WebServices - Axis

1. Axis System Integration Guide

1.2 Version
Feedback: axis-dev@ws.apache.org

1.1. Table of Contents

e Introduction
e Pluggable APIs

Components

Logging/Tracing

Configuration

Handlers

Internationalization

Performance Monitoring

Encoding

WSDL Parser and Code Generator Framework

e Client SSL

1.2. Introduction

The primary purpose of this guide is to present how Axis can be integrated into an existing
web application server, such as Tomcat or WebSphere, for example. Axis has a number of
Pluggable APIsthat are necessary for such an integration.

The reader may find useful background information in the Architecture Guide.

1.3. Pluggable APIs

The following are the points that are pluggable in order to integrate Axis into a web
application server. The first subsection details a number of pluggable components in general.
More details are provided for other components in the remaining subsections.

1.3.1. Components

Page 1

WebServices - Axis

This section describes in general how to plug specializations of various components into
AXis.

1.3.1.1. General Strategy

To override the default behavior for a pluggable component:

« Develop implementation of components interface
« Define the implementation class to Axis by either creating a service definition file
(prefered) or by setting a system property.
» PREFERED: To create a service definition file:
* Thename of the service definition file is derived from the interface or abstract
class which the service implements/extends:
/| META- | NF/ servi ces/ <conponent Package>. <i nt er f aceNane>.
» Put thefully qualified class name of the implementation class on aline by itself in
the service definition file.
e Set system property:
The name of the system property is the name of the interface.
The value of the system property is the name of the implementation.
The optional system property name (in table, below) may be also be used.
Setting a system property is not prefered, particularly in a 2EE or other
application hosting environment, because it imposes a directive across all
applications. This may or may not be appropriate behavior. If it isto be done, it
should never be done from within a Web Application at runtime.
« Package the implementation class and, if used, the service definition filein a JAR file
and/or place it where it can be picked up by aclass loader (CLASSPATH).

1.3.1.2. Example 1

To override the default behavior for the Java Compiler:

« Animplementation of the Conpi | er interfaceis aready provided for the Ji kes
compiler.
» Create the service definition file named:
/| META- | NF/ servi ces/ org. apache. axi s. conponent s. conpi | er. Conpi | er
« Add the following line to the service definition file:
or g. apache. axi s. conponent s. conpi | er. Ji kes
« Sinceor g. apache. axi s. conmponent s. conpi | er. Ji kes is packaged with
AXis, al that needsto be done isto ensure that the service definition fileis loadable by a
class loader.

1.3.1.3. Example 2

Page 2

WebServices - Axis

To override the default behavior for the SocketFactory in an environment that does not allow
resources to be located/|oaded appropriately, or where the behavior needs to be forced to a
specific implementation:

« Provide an implementation of the Socket Fact or y interface, for example

your . package. Your Socket Fact ory
» Set the system property named

or g. apache. axi s. conponent s. net . Socket Fact ory

to the value

your . package. Your Socket Fact ory

This can be done by using the VM commandline

- Dor g. apache. axi s. conponent s. net . Socket Fact or y=your . package. Your Socket
« Ensure that the implementation classis loadable by a class |oader.

1.3.1.4. Reference

(Component/Package: org.apache.axis.components.*)

Component Factory Interface Optional System Default
Package Property Implementation
compiler CompilerFactory | Compiler axis.Compiler Javac
getCompiler()
image ImagelOFactory ImagelO axis.ImagelO MerlinlO, JimilO,
getimagelO() JDK13I0
jms JMSVendorAdapterEAd8WendorAdapter JNDIVendorAdapter
getIMSVendorAdapter()
net SocketFactoryFactoi§ocketFactory axis.socketFactory | DefaultSocketFactory
getFactory()
net SocketFactoryFactoiyecureSocketFactorgxis.socketSecureFal$@k SocketFactory
getSecureFactory()

1.3.2. Logging/Tracing

Axis logging and tracing is based on the Logging component of the Jakarta Commons
project, or the Jakarta Commons Logging (JCL) SPI. The JCL provides a Log interface with
thin-wrapper implementations for other logging tools, including Log4J, Avalon LogKit, and
JDK 1.4. Theinterface maps closely to Log4J and L ogKit.

1.3.2.1. Justification/Rationale

Page 3

WebServices - Axis

A pluggable logging/trace facility enables Axis to direct logging/trace messages to a host
web application server's logging facility. A central logging facility with a single point of
configuration/control is superior to distinct logging mechanisms for each of a multitude of
middleware components that are to be integrated into a web application server.

1.3.2.2. Integration

The minimum requirement to integrate with another logger is to provide an implementation
of the or g. apache. commons. | oggi ng. Log interface. In addition, an implementation
of the or g. apache. commons. | oggi ng. LogFact ory interface can be provided to
meet specific requirements for connecting to, or instantiating, alogger.

» org.apache.commons.logging.Log

The Log interface defines the following methods for use in writing log/trace messages to
thelog:

| og. fatal (Obj ect nmessage);

| og. fatal (Obj ect message, Throwable t);
| og. error (Obj ect nessage);

| og. error (Chj ect message, Throwable t);
| og. war n(Cbj ect nessage) ;

| og. war n(Cbj ect nmessage, Throwable t);
| og. i nfo(Cbj ect nessage);

| og. i nfo(Cbject message, Throwable t);
| og. debug(Cbj ect nessage) ;

| og. debug(Obj ect nmessage, Throwable t);
| og.trace(Obj ect nmessage);

| og.trace(Obj ect message, Throwable t);

| 0og. i sFat al Enabl ed() ;
| og. i sErrorEnabl ed();
| og. i sWar nEnabl ed() ;
| 0og.i sl nfoEnabl ed();
| og. i sDebugEnabl ed() ;
| 0g.i sTraceEnabl ed();
Semantics for these methods are such that it is expected that the severity of messagesis

ordered, from highest to lowest:

fatal - Consider logging to console and system log.
error - Consider logging to console and system log.
warn - Consider logging to console and system log.
info - Consider logging to console and system log.

debug - Log to system log, if enabled.

trace - Log to system log, if enabled.

« org.apache.commons.logging.L ogFactory

If desired, the default implementation of the

Page 4

WebServices - Axis

or g. apache. commons. | oggi ng. LogFact or y interface can be overridden,
allowing the JDK 1.3 Service Provider discovery process to locate and create a
LogFactory specific to the needs of the application. Review the Javadoc for the
LogFact oryl npl . j ava for details.

1.3.2.3. Mechanism

Lifecycle

The JCL LogFactory implementation must assume responsibility for either
connecting/disconnecting to alogging toolkit, or instantiating/initializing/destroying a
logging toolkit.

Exception handling

The JCL Log interface doesn't specify any exceptions to be handled, the implementation
must catch any exceptions.

Multiple threads

The JCL Log and LogFactory implementations must ensure that any synchronization
required by the logging toolkit is met.

1.3.2.4. Logger Configuration

Log

The default LogFact or y provided by JCL can be configured to instantiate a specific
implementation of theor g. apache. commons. | oggi ng. Log interface by setting
the property or g. apache. commons. | oggi ng. Log. This property can be specified
as a system property, or inthe conmons- | oggi ng. pr operti es file, which must
exist in the CLASSPATH.

Default logger if not plugged

The Jakarta Commons Logging SPI uses the implementation of the

or g. apache. commons. | oggi ng. Log interface specified by the system property
or g. apache. conmons. | oggi ng. Log. If the property is not specified or the class
is not available then the JCL provides access to a default logging toolkit by searching the
CLASSPATH for the following toolkits, in order of preference:

* Log4J

« JDK14

 JCL SimpleLog

1.3.3. Configuration
The internal data model used by Axisis based on an Axis specific data model: Web Services

Page 5

WebServices - Axis

Deployment Descriptor (WSDD). Axisinitialy obtains the WSDD information for a service
from aninstance of or g. apache. axi s. Engi neConf i gur ati on.

The EngineConfiguration is provided by an implementation of the interface
or g. apache. axi s. Engi neConf i gurati onFactory, which currently provides
methods that return client and server configurations.

Our focus will be how to define the implementation class for
Engi neConfi gurati onFactory.

o Justification/Rationale

While the default behaviour is sufficient for general use of Axis, integrating Axisinto an
existing application server may require an alternate deployment model. A customized
implementation of the EngineConfigurationFactory would map from the hosts
deployment model to Axis's internal deployment model.

e Mechanism

The relevant sequence of instructions used to obtain configuration information and
initialize Axisis asfollows:

Engi neConfi gurati onFactory factory = Engi neConfi gurati onFact oryFi nder (soneCont ext) ;
Engi neCongfi guration config = factory. getC i ent Engi neConfi g();

Axi sClient = new Axi sCient(config);

The details may vary (server versus client, whether other factories are involved, etc).

Regardless, the point is that integration code is responsible for calling

Engi neConf i gur at i onFact or yFi nder (soneCont ext) and ensuring that the

results are handed to Axis. soneCont ext iskey to how the factory finder locates the

appropriate implementation of EngineConfigurationFactory to be used, if any.

EngineConfigurationFactoryFinder works as follows:

» Obtainalist of classes that implement
or g. apache. axi s. Engi neConf i gur ati onFact ory, inthefollowing
order:
» Thevalue of the system property axi s. Engi neConf i gFact ory.
* Thevalue of the system property
or g. apache. axi s. Engi neConfi gur ati onFact ory.
» Locateal resources named
META- | NF/ servi ces/ or g. apache. axi s. Engi neConfi gurati onFactory.
Each line of such aresource identifies the name of a class implementing the
interface (‘# comments, through end-of-line).
 org.apache. axi s. configuration. Engi neConfi gurati onFact orySer vl et
 org.apache. axi s. configuration. Engi neConfi gurati onFact or yDef aul t
» Classes implementing EngineConfigurationFactory are required to provide the

Page 6

WebServices - Axis

method

public static Engi neConfigurationFactory

newFact or y(Qbj ect)

This method is called, passing sonmeCont ext asthe parameter.

ThenewFact or y method is required to check the someCont ext parameter to
determineif it is meaningfull to the class (at a minimum, verify that it isof an
expected type, or class) and may, in addition, examine the overall runtime
environment. If the environment can provide information required by an
EngineConfigurationFactory, then the newfact or y() may return in instance of
that factory. Otherwise, newfact or y() must return null.
EngineConfigurationFactoryFinder returns the first non-null factory it obtains.

o Default behavior

The default behaviour is provided by the last two elements of the list of implementing
classes, as described above:

or g. apache. axi s. confi gurati on. Engi neConfi gurati onFact orySer vl et

newFact ory(obj) iscaled. If obj i nstanceof
j avax. servl et. Servl et Cont ext istrue, then aninstance of thisclassis
returned.

The default Servlet factory is expected to function asa server (asaclient it will
incorrectly attempt to load the WSDD filecl i ent - conf i g. wsdd from the
current working directory!).

The default Servlet factory will open the Web Application resource
[/ VIEEB- | NF/ ser ver - confi g. wsdd (The name of this file may be changed using
the system property axi s. Server Confi gFi | e):

* Ifitexistsasan accessiblefile(i.e. notin aJAR/WARfile), then it opensit asa
file. This allows changes to be saved, if changes are allowed & made using the
Admin tools.
» If it doesnot exist as afile, then an attempt is made to access it as aresource
stream (getResourceA sStream), which works for JAR/WAR file contents.
» If theresourceissimply not available, an attempt is made to create it as afile.
» If al above attemptsfail, afina attempt is made to access
or g. apache. axi s. server. server-confi g. wsdd as adata stream.
or g. apache. axi s. confi gurati on. Engi neConfi gur ati onFact or yDef aul t

newFact or y(obj) iscaled. If obj isnull then aninstance of thisclassis
returned. A non-null obj is presumed to require a non-default factory.

The default factory will load the WSDD filescl i ent - conf i g. wsdd or
server-confi g. wsdd, as appropriate, from the current working directory. The

Page 7

WebServices - Axis

names of these files may be changed using the system properties
axi s.dientConfigFileandaxis. Server Confi gFi | e, respectively.

1.3.4. Handlers

See the Architecture Guide for current information on Handlers.

1.3.5. Internationalization

AXxis supports internationalization by providing both a property file of the strings used in
AXxis, and an extension mechanism that facilitates accessing internal Axis messages and
extending the messages available to integration code based on existing Axis code.

1.3.5.1. Trandation

Justification/Rationale

In order for readers of languages other than English to be comfortable with Axis, we
provide a mechanism for the strings used in Axis to be transated. We do not provide any
trandations in Axis; we merely provide a means by which trandators can easily plug in
their translations.

Mechanism
AXxis provides english messages in the Java resource named

org.apache.axis.i18n.resource.properties (in the source tree, the file is named
xmll-axis/javalsrc/org/apache/axis/i 18n/resource.properties).

Axis makes use of the Javainternationalization mechanism-i.e., a
java.util.ResourceBundle backed by a propertiesfile - and the java.text.M essageFormat
class to substitute parameters into the message text.

» java.util.ResourceBundle retrieves message text from a property file using akey
provided by the program. Entries in a message resource file are of the form

<key>=<message>.
* javatext.MessageFormat substitutes variables for markers in the message text.
Markers use the syntax "{ X}" where X is the number of the variable, starting at O.

For example: myMsg00=My {0} is {1}.

Trandation requires creating an alternate version of the property file provided by Axisfor
atarget language. The JavaDoc for j ava. ut i | s. Resour ceBundl e provides details
on how to identify different property files for different locales.

For details on using Axis's internationalization tools, see the Developer's Guide.

Default behavior

Page 8

WebServices - Axis

The default behavior, meaning what happens when atranslated file doesn't exist for a
given locale, isto fall back on the English-language propertiesfile. If that file doesn't
exist (unlikely unless something is seriously wrong), Axis will throw an exception with
an English-language reason message.

1.3.5.2. Extending M essage Files

AXxis provides a Message file extension mechanism that allows Axis-based code to use Axis
message keys, as well as new message keys unique to the extended code.

o Justification/Rationale

Axis provides pluggabl e interfaces for various Axis entities, including
EngineConfigurationFactory's, Provides, and Handlers. Axis also provides a variety of
implementations of these entities. It is convenient to use Axis source code for such
implementations as starting points for developing extentions and customizations that
fulfill the unique needs of the end user.

» Procedure
To extend the Axis message file:

» Copy the Axis sourcefile

j aval src/ org/ apache/ axi s/i 18n/ Messages. j ava to your

project/package, say ny/ pr oj ect / package/ pat h/ Messages. j ava.

» Setthe package declaration in the copied file to the correct package name.

» Set the private attribute pr oj ect Nane to" ny. pr oj ect " : the portion of the
package name that is common to your project. pr oj ect Nanme must be equal to
or be aprefix of the copied M essages package name.

» Createthefilemy/ pr oj ect / package/ pat h/ r esour ce. properti es. Add
new message key/value pairsto thisfile.
» Asyou copy Axis source files over to your project, changethei npor t

or g. apache. axi s. i 18n. Messages statement toi npor t

nmy. pr oj ect . package. pat h. Messages.

* Usethe methods provided by the class Messages, as discussed in the Developer's

Guide, to access the new messages.

« Behavior
* Loca Search

Messages beginslooking for akey'svalueinther esour ces. properties
resource in it's (Messages) package.
» Hierarchical Search

If Messages cannot locate either the key, or the resourcefile, it walks up the
package hierarchy until it finds it. The top of the hierarchy, above which it will not

Page 9

WebServices - Axis

search, is defined by the pr oj ect Nane attribute, set above.
» Default behavior
If the key cannot be found in the package hierarchy then a default resource is used.

The default behaviour is determined by the par ent attribute of the Messages class
copied to your extensions directory.

Unless changed, the default behavior, meaning what happens when a key isn't defined
in the new propertiesfile, isto fall back to the Axis propertiesfile
(org.apache.axis.il8n.resource.properties).

1.3.6. Performance Monitoring

Axis does not yet include specific Performance Monitoring Plugs.

1.3.7. Encoding

Axis does not yet include an Encoding Plug.

1.3.8. WSDL Parser and Code Generator Framework

WSDL 2Java is Axiss tool to generate Java artifacts from WSDL. This tool is extensible. If
users of Axiswish to extend Axis, then they may also need to extend or change the generated
artifacts. For example, if Axis is inserted into some product which has an existing
deployment model that's different than Axis's deployment model, then that product's version
of WSDL2Java will be required to generate deployment descriptors other than AXiss
deploy.wsdd.

What follows immediately is a description of the framework. If you would rather dive down
into the dirt of examples, you could learn a good deal just from them. Then you could come
back up here and learn the gory details.

There are three parts to WSDL 2Java:

1. Thesymbol table
2. The parser front end with a generator framework
3. The code generator back end (WSDL 2Java itself)

1.3.8.1. Symbol Table

The symbol table, found in org.apache.axis.wsdl.symbol Table, will contain all the symbols
from aWSDL document, both the symbols from the WSDL constructs themselves (portType,
binding, etc), and also the XML schematypes that the WSDL refersto.

Page 10

WebServices - Axis

NOTE: Needs lots of description here.

The symbol table is not extensible, but you can add fields to it by using the Dynamic
Variables construct:

* You must have some constant object for a dynamic variable key. For example: public
static final String MY _KEY ="my key";

* You set the value of the variable in your GeneratorFactory.generatorPass:
entry.setDynamicVar(MY _KEY, myValue);

* You get the value of the variable in your generators. Object myVaue =
entry.getDynamicVar(MY _KEY);

1.3.8.2. Parser Front End and Generator Framework

The parser front end and generator framework is located in org.apache.axis.wsdl.gen. The
parser front end consists of two files:

o Parser
public class Parser {
public Parser();
publ i c bool ean isDebug();
public void set Debug(bool ean);
publ i c bool ean islnports();
public void setlnports(bool ean);
publ i ¢ bool ean isVerbose();
public void setVerbose(bool ean);
public | ong getTi neout ();
public void setTi meout (| ong);
public java.lang. String getUsername();
public void setUsernane(java.lang. String);
public java.lang. String get Password();
public void setPassword(java.lang. String);
public GeneratorFactory getFactory();
public void setFactory(GeneratorFactory);
publ i c org.apache. axi s. wsdl . synmbol Tabl e. Synbol Tabl e get Synbol Tabl e() ;
public javax.wsdl.Definition getCurrentDefinition();
public java.lang. String get WSBDLURI () ;
public void run(String wsdl) throws java.l ang. Exception
public void run(String context, org.w3c.dom Docunent wsdl Doc)
throws java.io.| OException, javax.wsdl .WDLException
}

The basic behavior of this classis simple: you instantiate a Parser, then you run it.

Par ser parser = new Parser();
parser.run("nyfile.wsdl ");

There are various options on the parser that have accessor methods:

* debug - default isfalse - dump the symbol table after the WSDL file has been parsed
* imports - default istrue - should imported files be visited?

Page 11

WebServices - Axis

verbose - default isfalse - list each file asit is being parsed

timeout - default is 45 - the number of secondsto wait before halting the parse
username - no default - needed for protected URI's

password - no default - needed for protected URI's

Other miscellaneous methods on the parser:

» get/setFactory - get or set the GeneratorFactory on this parser - see below for details.
The default generator factory is NoopFactory, which generates nothing.

» getSymbol Table - once arun method is called, the symbol table will be populated and
can get queried.

» getCurrentDefinition - once arun method is called, the parser will contain a
Definition object which represents the given wsdl file. Definition isaWSDL4J
object.

» getWSDLURI - once the run method which takes a string is called, the parser will
contain the string representing the location of the WSDL file. Note that the other run
method - run(String context, Document wsdlDoc) - does not provide alocation for the
wsdl file. If this run method is used, getWSDLURI will be null.

* Therearetwo run methods. The first, as shown above, takes a URI string which
represents the location of the WSDL file. If you've already parsed the WSDL fileinto
an XML Document, then you can use the second run method, which takes a context
and the WSDL Document.

An extension of this classwould ...

NOTE: continue this sentiment...
WSDL2

Parser is the programmatic interface into the WSDL parser. WSDL 2 is the command line
tool for the parser. It provides an extensible framework for calling the Parser from the
command line. It is named WSDL 2 because extensions of it will likely begin with
WSDL2: WSDL 2Java, WSDL2Lisp, WSDL2XXX.

public class WBDL2 {
protected WSDL2();
prot ected Parser createParser();
protected Parser getParser();
protected void addOpti ons(org. apache. axis.utils.CLOpti onDescriptor[]);
protected void parseOption(org.apache. axis.utils.CLOption);
protected void validateOptions();
protected void printUsage();
protected void run(String[]);
public static void main(String[]);

}

Like all good command line tools, it has a main method. Unlike some command line
tools, however, its methods are not static. Static methods are not extensible. WSDL2's

Page 12

WebServices - Axis

main method constructs an instance of itself and calls methods on that instance rather
than calling static methods. These methods follow a behavior pattern. The main method
isvery smple:

public static void main(String[] args) {

WEDL2 wsdl 2 = new WSDL2() ;
wsdl 2. run(args);

}
The constructor calls createParser to construct a Parser or an extension of Parser.

run cals;

» parseOption to parse each command line option and call the appropriate Parser
accessor. For example, when this method parses --verbose, it calls
parser.setV erbose(true)

» validateOptions to make sure al the option values are consistent

* printUsageif the usage of thetool isin error

e parser.run(args);

If an extension has additional options, then it is expected to call addOptions before
calling run. So extensions will call, as necessary, getParser, addOptions, run. Extensions
will override, as necessary, createParser, parseOption, validateOptions, printUsage.
The generator framework consists of 2 files:
» Generator

The Generator interface is very simple. It just defines a generate method.

public interface Generator

public void generate() throws java.io. | OException

* GeneratorFactory
public interface GeneratorFactory

{
public voi d generatorPass(javax.wsdl.Definition, Synbol Table);
publ i c Generator getCenerator(javax.wsdl.Mssage, Synbol Table);
public Generator getCenerator(javax.wsdl.PortType, Synbol Table);
public Generator getCenerator(javax.wsdl.Bindi ng, Synbol Tabl e);
public Generator getCenerator(javax.wsdl.Service, Synbol Table);
public Generator getCenerator(TypeEntry, Synbol Tabl e);
public Generator getGenerator(javax.wsdl.Definition, Synbol Table);
public void setBaseTypeMappi ng(BaseTypeMappi ng) ;
publ i c BaseTypeMappi ng get BaseTypeMappi ng() ;

}

The GeneratorFactory interface defines a set of methods that the parser uses to get
generators. There should be a generator for each of the WSDL constructs (message,
portType, etc - note that these depend on the WSDL 4J classes: javax.xml.Message,

Page 13

WebServices - Axis

javax.xml.PortType, etc); a generator for schematypes, and a generator for the
WSDL Definition itself. This last generator is used to generate anything that doesn't
fit into the previous categories.

In addition to the getGeneratorM ethods, the GeneratorFactory defines a generatorPass
method which provides the factory implementation a chance to walk through the
symbol table to do any preprocessing before the actual generation begins.

Accessors for the base type mapping are also defined. These are used to trandate
QNames to base types in the given target mapping.

In addition to Parser, WSDL 2, Generator, and GeneratorFactory, the
org.apache.axis.wsdl.gen package aso contains a couple of no-op classes:
NoopGenerator and NoopFactory. NoopGenerator is a convenience class for extensions
that do not need to generate artifacts for every WSDL construct. For example,

WSDL 2Java does not generate anything for messages, therefore its factory's
getGenerator(Message, Symbol Table) method returns an instance of NoopGenerator.
NoopFactory returns a NoopGenerator for all getGenerator methods. The default factory
for Parser is the NoopFactory.

1.3.8.3. Code Generator Back End

The meat of the WSDL 2Java back end generators is in org.apache.axis.wsdl.toJava. Emitter
extends Parser. org.apache.axiswsdl.WSDL2Java extends WSDL2. JavaGeneratorFactory
implements GeneratorFactory. And the various JavaXXXWriter classes implement the
Generator interface.

NOTE: Need lots more description here...

1.3.8.4. WSDL Framework Extension Examples

Everything above sounds rather complex. It is, but that doesn't mean your extension has to
be.

1.3.8.5. Example 1 - Simple extension of WSDL 2Java - additional artifact

The simplest extension of the framework is one which generates everything that WSDL 2Java
already generates, plus something new. Example 1 is such an extension. It's extra artifact isa
file for each service that lists that service's ports. | don't know why you'd want to do this, but
it makes for a good, simple example. See samples/integrationGuide/examplel for the
complete implementation of this example.

» First you must create your writer that writes the new artifact. This new class extends

Page 14

WebServices - Axis

org.apache.axis.wsdl .toJava.JavaWriter. JavaWriter dictates behavior to its extensions; it
calls writeFileHeader and writeFileBody. Since we don't care about afile header for this
example, writeFileHeader is a no-op method. writeFileBody does the real work of this

writer.

public class MyListPortsWiter extends JavaWiter ({
private Service service;
public MyListPortsWiter(
Emtter emtter,
ServiceEntry sEntry,
Synbol Tabl e synbol Tabl e) {
super(emtter,
new OQNane(
sEntry. get QName() . get NanmespaceURI (),
sEntry. get QNane() . get Local Part () + "Lst"),

"I,St",
"Cenerating service port list file",
"service list");

this.service = sEntry. get Service();

}
protected void witeFileHeader() throws | OException {

}

protected void witeFileBody() throws | OException {
Map portMap = service.getPorts();
Iterator portlterator = portMap.values().iterator();

while (portlterator.hasNext()) {
Port p = (Port) portlterator.next();
pw. println(p.get Name());

pw. cl ose();

}

« Thenyou need a main program. This main program extends WSDL 2Java so that it gets
all the functionality of that tool. The main of thistool does 3 things:
* instantiatesitself
* adds MyL.istPortsWriter to the list of generators for aWSDL service
» callsthe run method.

That'sit! The base tool does all the rest of the work.
public class MyWsDL2Java ext ends WsDL2Java {

public static void main(String args[]) {
MyWsDL2Java nyWsDL2Java = new MyWsDL2Java() ;

JavaGener at or Factory factory =
(JavaGener at or Fact ory) nyWsDL2Java. get Parser (). get Factory();
factory. addGener at or (Servi ce. cl ass, M/ListPortsWiter.class);

myWsDL2Java. run(args) ;

Page 15

WebServices - Axis

}

1.3.8.6. Example 2 - Not quite as ssimple an extension of WSDL 2Java - change an
artifact

In this example, well replace deploy.wsdd with mydeploy.useless. For brevity,
mydeploy.useless is rather useless. Making it useful is an exercise left to the reader. See
samples/integrationGuide/example2 for the complete implementation of this example.

« First, hereisthe writer for the mydeploy.useless. This new class extends
org.apache.axis.wsdl.toJava.JavaWriter. JavaWriter dictates behavior to its extensions; it
calls writeFileHeader and writeFileBody. Since we don't care about afile header for this
example, writeFileHeader is a no-op method. writeFileBody does the real work of this
writer. It ssimply writes a bit of a song, depending on user input.

Note that we've aso overridden the generate method. The parser always calls generate,
but since thisis a server-side artifact, we don't want to generate it unless we are
generating server-side artifacts (in other words, in terms of the command line options,
we've specified the --serverSide option).
public class M/Depl oyWiter extends JavaWiter ({

public MyDepl oyWiter(Emtter enmitter, Definition definition,

Synbol Tabl e synmbol Tabl e) {
super(emtter,
new QNane(definition.get Target Nanmespace(), "deploy"),

"usel ess",
"Cenerating depl oy. usel ess", "deploy");

public void generate() throws | OException {
if (emtter.isServerSide()) {
super. generate();

}
protected void witeFil eHeader() throws | OException {

}
protected void witeFileBody() throws | OException {
MyEmitter nyEnitter = (MyEmitter) emtter;
if (myEmtter.getSong() == MyEmitter. RUM {
pw. println("Yo! Ho! Ho! And a bottle of rum");

else if (nyEmtter.getSong() == MyEm tter. WORK) {
pw.println("H ho! H ho! It's off to work we go.");
el se {
pw. println("Feelings... Nothing nore than feelings...");
pw. cl ose();
}
}

« Since we're changing what WSDL 2Java generates, rather than ssimply adding to it like the

Page 16

WebServices - Axis

previous example did, calling addGenerator isn't good enough. In order to change what
WSDL 2Java generates, you have to create a generator factory and provide your own
generators. Since we want to keep most of WSDL 2Java's artifacts, we can simply extend
WSDL 2Java's factory - JavaGeneratorFactory - and override the addDefinitionGenerators

method.
public class MyGenerator Factory extends JavaGenerator Factory {
protected voi d addDefinitionGenerators() {
/1 WeDL2Java's JavaDefinitionWiter
addCGener ator (Definition.class, JavaDefiniti onWiter.class);

/1 our DeployWiter
addCGener at or (Defi ni tion.class, M/DeployWiter.class);

/1 WsDL2Java's JavaUndepl oyWi ter
addCGener at or (Defi nition.class, JavaUndepl oyWiter.cl ass);

}
}
« Now we must write the API's to our tool. Since we've added an option - song - we need

both the programmatic API - an extension of Parser (actually Emitter in this case since
we're extending WSDL 2Java and Emitter is WSDL 2Java's parser extension) - and the
command line API.

Hereis our programmatic API. It adds song accessors to Emitter. It also, in the
constructor, lets the factory know about the emitter and the emitter know about the
factory.

public class M/Emtter extends Emtter ({
public static final int RUM =
public static final int WORK =
private int song = -1;

public MyEmitter() {
MyGener at or Factory factory = new MyGener at or Factory();
set Factory(factory);
factory.setEmtter(this);

public int getSong() {
return song;

public void setSong(int song) {
this.song = song;

}
}
And hereis our command line API. It's a bit more complex that our previous example's
main program, but it does 2 extra things:

1. accept anew command line option: --song rumjwork (thisis the biggest chunk of the
new work).
2. create anew subclass of Parser

Page 17

WebServices - Axis

public class WBDL2Usel ess ext ends WSDL2Java {
protected static final int SONG OPT = '¢';
protected static final CLOptionDescri pt or[] options
= new CLOptionDescriptor|]{
new CLOpti onDescri ptor("song",

CLOpt i onDescr i pt or . ARGUVENT _REQUI RED,
SONG_OPT,
"Choose a song for depl oy.useless: work or runi)

b

public WSDL2Usel ess() {
addOpti ons(options);

protected Parser createParser() {
return new MyEnmtter();

}
protected void parseQpti on(CLOpti on option) {
if (option.getld() == SONG OPT) {
String arg = option.get Argunent ();
if (arg.equal s("runf)) {
((MyEm tter) parser).setSong(M/Enmtter. RUM;

else if (arg.equal s("work")) {
((MyEm tter) parser).setSong(MEn tter.WRK);

el se {
super . parseOption(option);

public static void main(String args[]) {
WEDL2Usel ess usel ess = new WEDL2Usel ess() ;

usel ess.run(args);

}
Let's go through this one method at atime.

» constructor - this constructor adds the new option --song rum|jwork. (the abbreviated
version of thisoption is"-g", rather an odd abbreviation, but "-s" is the abbreviation
for --serverSide and "-S' is the abbreviation for --skeletonDeploy. Bummer. | just
picked some other |etter.)

» createParser - we've got to provide a means by which the parent class can get our
Parser extension.

» parseOption - this method processes our new option. If the given option isn't ours,
just let super.parseOption do its work.

e main - thismain isactualy ssmpler than the first example's main. The first main had
to add our generator to the list of generators. In this example, the factory aready did
that, so all that this main must do isinstantiate itself and run itself.

Page 18

WebServices - Axis

1.4. Client SSL

The default pluggable secure socket factory module (see Pluggable APIs) uses JSSE security.
Review the JSSE documentation for details on installing, registering, and configuring JSSE
for your runtime environment.

Page 19

