeMapping maps an XML qualified name to/from a Java class, using a
specified Serializer and Deserializer.
<beanMapping qname="ns:localName" type="java:classname">
A simplified type mapping, which uses pre-defined serializers/deserializers to

WebServices - Axis

Page 13
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



encode/decode JavaBeans. The class named by "classname" must follow the
JavaBean standard pattern of get/set accessors.
<arrayMapping qname="ns:localName" type="java:classname"
innerType="ns:innerTypeQName">
A specialized type mapping, which uses pre-defined serializers/deserializers to
encode/decode Arrays. The class named by "classname" must be an array type
(ie name ending with "[]").
<documentation>
Can be used inside a <service>, an <operation> or an operation <parameter>.
The content of the element is arbitrary text which will be put in the generated
wsdl inside a wsdl:document element.
Example:
<operation name="echoString" >
<documentation>This operation echoes a string</documentation>
<parameter name="param">
<documentation>a string</documentation>

</parameter>
</operation>

1.4. Global Axis Configuration

The server is configured (by default) by values in the server-config.wsdd file, though a
dedicated Axis user can write their own configuration handler, and so store configuration
data in an LDAP server, database, remote web service, etc. Consult the source on details as to
how to do that. You can also add options to the web.xml file and have them picked up
automatically. We don't encourage that as it is nice to keep configuration stuff in one place.

In the server-config file, there is a global configuration section, which supports parameter
name/value pairs as nested elements. Here are the options that we currently document,
though there may be more (consult the source, as usual).
<globalConfiguration>
<parameter name="adminPassword" value="admin"/>
<parameter name="attachments.Directory" value="c:\temp\attachments"/>
<parameter name="sendMultiRefs" value="true"/>
<parameter name="sendXsiTypes" value="true"/>
<parameter name="attachments.implementation"

value="org.apache.axis.attachments.AttachmentsImpl"/>
<parameter name="sendXMLDeclaration" value="true"/>
<parameter name="enable2DArrayEncoding" value="true"/>
<parameter name="dotNetSoapEncFix" value="false"/>

</globalConfiguration>

1.5. Individual Service Configuration

TODO

WebServices - Axis

Page 14
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



Here are some of the per-service configuration options are available; these can be set in the
wsdd file used to deploy a service, from where they will be picked up.

More may exist.

style whether to use RPC:enc or doc/lit encoding

SingleSOAPVersion When set to either "1.1" or "1.2", this configures
a service to only accept the specified SOAP
version. Attempts to connect to the service using
another version will result in a fault.

wsdlFile The path to a WSDL File; can be an absolute
path or a resource that axis.jar can load. Useful
to export your custom WSDL file. When specify
a path to a resource, place a forward slash to
start at the beginning of the classpath (e.g
"/org/someone/res/mywsdl.wsdl"). How does
Axis know whether to return a file or resource? It
looks for a file first, if that is missing a resource
is returned.

1.6. Axis Logging Configuration

Axis uses the Jakarta Projects's commons-logging API, as implemented in
commons-logging.jar to implement logging throughout the code. Normally this library
routes the logging to the Log4j library, provided that an implementation of log4j is on the
classpath of the server or client. The commons-logging API can also bind to Avalon,
System.out or the Java1.4 logger. The JavaDocs for the library explain the process for
selecting a logger, which can be done via a system property or a properties file in the
classpath.

Log4J can be configured using the file log4j.properties in the classpath; later versions also
support an XML configuration. Axis includes a preconfigured log4j.properties file in
axis.jar. While this is adequate for basic use, any complex project will want to modify
their own version of the file. Here is what to do

1. Open up axis.jar in a zipfile viewer and remove log4j.properties from the jar
2. Or, when building your own copy of axis.jar, set the Ant property

exclude.log4j.configuration to keep the properties file out the JAR.
3. Create your own log4J.properties file, and include it in WEB-INF/classes

(server-side), in your main application JAR file client side.
4. Edit this log4J properties file to your hearts content. Server side, setting up rolling logs

with fancy html output is convenient, though once you start clustering the back end
servers that ceases to be as usuable. Log4J power tools, such as 'chainsaw', are the secret

WebServices - Axis

Page 15
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



here.

1.6.1. Log Categories

Axis classes that log information create their own per-class log, each of which may output
information at different levels. For example, the main entry point servlet has a log called
org.apache.axis.transport.http.AxisServlet, the AxisEngine is
org.apache.axis.AxisEngine, and so on. There are also special logs for special
categories.

org.apache.axis.TIME A log that records the time to execute incoming
messages, splitting up into preamble, invoke,
post and send times. These are only logged at
debug level.

org.apache.axis.EXCEPTIONS Exceptions that are sent back over the wire.
AxisFaults, which are normally created in
'healthy' operation, are logged at debug level.
Other Exceptions are logged at the Info level, as
they are more indicative of server side trouble.

org.apache.axis.enterprise ''Enterprise'' level stuff, which generally means
stuff that an enterprise product might want to
track, but in a simple environment (like the Axis
build) would be nothing more than a nuisance.

1.7. Pre-Configured Axis Components Reference

1.7.1. On the server

SimpleSessionHandler
uses SOAP headers to do simple session management
LogHandler
The LogHandler will simply log a message to a logger when it gets invoked.
SoapMonitorHandler
Provides the hook into the message pipeline sending the SOAP request and
response messages to the SoapMonitor utility.
DebugHandler
Example handler that demonstrates dynamically setting the debug level based on
a the value of a soap header element.
ErrorHandler
Example handler that throws an AxisFault to stop request/response flow
processing.
EchoHandler

WebServices - Axis

Page 16
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



The EchoHandler copies the request message into the response message.
HTTPAuth
The HTTPAuthHandler takes HTTP-specific authentication information (right
now, just Basic authentication) and turns it into generic MessageContext
properties for username and password
SimpleAuthenticationHandler
The SimpleAuthentication handler passes a MessageContext to a
SecurityProvider (see org.apache.axis.security) to authenticate the user using
whatever information the SecurityProvider wants (right now, just the username
and password).
SimpleAuthorizationHandler
This handler, typically deployed alongside the SimpleAuthenticationHandler (a
chain called "authChecks" is predefined for just this combination), checks to
make sure that the currently authenticated user satisfies one of the allowed roles
for the target service. Throws a Fault if access is denied.
MD5AttachHandler
Undocumented, uncalled, untested handler that generates an MD5 hash of
attachment information and adds the value as an attribute in the soap body.
URLMapper
The URLMapper, an HTTP-specific handler, usually goes on HTTP transport
chains (it is deployed by default). It serves to do service dispatch based on URL -
for instance, this is the Handler which allows URLs like
http://localhost:8080/axis/services/MyService?wsdl to work.
RPCProvider
The RPCProvider is the pivot point for all RPC services. It accepts the following
options:
className = the class of the backend object to invoke
methodName = a space-separated list of methods which are exported as web
services. The special value "*" matches all public methods in the class.
MsgProvider
The MsgProvider is the pivot point for all messaging services. It accepts the
following options:
className = the class of the backend object to invoke
methodName = a space-separated list of methods which are exported as web
services. The special value "*" matches all public methods in the class.
JWSHandler
Performs drop-in deployment magic.
JAXRPCHandler
Wrapper around JAX-RPC compliant handlers that exposes an Axis handler

WebServices - Axis

Page 17
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.



interface to the engine.
LocalResponder
The LocalResponder is a Handler whose job in life is to serialize the response
message coming back from a local invocation into a String. It is by default on the
server's local transport response chain, and it ensures that serializing the
message into String form happens in the context of the server's type mappings.

1.7.2. On the client

SimpleSessionHandler
uses SOAP headers to do simple session management
JAXRPCHandler
Wrapper around JAX-RPC compliant handlers that exposes an Axis handler
interface to the engine.
HTTPSender
A Handler which sends the request message to a remote server via HTTP, and
collects the response message.
LocalSender
A Handler which sends the request message to a "local" AxisServer, which will
process it and return a response message. This is extremely useful for testing,
and is by default mapped to the "local:" transport. So, for instance, you can test
the AdminClient by doing something like this:
% java org.apache.axis.client.AdminClient -llocal:// list

WebServices - Axis

Page 18
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.


