Axis CPP - ANT Build Guide

e o> <lom o> hom o> < 22>

1. Axis C++ ANT Build Guide

This document provides instructions for using and extending the ANT based build for the
AXIS C++ project.

Contents

Preparing system

Getting necessary third party software
Property Files

Getting the source code

Setting the Environment

Running the ANT build

Enabling Trace and Debug

Adding an extra platform

Preparing system

To usethe ANT based build you will need to install the following:

 Apache ANT
* Available from http://ant.apache.org
» These scripts have been developed and tested using version 1.6.x
« Java SDK - required for running of ANT scripts, and the compilation of WSDL2Ws tool
* Requireversion 1.4+
« Ant-Contrib - provide numerous extensions to ANT, including the compilation of C/C++.
» Available from http://ant-contrib.sourceforge.net
* PlaceJARsinto[ANT | NSTALL DIR]/Ii b.
* Require both ant-contrib (v0.6) and cpptasks (v1.0b3)
« (Optional) Doxygen - Used for generating APl documentation
» Available from http://www.doxygen.org
e Compiler / Linker
» For Windows - Microsoft Visual C++ v6
For Linux - gcc/ g++
For AIX - IBM Visual Agefor C++
For Solaris - cc
For HP-UX - aC++

Page 1

http://ant.apache.org
http://ant-contrib.sourceforge.net
http://www.doxygen.org

AXxis CPP - ANT Build Guide

* For O$400 - icc
Getting necessary third party software

Axis Cpp Developers use the Xerces-cXML Parsers to build the Axis Cpp. Additionally, you
can opt to build Apache mod files for Apache 1.3 or 2.0.

Xerces-C XML Par ser

Y ou can get Xerces-C binaries from http://xerces.apache.org.

Apache

Y ou can get Apache 1.3 or 2.0 from http://httpd.apache.org/
Property Files

The behaviour of the ANT scripts is controlled by the values specified in
bui | d. cormon. properi es. Toaid in the portability of the ANT scripts, there are also a
number of platform specific property files which override properties as required. The ANT
scripts will automatically determine the correct file to be used based on the platform in which
it is currently running. The property files are found in ws-axi s/ c/ bui |l d with the
following naming convention:

bui | d. common. properties build.[platform.properties

A number of example property files are provided for Windows, Linux, AlX and Solaris. It is
intended you update these files to suit your development and build environment, including
location of third party software dependencies and target packaging structure.

These property files also alow you to make some selection on which artefacts will be
produced by the build:

e Select which Apache module to produce:
» For each one to be built, set the following to true:
server. apachel3
server. apache20
» Select whether to build Simple Axis Server executable:
» If youwish to build this, set the following to true:
server. si nmpl eAxi sServer

The default selections are for both the Apache 1.3 and Apache 2.0 modules.
Setting the Environment
Before running ANT the following environment variables must be set:

e ANT_HOVME - location of ant installation
« JAVA HOVME - location of javainstallation
e PATH-toinclude[ANT_HOVE] / bi n and [JAVA_HOVE] / bi n.

Page 2

http://xerces.apache.org
http://httpd.apache.org/

AXis CPP - ANT Build Guide

» Also ensure doxygen and compilers are available on the system path.

The default property files make use of the following environment variables to locate the
various third party software dependencies.

AXI SJAVA LI B - location of Axis Java JAR files, asrequired for WSDL2Ws tool
XERCES HQMVE - location of Xercesinstallation

APACHE_HOVE - location of Apache 1.3 installation (if building Apache 1.3 module)
APACHE2 HOME - location of Apache 2.0 installation (if building Apache 2.0 module)
Getting the source code

See here for more detail on gaining access to the codein SVN.

Note: The ANT scripts were written based on the previous CV S structure and have not been
updated to the SVN structure, so you will need to ensure your checkout is into the following
structure:

[build root]\ws-axis\c

The checked out folder ws- axi s\ ¢ will be referred to as [CHECKOUT_HOVE] from this
point on.

Running the ANT build

Once you have configured your environment and property files the build is a simple two step
process. The first step is to build all the generated artefacts. At the comment prompt change
to [CHECKOUT _HOME] and run:

ant

Thiswill build the following:
o Client library

e Transport libraries

o XML Parser library

o Server library

e Apache modules

» Apache 1.3 or Apache 2.0 configurable through the property files
« Simple Server Executable
» Configurable through the property files
 WSDL2Wstool
« APl Documentation
The second step is to package the generated artefacts. From [CHECKOUT _HOVE] run:
ant -f package. xm
Thiswill package into two distributables:
e binary
e source
Enabling Trace and Debug

Page 3

developers-guide.html#checkingOut

AXxis CPP - ANT Build Guide

By default, the ANT build scripts do not produce libraries with trace or debug symbols. To
include these make use of one of the following to build:

ant buil dWt hTrace

ant bui |l dWt hDebug

ant bui |l dWt hTraceAndDebug

The packaging step remains the same, but when packaging the source distributable it will
automatically select the trace instrumented source code if available.

When trace is selected, the ant build adds in trace entry and exit statements into many of the
methods in Axis C++. Then at runtime, in axi scpp. conf, set C i ent LogPat h to afile
and Axis C++ will write out trace to that file. Omitting C i ent LogPat h from
axi scpp. conf switchestrace off.

Adding an extra platform

The AXIS community would greatly appreciate your input, if you're working on a platform
not currently supported by the ANT scripts.
Below, are the steps required to add an additional platform;

1. Add platform detectionto pre-i ni t targetinbui I dl nti alize. xm ,eg:
<condition property="linux">
<0s name="Linux"/>
</condition>

2. Update platform property withini ni ti al i ze targetinbui I dI nti ali ze. xm , eg:
<condition property="platform" value="Linux">
<isset property="linux"/>
</condition>

3. Provide an additional property fileinws- axi s/ ¢ to match your platform. This uses the
naming convention bui | d. [pl atform . properti es, whereplatformisas
specified in step 2.

4. Provideconpi | er definition for platforminbui | dl nti al i ze. xm , include a
condition check for the correct platform and any debug flags should be conditional on the
debug property being set, eg: <compiler id="Linuxgcc" name="g++" if="linux">
<compilerarg value="-g" if="debug"/> <compilerarg value="-Wall"/>
<compilerarg value="-Wshadow" />
<compilerarg value="-02"/>
<defineset>
<define name="ENABLE_AXIS_EXCEPTION"/>
<define name="HAVE_CONFIG_H"/>
<define name="PIC"/>
</defineset>
<includepath path="${ dir.include}"/>
</compiler>Note: Compilers may extend one another, which can be useful if an

Page 4

AXis CPP - ANT Build Guide

6.

additional platform uses the same compiler, but maybe only small variations in the
parameters.

Providel i nker definition for platforminbui | dl nti al i ze. xm , include a
condition check for the correct platform and any debug flags should be conditional on the
debug property being set, eg: <linker id="LinuxLinker" name="g++" libtool="true"
if="linux">

<linkerarg value="-g" if="debug"/>

<libset libs="stdc++"/>

</linker>Note: Asfor compilers, linkers may extend one another.

Add new conpi | er and | i nker tothevariouscc tasks used within the ANT scripts,
eg: <cc outfile="${ dir.bin} /${ transportLibraryName}" objdir="%{ dir.objects}"
exceptions="true" failonerror="false" outtype="shared" multithreaded="true">

<!-- Compilers-->

<compiler refid="Linuxgcc"/>

<compiler refid="AlIXxIc"/> ...

<!I-- Linkers-->

<linker refid="LinuxLinker"/>

<linker refid="AlXLinker"/>

</cc>

Page 5

