
Web Services Invocation Framework:
Overview

1 Overview
WSIF stands for the Web Services Invocation Framework. It supports a simple Java API for
invoking Web services, no matter how or where the services are provided. The framework
allows maximum flexibility for the invocation of any WSDL-described service.

In the WSDL specification, Web service binding descriptions are extensions to the
specification. So the SOAP binding, for example, is one way to expose the abstract
functionality (and there could be others). Since WSIF mirrors WSDL very closely, it also
views SOAP as just one of several ways you might wish to expose your software's
functionality. WSDL thus becomes a normalized description of software, and WSIF is the
natural client programming model.

The WSIF API allows clients to invoke services focusing on the abstract service description -
the portion of WSDL that covers the port types, operations and message exchanges without
referring to real protocols. The abstract invocations work because they are backed up by
protocol-specific pieces of code called providers. A provider is what conducts the actual
message exchanges according to the specifics of a particular protocol - for example, the
SOAP provider that is packaged with WSIF uses a specific SOAP engine like Axis to do the
real work.

The decoupling of the abstract invocation from the real provider that does the work results in
a flexible programming model that allows dynamic invocation, late binding, clients being
unaware of large scale changes to services - such as service migration, change of protocols,
etc. WSIF also allows new providers to be registered dynamically, so you could enhance
your client's capability without ever having to recompile its code or redeploy it.

Using WSIF, WSDL can become the centerpiece of an integration framework for accessing
software running on diverse platforms and using widely varying protocols. The only
precondition is that you need to describe your software using WSDL, and include in its
description a binding that your client's WSIF framework has a provider for. WSIF defines
and comes packaged with providers for local java, EJB, JMS, and JCA protocols. That means
you can define an EJB or a JMS-accessible service directly as a WSDL binding and access it
transparently using WSIF, using the same API you would for a SOAP service or even a local

Page 1



java class.

TODO: Put a picture showing WSIF client with pluggable providers to access service using
different protocols.

2 WSIF Structure
In WSDL a binding defines how to map between the abstract PortType and a real service
format and protocol. For example, the SOAP binding defines the encoding style, the
SOAPAction header, the namespace of the body (the targetURI), and so forth.

WSDL allows there to be multiple implementations for a Web Service, and multiple Ports
that share the same PortType. In other words, WSDL allows the same interface to have
bindings to for example, SOAP and IIOP.

WSIF provides an API to allow the same client code to access any available binding. As the
client code can then be written to the PortType it can be a deployment or configuration
setting (or a code choice) which port and binding it uses.

WSIF uses 'providers' to support these multiple WSDL bindings. A provider is a piece of
code that supports a WSDL extension and allows invocation of the service through that
particular implementation. WSIF providers use the J2SE JAR service provider specification
making them discoverable at runtime.

Clients can then utilize any new implementations and can delegate the choice of port to the
infrastructure and runtime, which allows the implementation to be chosen on the basis of
quality of service characteristics or business policy.

3 WSDL bindings for EJBs, JMs, JCA...
WSIF defines additional binding extensions so that EJBs, local java classes, software
accessible over message queues using the JMS API and software that can be invoked using
the Java Connector architecture can also be described in WSDL. WSIF is packaged with
providers that allow transparent invocation of such software given the corresponding WSDL
description. Here are the documents that describe these bindings:

• Local java binding extensions for WSDL
• EJB binding extensions for WSDL
• JMS binding extensions for WSDL
• JCA binding extensions for WSDL

Web Services Invocation Framework: Overview

Page 2

wsdl_extensions/java_extensions.htm
wsdl_extensions/java_extensions.htm
wsdl_extensions/java_extensions.htm
wsdl_extensions/java_extensions.htm
wsdl_extensions/java_extensions.htm
wsdl_extensions/java_extensions.htm
wsdl_extensions/java_extensions.htm
wsdl_extensions/java_extensions.htm
wsdl_extensions/ejb_extensions.htm
wsdl_extensions/ejb_extensions.htm
wsdl_extensions/ejb_extensions.htm
wsdl_extensions/ejb_extensions.htm
wsdl_extensions/ejb_extensions.htm
wsdl_extensions/ejb_extensions.htm
wsdl_extensions/ejb_extensions.htm
wsdl_extensions/jms_bindings.htm
wsdl_extensions/jms_bindings.htm
wsdl_extensions/jms_bindings.htm
wsdl_extensions/jms_bindings.htm
wsdl_extensions/jms_bindings.htm
wsdl_extensions/jms_bindings.htm
wsdl_extensions/jms_bindings.htm
wsdl_extensions/j2c_extensions/wsif_j2c_extensions.htm
wsdl_extensions/j2c_extensions/wsif_j2c_extensions.htm
wsdl_extensions/j2c_extensions/wsif_j2c_extensions.htm
wsdl_extensions/j2c_extensions/wsif_j2c_extensions.htm
wsdl_extensions/j2c_extensions/wsif_j2c_extensions.htm

