UIMA Version 3 User's Guide

Written and maintained by the Apache
UIMA™ Development Community

Version 3.1.1

Copyright © 2006, 2019 The A pache Software Foundation
Copyright © 2004, 2006 | nternational Business Machines Corporation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date November, 2019

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

@Y= VT 1
L1 WS NBW o 1
1.2, JaVAa B IS TEQUITEHcoeiiiiiiiiiiiiiiii e 4

2. Backwards CompatiDilityeeiiiiiiiiiiii e 5
2.1. JCas and NON-JCas APIScooiiiiiiii 5

2.1.1. JCBS rESEIVEA NAMESuuuiuuiieitiiiuiiititaeaiaaiaeeibseaaabatseabebabababnebbbbnbnbnenenenees 5
2.2, SENaliZation TOMMS ... e e e e e et e e 5

2.2.1. Delta CAS Version 2 Binary deserialization not supportedccoeevvvvnnnnn. 5
2.3. APIs for creating and modifying Feature StruCtureSccooveevvveeeviiiiiiieeeeceeeiinn 6
2.4, PreSerViNg V2 ISuuueiiiiiiiiiiiiiiiiiiiiiiiiit et 6
2.5, PEAR SUPPOIT ..ttt ettt ettt e et e e 7
B2 (0111 e | TP 8
2.7. Logging configuration is somewhat differentccccooooiiiiies 8
2.8. Type SYSLEM SNAIMNGoevvviiiiiiiiiiiiiiiiii e 9
2.9. Some checks MOvVed t0 NALIVE JAVAcuvvevieiiiiiiiiiiiiiieieeeeeeeeeeeeee et eeeeeeeeees 9
2.10. Some class hierarchies have been modified ... 9
2.11. MUIti-TypeSystemS SINGIE JCESccuvvuruiiieeeieieiiiiiis e e e e et e e e eee e e seeeaeeees 9

3 NEW/EXIENdEd APIS ... 11
3.1. UIMA FSIndex and FSIterators improvemMentScccvvvevviniiieieeeeeeeiiiiinnseeeeeeennnns 11
3.2, NEW SEECE AP oottt annnnnnnnen 12
3.3. New custom Java objects in the CAS frameworkcoovvvviiiiiinieeeiiee e 12
3.4, BUIt-IN [ISIS @NA @TAYS coeevvvviie it e e e e e e e e e e 12

3.4.1. Built-in lists and arrays have common super classes/ interfaces.................... 13
3.5. Many UIMA objects implement Stream or Collectionc.ooevvvceiniieeeireeiiinnnnnn. 13
3.6. REOIrganized APIS ..o 13
3.7. Use of JCas Class t0 SpeCify @ UIMA TPuuuuriuereiiiiiiiiiiieiiieiiieieneeeneeenereeenneneens 14
3.8. JCASGEN CNENGES ...t 14

3.8.1. JCas additional StatiC fiEldSuuuuuuiiiiiiiiiiii 14
3.9. GENENICS AUE ... 14
3.10. OtNEr CNANGES ...uvuiieiiiie ettt e e e e e e eb b e e e e e 14

4. SEECE TrAMBWOTK ... 17
4.1. Select's use of the builder Patternceviii e e 17
4.2. S0Urces Of FEAtUre SITUCIUIESuuuuiiiiei ittt e e e eeeees 17

4.2.1. Use of Typein selection Of SOUICESooevuvviiiiieeiieeeiicis e 19
4.2.2. Sources and geNEriC tYPINGcceveeerrrniieieeeeeeeetiese s e e e e e e eear e e e e e e eeeraa s 19
4.3. Selection and Orderingcoooeiiieiiii e 20
4.3.1. BOOIEAN PrOPEITIESoeeeeieeeiiie et e e e e et e e e e e e aeeees 21
4.3.2. Configuration fOr @any SOUICEcoeveeiiiiiiiee e e e e e e e e eeeeeeees 21
4.3.3. Configuration for any iNdeX ... 21
4.3.4. Configuration for sort-ordered iNdeXEScooeevvveeiiiiiiieee e 22
4.3.5. Bounded sub-selection within an Annotation INdexcooeeeeieieiiniieienens 22
4.3.6. Variations in Bounded sub-selection within an Annotation Index 23
4.3.7. Defaults for bounded SEIECEScooviiiiiiiiii e 24
4.3.8. FOIOWING OF PreCeaiNgcuueuiiieeeieeeeiiiiies e ee et e e e e e e e e e e eeeees 24
4.4. Terminal FOrM aCtionScooooiiiiiiie e 25
g T (= = 0 (= PP 25
R AN g - VA o T £ PP 25
4.4.3. SINGIE TLEBMS ... e 26
A A4, SIEAIMS ...ieeiie ittt et e et e et e et s e et e e e e e et r e e e e e aes 26

5. CAS JAVA ODJECESeuutttiiiiitiiiteititbbbibbbe bbb 29

5.1, Tutorial €XaMPIE ...cceeeeeiiiiee e e e e anan 29

UIMA Version 3 User's Guide iii

UIMA Version 3 User's Guide

5.2, SeMi-DUIE-IN UIMA TYPES ceviieiiiie e it eeiiies e e e et ettt s e e e e e e eee s e e e aeeeeeanen e e s 32
I I S TN ¢ - Y T PSRN 32

5.2.2. INtEGErATTAYLISE «oeviiiiiiiiiiiiiii ittt 32

5.2.3. FSHashSet and FSLinkedHashSet ..., 32

5.2.4. Int2FS Int to Feature StruCtUre MapPoeveeveeereiiie et e 33

5.3. DESIGN FOF FEUSE ..ceiiiiiiiiiieeeee et 33

LS o o 1 oo TS 35
L300 I oo To 1 0T =Y = R 35

5.2, CONLEXE DELA ... eeeeeeeiiiiiee e ettt e ettt e e e e et e ee bbb e e e e e e e e ennbbaa s e e eaaaeennes 36

6.3. Markers used in UIMA Java COre [0gQinguuuevrururmrmrmrmririiiiinnnnrnenenrnenenennennennns 36

6.4. Defaults and Configurationcciveeeiieeeiiiis e e e e e 36
6.4.1. Throttling logging from ANNOtAtOrSc.cceviviviiiiiiie e 37

A T = g To [N (o Y SRR UPPPPRRIN 39
7.1. Migrating: the Dig PICLUIEuvueiii e e e 39

A2 o T 1V (o I 1 41T | - (= TSR 39

7.3. Migrating JCas ClaSSESuuuuuuuuuuunuiiiiiiiiiiiiiiieiiai e eeneeeeeneeenenenenenensnnnenenens 39
7.3.1. Running the migration t00]couuuuiiiiniee e e e e eeeeees 41

7.3.2. Understanding the repOrtSoevvveiiii i 42

7.3.3. EXBMPIES ..ottt ettt ettt e e e b e b nrennnnene 45

7.4. Consuming V3 Maven artifaClSuvveiiiiieiiieiiiii e 46

eI N = T o]] 1 PP 47
8.1, JCAS ISSUBS ...tttk etttk e bbb bbb ebnbenenees 47

8.2. CUSIOM JAVA ODJECESeevvviiiiiiiiiiiiiieiee e 48

LS YT = o] o =T =P 49
0.1, PropertiesS Tablecooviiiiii i aaaan 49

iv UIMA Version 3 User's Guide UIMA Version 3.1.1

Chapter 1. Overview of UIMA Version 3

UIMA Version 3 adds significant new functionality for the Java SDK, while remaining backward
compatible with Version 2. Much of this new function is enabled by a shift in the internal details of
how Feature Structures are represented. In Version 3, these are represented internally as ordinary
Java objects, and subject to garbage collection.

In contrast, version 2 stored Feature Structure datain special internal arrays of
i nt s and other datatypes. Any Java object representation of Feature Structuresin
version 2 was merely forwarding references to these internal data representations.

If JCasis being used in an application, the JCas classes must be migrated, but this can often be
done automatically. In Version 3, the JCas classes ending in"_Type" are no longer used, and the
main JCas class definitions are much simplified.

If an application doesn't use JCas classes, then nothing need be done for
migration. Otherwise, the JCas classes can be migrated in severa ways.

generating during build
If the project is built by Maven, it's possible the JCas classes are built from
the type descriptions, using UIMA's Maven JCasGen plugin. If so, you can
just rebuild the project; the JCasGen plugin for V3 generates the new JCas
classes.

running the migration utility
Thisisthe recommended way if you can't regenerate the classes from the type
descriptions.

This does the work of migrating and produces new versions of the JCas
classes, which need to replace the existing ones. It allows complex existing
JCas classes to migrated, perhaps with developer assistance as heeded. Once
done, the application has no migration startup cost.

The migration tool is capable of using existing source or compiled JCas
classes as input, and can migrate classes contained within Jars or PEARS.

regenerating the JCas classes using the JCasGen tool
The JCasGen tool (available as a Eclipse or Maven plugin, or a stand-alone
application) generates Version 3 JCas classes from the XML descriptors.

Thisis perfectly adequate for migrating non-customized JCas classes. When
run from the UIMA Eclipse plugin for editing XML component descriptors,

it will attempt to merge customizations with generated code. However, its
approach is not as comprehensive as the migration tool, which parses the Java
source code.

Migration of JCas classesisthefirst step needed to start using UIMA version 3. See the later
chapter on migration for details on using the migration tool.

1.1. What's new in UIMA Java SDK version 3

The major improvementsin version 3 include:

Overview 1

What's new

Support for arbitrary Java objects, transportablein the CAS
Support is added to allow users to define additional UIMA Types whose JCas implementation
may include Java objects, with serialization and deserialization performed using normal CAS
transportable data. A following chapter on Custom Java Objects describes this new facility.

New UIMA semi-built-in types, built using the custom Java object support
The new support that allows custom serialization of arbitrary Java objects so they can be
transported in the CAS (above) is used to implement several new semi-built-in UIMA types.

FSArrayList
aJavaArrayList of Feature Structures. The JCas class implementsthe List API.

Integer ArrayList
avariable length int array. Supports OfInt iterators.

FSHashSet, FSLinkedHashSet
aJavaHashSet or LinkedHashSet containing Feature Structures. This JCas class
implements the Set API.

Select framework for accessing Featur e Structures
A new select framework provides a concise way to work with Feature Structure data stored
in the CAS or other collections. It isintegrated with the Java 8 stream framework, while
providing additional capabilities supported by UIMA, such as the ability to move both
forwards and backwards while iterating, moving to specific positions, and doing various kinds
of specialized Annotation selection such as working with Annotations spanned by another
annotation.

By default, when sorted iterators are set up by the select framework, they ignore typePriorities;
this addresses a need of many use cases, and makes operation when there are many annotations
spanning the same begin and end more reliable. Each select can specify to use typePriority as
part of the ordering when required.

This user's guide has a chapter devoted to this new framework.

Elimination of ConcurrentM odificationException whileiterating over UIMA indexes
The index and iteration mechanisms are improved; it is now allowed to modify the indexes
while iterating over them (the iteration will be unaffected by the modification).

Note that the automatic index corruption avoidance introduced in more recent versions of
UIMA could be automatically removing Feature Structures from indexes and adding them
back, if the user was updating some Feature of a Feature Structure that was part of an index
specification for inclusion or ordering purposes.

In version 2, you would accomplish this using a two pass scheme: Pass 1
would iterate and merely collect the Feature Structures to be updated into
aJava collection of some kind. Pass 2 would use a plain Javaiterator over
that collection and modify the Feature Structures and/or the UIMA indexes.
Thisisno longer needed in version 3; UIMA iterators use a copy-on-write
technique to alow index updating, while doing whatever minimal copyingis
needed to continue iteration over the original index.

In both version 2 and 3, there are 3 iterator movement APIs which have a side effect of
insuring the iterator is operating correctly over the current index contents. These are the
noveToFi rst, noveTolLast, and noveTo(sone feature_structure) API cals.
Inversion 3, using these will reinitialize the iterator (if needed) so that it isiterating over the

Overview UIMA Version 3.1.1

What's new

current index contents; if the index has not been modified, no reinitialization is needed (or
done).

CASreset and index removeAll operations clear the index without preserving any existing
iteration. If you try to continue an iteration over an index cleared by these operations, the
results are undefined, and may throw exceptions.

L ogging updated
The UIMA logger is afacade that can be hooked up at deploy time to one of several logging
backends. It has been extended to implement all of the Logger API calls provided in the SLF4j
Logger interface, and has been changed to use SLF4j asits back-end. SLF4j, in turn, requires
alogging back-end which it determines by examining what's available in the classpath, at
deploy time. This design allows UIMA to be more easily embedded in other systems which
have their own logging frameworks.

Modern loggers support MDC/NDC and Markers; these are supported now via the slf4j facade.
UIMA itself is extended to use these to provide contexts around logging.

See the following chapter on logging for details.

Automatic garbage collection of unreferenced Feature Structures
This allows creating of temporary Feature Structures, and automatically reclaiming space
resources when they are no longer needed. In version 2, space was reclaimed only when a CAS
was reset at the end of processing.

better performance
Theinternal design details have been extensively reworked to align with recent trends in
computer hardware over the last 10-15 years. In particular, space and time tradeoffs are
adjusted in favor of using more memory for better locality-of-reference, which improves
performance. In addition, the many internal algorithms (such as managing Feature Structure
indexes) have been improved.

Type system implementations are reused where possible, reducing the footprint in many
scaled-out cases.

Backwar ds compatible
Version 3 isintended to be binary backwards compatible - the goal is that you should be
able to run existing applications without recompiling them, except for the need to migrate or
regenerate any User supplied JCas Classes. Utilities are provided to help do the necessary JCas
migration mostly automatically.

Integration with Java 8
Version 3 requires Java 8 as the minimum level. Some of version 3's new facilities, such asthe
sel ect framework for accessing Feature Structures from CASs or other collections, integrate
with the new Java 8 language constructs, such as St r eans and Spl i t er at or s.

Programming convenience
Many APIs have been made more consistent and better integrated; see the chapter on new and
extended APIs. Examples: UIMA Indexes now implement Iterable, so you can use the Java
"extended for" construct directly; UIMA Lists have new push and pushNode methods to create
and link anew node onto the front of alist; there are new methods on the CAS and JCas to get
a shared instance of common immutabl e objects, like 0-length arrays and empty lists.

Just to give asmall taste of the kinds of things Java 8 integration provides, here's an example of
using the new sel ect framework, where the task is to compute

UIMA Version 3.1.1 Overview 3

Java8isrequired

* aSet of dl the found types
e inaUIMA index
 under some top-most type "MyType"
¢ occurring as Annotations within a particular bounding Annotation
« that are nonOverlapping

Here is the Java code using the new sel ect framework together with Java 8 streaming functions:

Set <Type> foundTypes =
nmyl ndex. sel ect (MyType. cl ass)
. cover edBy(nyBoundi ngAnnot at i on)
. nonOver | appi ng()
.map(fs -> fs.getType())
.col lect(Collectors.toCol |l ection(TreeSet::new));

Another example: to collect, by category, the average length of the annotations having that
category. Here we assume that My Type isan Annot at i on and that it has afeature called
cat egor y which returns a String denoting the category:

Map<String, Doubl e> freqByCategory =
nyl ndex. sel ect (MyType. cl ass)
.col l ect(Coll ectors
. groupi ngBy(M/Type: : get Cat egory,
Col | ectors. aver agi ngDoubl e(f ->
(doubl e) (f.getEnd() - f.getBegin()))));

1.2. Java 8 is required

The UIMA Java SDK Version 3 requires Java 8.

4 Overview UIMA Version 3.1.1

Chapter 2. Backwards Compatibility

Because users have made substantial investment in developing applications using the UIMA
framework, agoal of version 3 isto protect thisinvestment, by enabling Annotators and
applications developed under previous versions to be able to be used in subsequent versions of the
framework.

To thisend, version 3 is designed to be backwards compatible, except for needing:
* possibly arecompilation (due to some rearrangements of many classes and interfaces)

» anew set of User-defined JCas classes (if these were previously being used). The cregation of
these Cas classes can be done by regenerating them using JCasGen, or by using amigration
tool that handles converting the existing JCas classes. A later chapter covers how to upgrade
the JCas classes.

There are some additional exceptions, described in the following sections.

2.1. JCas and non-JCas APIs

The JCas class changes include no longer needing or using the Xyz_Type sister classes for each
main JCas class. User code is unlikely to access these sister classes. The JCas API method to access
this sister class now throws a UnsupportedOperation exception.

The non-JCas Java cover classes for the built-in UIMA types remain, for backwards compatibility.
So, if you have code that casts a Feature Structure instance to Annotationlmpl (a now deprecated
version 2 non-JCas Java cover class), that will continue to work.

2.1.1. Additional reserved names in the JCas generated
classes

Names beginning with"_" (underscore) are being used by the new JCas implementation, so you
should not name things with this convention. If you do, please insure your names are not colliding
with the names being used by the generated JCasfiles.

2.2. Serialization forms

The backwards compatibility extends to the serialized forms, so that it should be possible to have a
UIMA-AS services working with aclient, where the client isa version 3 instance, but the server is
till aversion 2 (or vice versa).

2.2.1. Delta CAS Version 2 Binary deserialization not
supported

The binary seriaization forms, including Compressed Binary Form 4, build an internal model of
thev2 CASin order to be able to deserialize v2 generated versions. For delta CAS, this model
cannot be accurately built, because version 3 excludes from the model al unreachable Feature
Structures, so in most cases it won't match the version 2 layout.

Version 3 will throw an exception if delta CAS deseriaization of aversion 2 binary delta CASis
attempted.

Backwards Compatibility 5

APIsfor creating and modifying Feature Structures

2.3. APIs for creating and modifying Feature
Structures

There are 3 sets of APIsfor creating and modifying Feature Structures; all are supported in V3.
» Using the JCas classes
» Using the normal CAS interface with Type and Feature objects
» Using thelow level CAS interface with int codes for Types and Features

Version 3retains all 3 sets, to enable backward compatibility.

The low level CAS interface was originally provided to enable a extra-high-performance (but
without compile-time type safety checks) mode. In Version 3, this mode is actually somewhat
slower than the others, and no longer has any advantages.

Using the low level CAS interface also sometimes blocks one of the new features of Version 3 -
namely, automatic garbage collection of unreachable Feature Structures. Thisis because creating
a Feature Structure using the low level API creates the Java object for that Feature Structure, but
returns an "int" handle to it. In order to be able to find the Feature Structure, given that int handle,
an entry ismade in an internal map. This map holds a reference to this Feature Structure, which
preventsit from being garbage collected (until of coursse, the CASisreset).

The normal CAS APIs alow writing Annotators where the type system is unknown at compile
time; these are fully supported.

2.4. Preserving V2 ids, with low level CAS Api
accessibility

Some V2 applications make use of the Feature Structure address, using these as an integer identifier
and using the low level CAS APIsto access the Feature Structure, given thisinteger. These
applications also often use the stability of these ids across some serialization/deserializations.

Normally in V3, deserialization of CASs having these 1Ds occurs without preserving the IDs, and
without setting up the low level CAS APIs to be able to access these using them. If an existing
application depends on the low level access viathe address, a special mode, called V21 dRef s,

can be specified, which will support this. It comes at a cost however, which isthat all new Feature
Structures created (or deserialized) will be added to an internal table to enable the low level CAS
getFSForRef(int) method to work. As aresult, these Feature Structures are not eligible for garbage
collection.

Thismodeis set on individual CASsviaanew API; adefault value may optionally be specified.
Onceset onaCAS, it remains until set to adifferent value; CAS Reset does not affect the setting,
nor does checking it into / out of a CAS Pool.

When anew CAS s created, this mode is set according to two sources:

* a-Dui ma. def aul t _v2_i d_r ef er ences system property, read once when the UIMA
framework classes are |oaded.

* A run-time value kept per thread, managed by an API on the LowLevel CAS interface. The
setting is inherited by any child threads the thread creates, and overrides the system property
if used.

« If neither of these are used, then the default is to not bein the sepcial v2-mode.

6 Backwards Compatibility UIMA Version 3.1.1

PEAR support

The APIsfor this are part of the LowLevel CAS. The controlling APIs all return an instance
of AutoClosableNoException, which can be used to reset the setting to its previous value. A
recommended way of using theseiswith theJavatry wi th resour ces construct:

try (Autod osabl eNoException w = |l cas.||_enabl eV2l dRefs) {
sonme operations
} // automatically restores previous val ue

LowL evelCasinstance APIs for enabling/disabling this mode on a particular CAS:

/'l set the node
Aut oCl osabl e || _enabl eV2l dRef s()

/1 same, but with explicit set or reset of the node
Aut oCl osabl eNoException || _enabl eV2l dRef s(true/ fal se)

/[l return true if the node is enabl ed
bool ean is_I | _enabl eV2l dRef s()

Static LowL evelCas APIs for setting the default value for this mode for new CASs on a particular
thread:

/'l set the default
Aut oCl osabl eNoExcepti on LowLeveCas. | | _def aul t V21 dRef s()

/1 same, but with explicit set or reset of the node
Aut oCl osabl eNoExcepti on LowLeveCas. || _defaul t V21 dRef s(true/fal se)

[/ return true if the node is enabl ed
bool ean LowLeveCas.is_|| _defaul t V2| dRef s()

This mode modifies multiple things in the operation of UIMA V3.

» Newly created Feature structures have | Ds which match what UIMA V2 references (the
"addresses") would be. For serialized forms (except Xmi), these IDs match the (imputed) v2
IDs of the serialized form.

Newly created Feature Structures, including those created when deserializing, are added to
an internal map which mapsthe ID to the Feature Structure instance. Feature Structures may
be located by ID using the LowLevel CAS API get FSFor Ref () .

In order for thisto work correctly, the mode must be set while the CASis empty. If the
mode is attempted to be set on anon-empty CAS, an Illegal StateException is thrown.

» This mode modifies serialization (except for XCas, Xmi, and Compressed form 6, which in
V2 are implemented to just serialize reachable Feature Structures) to include non-reachable
FSs.

» Note: Thisdoes not affect thesel ect framework results - unreachable Feature Structures
are not included.

2.5. PEAR support

Pears are supported in Version 3. If they use JCas, their JCas classes need to be migrated.

UIMA Version 3.1.1 Backwards Compatibility 7

toString()

When a PEAR contains a JCas class definition different from the surrounding non-PEAR context,
each Feature Structure instance within that PEAR has a lazily-created "dua" representation using
the PEAR's JCas class definition. The UIMA framework things storing references to Feature
Structures are modified to store the non-PEAR version of the Feature Structure, but to return
(when in aparticular PEAR component in the pipeline) the dual version. Theintent is that this be
"invisible" to the PEAR's annotators. Both of these representations share the same underlying CAS
data, so modifications to one are seen in the other.

If auser builds code that holds onto Feature Structure references, outside of annotators
(e.g., asashared External Resource), and sets and references these from both outside
and inside one (or more) PEARS, they should adopt a strategy of storing the non-
PEAR form. To get the non-PEAR form from a Feature Structure, use the method
nyFeat ur eSt ruct ur e. _maybeGet BaseFor Pear Fs() .

Similarly, if code running in an Annotator within a PEAR wants to work

with a Feature Structure extracted from non-UIMA managed data outside of
annotators (e.g., such as a shared External Resource) where the form stored

is the non-PEAR form, you can convert to the PEAR form using the method
nyFeat ureStruct ure. __maybeGet Pear Fs() . This method checks to see

if the processing context of the pipeline is currently within a PEAR, and if that
PEAR has adifferent definition for that JCas class, and if S0, it returns that version
of the Feature Structure.

The new Java Object support does not support multiple, different JCas class definitions for the
same UIMA Type, inside and outside of the PEAR context. If thisis detected, a runtime exception
isthrown.

The workaround for thisis to manually merge any JCas class definitions for the same class.

2.6. toString()

The formatting of various UIMA artifacts, including Feature Structures, has changed somewhat,
to be more informative. This may impact situations such as testing, where the exact string
representations are being compared.

A special global Java property, -Duima.v2_pretty print_format can be set to have the toString()
operation for Feature Sructures print in the V2 style.

2.7. Logging configuration is somewhat different

The default logging configuration in v2 was to use Java Util Logging (the logger built into Java).
For v3, the default isto use SLF4J which, in turn, picks a back-end logger, depending on what it
findsin the class path.

This change was done to permit easier integration of UIMA as alibrary running within other
frameworks.

V3 UIMA logger includes the APIslikeinfo(..), warn(..) etc., that are part of the SLF4j APIs. In
addition, these are augmented with the Java 8 style |lambda arguments that were introduced in
log4j-2, for more concise and efficient log message computation.

The new UIMA Logger APIs (e.g. logger.info(...), logger.warn(...)) use the SLF4j and other
modern logger substitutable notation of "{}", as opposed to the style adopted by the original Java
logger, of "{nnn}". All modern loggers have switched to this.

8 Backwards Compatibility UIMA Version 3.1.1

Type System sharing

The technique for (optionally) reporting the class and method (and sometimes, line number) was
changed to conform to current logger conventions - whereby the loggers themselves obtain this
information from the call stack. The V2 calls which pass in the sourceClass and sourceM ethod
information have this information ignored, but replaced with what the loggers obtain from the stack
track. In some cases, where the callersin V2 were not actually passing in the correct class/method
information, thiswill result in adifferent log record.

For more details, please see the logging chapter.

2.8. Type System sharing

Type System definitions are shared when they are equal. After type systems have been built up
from type definitions, at "commit" time, a check is made to seeif an identical type system already
exists (same types and features). Thisis often the case when a UIMA application is scaling up by
adding multiple pipelines, all using the same type system.

If anidentical committed type system already exists, then the commit operation returnsit, and the
one just built is discarded. Normally, thisis not an issue. However, some application code may
save references to the type system object or to defined types and features. These references end up
pointing to the discarded version, when the commit operation finds an already committed equal
version.

Application code may code around this by re-acquiring references to the type system object, and
to any type and feature objects, if the type system instance object returned from conmi t is not
identical (==) to the one being committed. The type system commit APIs are changed to return the
type system - either the one being committed, or an already existing equal committed type system.
So when coding my Typesyst em conmi t () ; if you later refer to ny Typesyst em change thisto
nyTypesystem = nyTypesystem commi t (); , to keep the variable my Typesyst emaways
referring to to the committed type system.

2.9. Some checks moved to native Java

In the interest of performance, some duplicate checks, such as whether an array index iswithin
bounds, have been removed from UIMA when they are aready being checked by the underlying
Javaruntime. This has affected some of the internal APIs, such asthe JCasscheckAr r ayBounds
which was removed because it was no longer being used.

2.10.

Some class hierarchies have been modified

The various JCas Classes implementing the built-ins for arrays have some additional interfaces
added, grouping them into ConrmonPri mi ti veArray or ConmonAr r ay. These changes are
internal, and should not affect users.

2.11.

Enabling multiple versions of type systems to

work with a single common JCas class

Some applications may use a JCas class definition, defining for type T features f1, f2, f3 (for
example), in amode where under asingle class loader (for example, in one Java application),
multiple CASs are loaded and processed, where each CAS might have other versions of the type
system, defining for type T a subset of the features in the JCas.

UIMA Version 3.1.1 Backwards Compatibility 9

Multi-TypeSystems single JCas

In order to make this scenario possible, v3 takes an extra step, right before type system commit
time, of loading the JCas classes corresponding to the types, and then augmenting the type
definitions with additional features defined in the JCas but not in the type description. After this
is done, the type system is committed, and offsets are assigned to the JCas class that are constant,
even when a subsequent type system is loaded that defines more features (provided that no new
features are introduced).

This feature represents a trade-off between highly efficient, locked-down offsets for features, and
some limited flexibility to handle a somewhat common use case where additional features exist in
the JCas. The JCas loading code aways checks to insure compatibility between the offsetsin the

JCas classes, asfirst set up, and any subsequent type system being used with that JCas.

This accommodation doesn't handle many possible scenarios. Some of these include situations
where a supertype might subsequently add extra feature slots, or the features end up after merging
to have a different ordering.

For cases where this accommodation is insufficient, the workaround is to run separate UIMA
applications, each under its own class loader, for the incompatible situations.

PEARS, because they are loaded lazily after the type system has been committed, do not support
this kind of augmentation of types from the Pear-specific JCas class definition.

10

Backwards Compatibility UIMA Version 3.1.1

Chapter 3. New and Extended APIs

3.1. UIMA FSindex and FSlterators improvements

The FSIndex interface implements Collection, so you can now writef or (MyType item:
nyl ndex) to iterate over an index.

Because it implements Collection, the FSIndex interface includes ast r ean() method, so you
can now writenyl ndex. st rean() . any- st r eam oper at i ons, which will use theitemsin the
index as the source of the stream.

The FSlterator interface now implements the Java Listlterator Interface, and supports the methods
there except for add, nextIndex, previouslindex, and set; the remove() method's meaning is changed
to remove the item from all of the UIMA indexes.

The iterators over indexes no longer throw concurrent modification exceptions if the index is
modified whileit is being iterated over. Instead, the iterators use a lazily-created copy-on-write
approach that, when some portion of the index is updated, prior to the update, copies the original
state of that portion, and continues to iterate over that. While thisis helpful if you are explicitly
modifying the indexesin aloop, it can be especially helpful when modifying Feature Structures
as you iterate, because the UIMA support for detecting and avoiding possible index corruption if
you modify some feature being used by some index as akey, is automatically (under the covers)
temporarily removing the Feature Structure from indexes, doing the modification, and then adding
it back.

Similarly to version 2, iterator methods noveToFi rst, noveTolLast, and
nmoveTo(a_positioning_Feature_ Structure) "reset" theiterator to be ableto "see" the
current state of the indexes. This corresponds to resetting the concurrent modification detection
sensing in version 2, when these methods are used.

Note that the phrase Concurrent Modification is being used here in a single threading to the
indexes. UIMA does not support multi-threaded write access to the CAS; it does support multi-
threaded read access to a set of CAS Views, concurrent with one thread having write access (to
different views).

Therenove() API for iteratorsis now implemented for FSlterators. Its meaning is slightly
different from the normal Java meaning - it doesn't remove the item from the collection being
iterated over; rather it removes the Feature Structure returned by get () from al indexesin the
view.

The FSlterator methods that normally check for iterator validity have versions which skip that
check. This may be a performance optimization in cases where you can guarantee the iterator
isvalid, for exampleif you have aloop which is checking hasNext () and following it with
anext (), whichisonly executed if the hasNext () wastrue. The non-checking versions are
suffixed with Nvc (stands for No Validity Check).

The FSIndex API has anew method, subType(t ype- spec), which returns an FSIndex for the
same index, but specialized to elements which are a subtype of the original index. The type-spec
can be either a JCas class, e.g. Wy Token. cl ass, or aUIMA type instance.

New/Extended APIs 11

New Select API

3.2. New Select API

A versatile new Select framework for accessing and acting on Feature Structures selected from the

CAS or from Indexes or from other collection objects is documented in a separate chapter. This

API isintegrated with Java 8's Stream facility.

3.3. New custom Java objects in the CAS
framework

Thereisanew framework that supports allowing you to add your own custom Java objects as
objects transportable in the CAS. A following chapter describes this facility, and some new semi-
built-in types that make use of it.

3.4. Built-in lists and arrays

The built-in FSArray JCas class is now parameterized with the type of its elements.

UIMA Array and List types implement Iterable, so you can use them like this: f or (MyType
item: nyArray)

UIMA Arrays and Lists support cont ai ns(el enent) andi sEnpty().

UIMA Array and List types support ast r ean{) method returning a Stream or atype-specialized
sub interface of Stream for primitives (IntStream, LongStream, DoubleStream) over the objectsin
the collection. Omitted are stream types where boxing would occur - Arrays of Byte, Short, Float,
Boolean.

Thei terator () methodsfor I nt egerLi st |ntegerArraylList, |ntegerArray,

Doubl eArray, andLongArray returnanOf I nt / O Doubl e / O Long instances. These are
subtypes of 1 t er at or with an additional methods nextint / nextLong / nextDouble which avoid
the boxing of the normal iterator.

The new sel ect framework supports stream operations; see the "select" chapter for details.

A new set of methods on UIMA built-in lists, cr eat eNonEnpt yNode() and enptyLi st (),
creates a non-empty node of the type, or retrieves a (shared) empty node of the type. These
methods are not static, and create or get the instance in the same CAS as the object instance. These
methods are callable on both the empty and non-empty node instances, or on their shared super
interface, for example, on NonEmptyFloatList, EmptyFloatList, and FloatList (the common super
interface).

A new set of static methods on UIMA built-in listsand arrays, cr eat e(j cas, array_source)
take a Java array of items, and creates a corresponding UIMA built-in list or array populated with
items from the array_source.

For UIMA Lists and Arrays, the CAS and JCas has empty X X XList/Array methods, which return
ashared instance of the immutable empty object. The Cas and JCas have generic emptyArray/List,
taking an argument JCas class identifying the type, e.g. FloatArray.class, StringList.class, etc.

For lists, there are some new common APIsfor al list kinds.

» push(iten) pushestheitem onto an existing list node, creates a new non-empty node,
setting itshead to i t emand itstail to the existing list node. This allows easy construction of
alist in backwards order.

12

New/Extended APIs UIMA Version 3.1.1

Built-in lists and arrays have common super classes/ interfaces

e pushNode() createsand linksin anew nodein front of this node.
* insertNode() createsand linksin anew node following this node.

» creat eNonEnpt yNode() creates anode of the same type, in the same CAS, without
linking it.

» get ConmonTai | () getsthetail of the node

e setTail () setsthetail of the node

* wal kLi st () walksthelist applying a consumer to each item
» get Lengt h() walksthelist to compute its length

» enpt yLi st returns ashared instance of the empty list of the same type, in the same CAS

3.4.1. Built-in lists and arrays have common super
classes / interfaces

Some methods common to multiple implements were moved to the super classes, some classes
were made abstract (to prevent them from being instantiated, which would be an error). For arrays,
anew method common to all arrays, copyVal uesFr on() copies values from arrays of the same

type.

3.5. Many UIMA objects implement Stream or
Collection

In Java 8, classes which implement Collection can be converted to streams using the xxx. sr ean()
method. To better integrate with Java 8, the following UIMA classes and interfaces now implement
Stream or Collection:

* FSIndex (implements Collection)

« al of the built-in Arrays, e.g. FloatArray implement Stream, the Integer/long/double arrays
implement the non-boxing version

« al of the built-in Lists implement Stream, the IntegerList implements the non boxing version

3.6. Reorganized APIs

Some APIs were reorganized. Some of the reorganizations include altering the super class and
implements hierarchies, making some classes abstract, making use of Java 8's new def aul t
mechanisms to supply default implementations in interfaces, and moving methods to more common
places. Users of the non-internal UIMA APIs should not be affected by these reorgani zations.

As an example, version 2 had two different Java objects representing particular Feature Structures,
such as"Annotation". One was used (or g. apache. ui nma. j cas. t cas. Annot at i on) if the
JCas was enabled; the other (or g. apache. ui nma. cas. i npl . Annot at i onl npl)otherwise. In
version 3, there's only one implementation; the other (Annotationimpl) is converted to an interface.
Annotation now "implements Annotationimpl.

UIMA Version 3.1.1 New/Extended APIs 13

Use of JCas Class to specify a UIMA type

3.7. Use of JCas Class to specify a UIMA type

Several APIsrequire aUIMA typeto be specified. For instance, the API to remove all Feature
Structures of a particular type requires the type to be specified. Instead of a UIMA Type
object, if there is a JCas cover class for that type, you can pass that as well, as (for example)
Annot ati on. cl ass.

3.8. JCasGen changes

JCasgen is modified to generate the v3 style of JCas cover classes. It no longer generates the the
xxX_Type.java classes, as these are not used by UIMA Version 3.

3.8.1. JCas additional static fields

Static final string fields are declared for each JCas cover class and for each feature that is part of
that UIMA type. Thefieldslook like this example, taken from the Sofa class:

public final static String _TypeNane = "org. apache. ui na. j cas. cas. Sof a";
public final static String _Feat Nane_sof aNum = "sof aNunt';

public final static String _Feat Nane_sofal D = "sof al D';

public final static String _Feat Nane_mi meType = "m meType";

public final static String _FeatNane_sofaArray = "sofaArray";

public final static String _Feat Nane_sofaString = "sofaString";

public final static String _Feat Name_sof aURI = "sofaURI ";

Each string has a generated name corresponding to the name of the type or the feature, and a string
value constant which of the type or feature name. These can be useful in Java Annotations.

3.9. Generics added

Version 3 adds generic typing to several structures, and makes use of thisto enable usersto
unclutter their code by taking advantage of Java's type inferencing, in many cases.

Generic types are added to:
» FSndex <T extends FeatureStructure> the type the index is over.
* FSArray <T extends FeatureStructure> the type the FSArray holds.
» FSList <T extends TOP> the type the FSList holds.

» SelectFSs <T extends FeatureStructure> the type the select is producing.

3.10.

Other changes

The convenience methods in the JCas have been duplicated in the CAS, e.g. get Al | | ndexFS.

New methods get | ndexedFSs(nyUi maType) and get | ndexedFSs(MyJCas. cl ass) return
unmodifiable, unordered Collections of all indexed Feature Structures of the specified type and its
subtypesin this CAS's view. This collection can be used in a Java extended-for loop construction.
get I ndexedFSs() isthesame but isfor al Feature Structures, regardless of type. These are
methods on the CAS, JCas, FSIndexRepository interfaces, and return the Feature Structures of the
specified type (including subtypes).

14

New/Extended APIs UIMA Version 3.1.1

Other changes

The TypeSystemMgr Interface has a variation of the conmi t method, which has a parameter that
specifies the class |oader to be used when loading JCas class. This should be used whenever there
are user-specified JCas classes associated with the type system. If not specified, it defaultsto the
class loader used to load the UIMA framework.

The utility classor g. apache. ui ma. util. Fileltils hasanew methodwr it eToFil e(path,
st ring), which efficiently writes a string using UTF-8 encoding to pat h.

The StringArray classhasanew cont ai ns(a_st ring) method.

The CASpr ot ect | ndexes method returns an instance of AutoClosableNoException whichis
a subtype where the close method doesn't throw an exception. This allows writing the try-with-
resources form without a catch block for Exception.

Sometimes Annotators may log excessively, causing problems in production settings. Although this
could be controlled using logging configuration, sometimes when UIMA is embedded into other
applications, you may not have easy access to modify those.

For this case, the produceAnalysi sEngine's "additional Parameters' map supports a new key,
AnalysisEngine. PARAM_THROTTLE_EXCESSIVE_ANNOTATOR_LOGGING. This key
specifies that throttling should be applied to messages produced by annotators using loggers
obtained by Annotator code using the getLogger() API.

The value specified must be an Integer, and is the number of messages allowed before logging is
suppressed. This number is applied to each logging level, separately. To suppress al logging, use 0.

The Type interface has new methods subsunes(anot her _t ype),
i sStringOrStringSubtype(),andisStringSubtype().

The FlowController_ImplBase supports a getL ogger() API, which is shorthand for
getContext().getLogger().

Many error messages were changed or added, causing changes to localization classes. For coding
efficiency, some of the structure of theinternal error reporting calls was changed to make use of
Java's variable number of arguments syntax.

The UIMA Logger implementation has been extended with both the SLF4J logger APIs and the
Log4j APIswhich support Java 8's Suppl i er Functional Interfaces.

The TypeSystem and Type object implementationsimplement | t er abl e and will iterate over all
the defined types, or, for atype, al the defined Features for that type.

UIMA Version 3.1.1 New/Extended APIs 15

Chapter 4. The select framework for working
with CAS data

The select framework provides a concise way to work with Feature Structure data stored in the
CAS. It isintegrated with the Java 8 stream framework, and provides additional capabilities
supported by the underlying UIMA framework, including the ability to move both forwards and
backwards while iterating, moving to specific positions, and doing various kinds of specialized
Annotation selection such as working with Annotations spanned by another annotation (think of a
Paragraph annotation, and the Sentences or Tokens within that).

There are 3 main parts to this framework:

* The source
 what to select, ordering
e what to do
Selection Terminal
Sources E—

and ordering e

Figure 4.1. Select - the big picture

These are described in code using a builder pattern to specify the many options and parameters.
Some of the very common parameters are also available as positional arguments in some contexts.
Most of the variations are defaulted so that in the common use cases, they may be omitted.

4.1. Select's use of the builder pattern

The various options and specifications are specified using the builder pattern. Each specification
has a name, which is a Java method name, sometimes having further parameters. These methods
return an instance of SelectFSs; thisinstance is updated by each builder method.

A common approach is to chain these methods together. When thisis done, each subsequent
method updates the SelectFSs instance. This means that the last method in case there are multiple
method calls specifying the same specification is the one that is used.

For example,

a_cas.select().typePriority(true).typePriority(false).typePriority(true)

would configure the select to be using typePriority (described later).

Some parameters are specified as positional parameters, for example, aUIMA Type, or astarting
position or shift-offset.

4.2. Sources of Feature Structures

Feature Structures are kept in the CAS, and may be accessed using UIMA Indexes. Note that not
all Feature Structuresin the CAS arein the UIMA indexes; only those that the user had "added to

Select framework 17

Sources of Feature Structures

the indexes" are. Feature Structures not in the indexes are not included when using the CAS as the
source for the select framework.

Feature Structures may, additionally, be kept in FSAr r ays, FSLi st s, and many additional
collection-style objects that implement Sel ect Vi aCopyToAr r ay interface. Thisinterfaceis
implemented by the new semi-built-in types FSAr r ayLi st , FSHashSet and FSLi nkedHashSet ;
user-defined JCas classes for user types may also choose to implement this. All of these sources
may be used with sel ect .

Selection Terminal
Sources | and
ordering action
s
CAS Type:
\) - (omitted) xx.select()
B - Class xx.select(Token.class)
Index -uima_Type xx.select(token)
- JCas.type xx.select(Token.type)
FSArray - “name” xx.select(“pkg.Token")
Collections FSArrayList
(semi) FSList
built-in FSHashSe
I .
User-defined JCas
collections -

Figure 4.2. select method with type

For CAS sources, if Views are being used, there is a separate set of indexes per CAS view. When
there are multiple views, only one view's set of indexed Feature Structures is accessed - the view
implied by the CAS being used. Note that there is away to specify aggregating over al views; see
al | Vi ews described |ater.

For CAS sources, users may specify all Feature Structuresin aview, or restrict thisin two ways:
 gpecifying an index: Users may define their own indexes, in additional to the built in ones,
and then specify which index to use.
» gpecifying atype: Only Feature Structures of this type (or its subtypes) are included.

It is possible to specify both of these, using the form ny I ndex. sel ect (nyType) ; inthat case the
type must be the type or a subtype of the index's top most type.

If noindex is specified, the default is
» tousedl Feature Structuresin aCAS View, or
 touseall Feature Structuresin the view's Annotationindex, if the selection and ordering
specifications require an Annotationlndex.

Note that the non-CAS collection sources (e.g. the FSArray and FSList sources are considered
ordered, but non-sorted, and therefore cannot be used for an operations which require a sorted
order.

18

Select framework UIMA Version 3.1.1

Use of Type in selection of sources

There are 4 kinds of sources of Feature Structures supported:
* aCASview: al the FSs that were added to the indexes for this view.
» an Index over a CASview. Note that the Annotationlndex is often implied by other sel ect
specifications, so it is often not necessary to supply this.
 Feature Structures from a (semi) built-in UIMA Collection instance, such as instances of the
typesFSArray, FSArraylist, FSHashSet, etc.

» Feature Structures from a user-defined UIMA Collection instance.

UIMA Collection sources have somewhat limited configurability, because they are considered non-
sorted, and therefore cannot be used for an operations which require a sorted order, such asthe
various bounding selections (e.g. cover edBy) or positioning operations (e.g. st art At).

Each of these sources has anew API method, sel ect (. . .), whichinitiates the select
specification. The select method can take an optional parameter, specifying the UIMA type to
return. If supplied, the type must must be the type or subtype of the index (if one is specified or
implied); it servesto further restrict the types selected beyond whatever the index (if specified) has
asitstop-most type.

4.2.1.

Use of Type in selection of sources

The optional type argument for sel ect (.. .) specifiesaUIMA type. Thisrestricts the Feature
Structures to just those of the specified type or any of its subtypes. If omitted, if anindex isused as
asource, its type specification is used; otherwise al types are included.

Type specifications may be specified in multiple ways. The best practice, if you have a JCas cover
class defined for the type, isto use the form MyJCasd ass. cl ass. This has the advantage of
setting the expected generic type of the select to that Javatype.

The type may also be specified by using the actual UIMA type instance (useful if not using the
JCas), using afully qualified type name as a string, or using the JCas class static t ype field.

4.2.2. Sources and generic typing

The select method results in a generically typed object, which is used to have subsequent operations
make use of the generic type, which may reduce the need for casting.

The generic type can come from arguments or from where avalue is being assigned, if that target
has a generic type. Thislatter sourceisonly partially available in Java, as it does not propagate past
thefirst object in achain of cals; this becomes a problem when using sel ect with generically
typed index variables.

Thereis also astatic version of the sel ect method which takes a generically typed index as an
argument.

UIMA Version 3.1.1 Select framework 19

Selection and Ordering

/1 this works
/1 the generic type for Token is passed as an argunent to sel ect
FSI t er at or <Token> token_it = cas. sel ect (Token.class).fslterator();

FSI ndex<Token> token_index = ... ; // generically typed

// this next fails because the

/| Token generic type fromthe index variable being assi gned

/1 doesn't get passed to the select()

FSl t er at or <Token> token_iterator = token_index.select().fslterator();

/1 You can overcone this in two ways
/1 pass in the type as an argunent to sel ect
/1 using the JCas cover type
FSIt er at or <Token> token_iterator =
t oken_i ndex. sel ect (Token. cl ass).fslterator();

/1 You can also use the static form of select
/1 to avoid repeating the type information
FSIt er at or <Token> token_iterator =

Sel ect FSs. sel ect (token_i ndex).fslterator();

/! Finally, you can also explicitly set the generic type
/1 that select() should use, like a special kind of type cast, like this:
FSIt er at or <Token> token_ iterator =

t oken_i ndex. <Token>sel ect().fslterator();

Note: the static sel ect method may be statically imported into code that uses it, to avoid
repeatedly qualifying thiswith its class, Sel ect FSs.

Any specification of an index may be further restricted to just a subType (including that subtype's
subtypes, if any) of that index's type. For example, an Annotationlndex may be specialized to just
Sentences (and their subtypes):

FSI t er at or <Token> token_iterator =
annot ati on_i ndex. sel ect (Token. cl ass).fslterator();

4.3. Selection and Ordering

There are four sets of sub-selection and ordering specifications, grouped by what they apply to:
« all sources
* Indexesor FSArrays or FSLists
* Ordered Indexes
» The Annotation Index

With some exceptions, configuration items to the left also apply to items on theright.

When the same configuration item is specified multiple times, the last one specified is the one that
is used.

20

Select framework UIMA Version 3.1.1

Boolean properties

Selection Terminal
el . Form action
and ordering

Any index /
collection

Annotationindex - ioni TR
Ordered Index Annota.tlo.mndex Annotationindex
subselect - variations follow / preceed

limit
— unordered coveredBy typePriority }» following
nullOk covering recedin
startAt p €
at — nonOverlapping
between includeAnnotationsWithEndBeyondBounds
allviews backwards

useAnnotationEquals

Figure 4.3. Selection and Ordering

4.3.1. Boolean properties

Many configuration items specify a boolean property. These are named so the default (if you don't
specify them) is generally what is desired, and the specification of the method with null parameter
switches the property to the other (non-default) value.

For example, normally, when working with bounded limits within Annotation Indexes, type
priorities are ignored when computing the bound positions. Specifying typePriority() saysto use
type priorities.

Additionally, the boolean configuration methods have an optional form where they take a boolean
value; true sets the property. So, for example typePriority(true) is equivalent to typePriority(), and
typePriority(false) is equivaent to omitting this configuration.

4.3.2. Configuration for any source

limit
alimit to the number of Feature Structures that will be produced or iterated over.
mullOK

changes the behavior for the terminal_form actionsget (...) and single(...),which
would otherwise throw an exception if anull result happened.

4.3.3. Configuration for any index

allViews
Normally, only Feature Structures belonging to the particular CAS view areincluded in the
selection. If you want, instead, to include Feature Structures from all views, you can specify
al I Views().

When thisis specified, it acts as an aggregation of the underlying selections, one per view in
the CAS. The ordering among the views is arbitrary; the ordering within each view is the same

UIMA Version 3.1.1 Select framework 21

Configuration for sort-ordered indexes

asif this setting wasn't in force. Because of thisimplementation, the items in the selection may
not be unique -- Feature Structures in the underlying selections that are in multiple views will
appear multiple times.

4.3.4. Configuration for sort-ordered indexes

When an index is sort-ordered, there are additional capabilities that can be configured, in particular
positioning to particular Feature Structures, and running various iterations backwards.

order NotNeeded
relaxes any iteration by allowing it to proceed in an unordered manner. Specifying this may
improve performance in some cases. When thisis specified, the current implementation
skips the work of keeping multiple iterators for atype and all of its subtypesin the proper
synchronization.

startAt
position the starting point of any iteration. st ar t At (xxx) takestwo forms, each of which has,
in turn 2 subforms. The form using begi n, end isonly valid for Annotation Indexes.

start At (fs); /1l fs specifies a feature structure
/1 indicating the starting position

startAt(fs, shifted); // same as above, but after positioning,

/1 shift to the right or left by the shift

/1 ampbunt which can be positive or negative
/1 the next two forns are only valid for Annotationlndex sources
start At (begin, end); // start at the position indicated by begin/end
start At (begin, end, shifted) // same as above,

/] but with a subsequent shift.
/1 which can be positive or negative

backwards
specifies a backwards order (from last to first position) for subsequent operations

4.3.5.

Bounded sub-selection within an Annotation Index

When selecting Annotations, frequently you may want to select only those which have arelation to
a bounding Annotation. A commonly done selection isto select all Annotations (of a particular type
including its subtypes) within the span of another bounding Annotation, for example, al Tokens
within aSent ence.

There are four varieties of sub-selection within an annotation index. They all are based on a
bounding Annotation (except the bet ween which is based on two bounding Annotations).

The bounding Annotations are specified using either a Annotation (or a subtype), or by specifying
the begin and end offsets that would be for the bounding Annotation.

Leaving aside bet ween as a specia case, the bounding Annotation'sbegi n and end (and
sometimes, itst ype) is used to specify where an iteration would start, where it would end, and
possibly, which Annotations within those bounds would be filtered out. There are many variations
possible; these are described in the next section.

22

Select framework UIMA Version 3.1.1

Variations in Bounded sub-selection within an Annotation Index

The returned Annotations exclude the one(s) which are equal to the bounding FS. There are
several variations of how thisequal test isdone, discussed in the next section.

cover edBy
iterates over Annotations within the bound

covering
iterates over Annotations that span the bound.

at
iterates over Annotations that have the same span (i.e., begin and end) as the bound.

between
uses two Annotations, and returns Annotations that are in between the two bounds, specified
by Annotations. If the bounds are backwards, then they are automatically used in reverse order.
The meaning of between isthat an included Annotation's begin has to be >= the earlier bound's
end, and the Annotation's end has to be <= the later bound'sbegi n.

4.3.6. Variations in Bounded sub-selection within an
Annotation Index

There are five variations you can specify. Two affect how the starting bound position is set;
the other three affect skipping of some Annotations while iterating. The defaults (summarized
following) are designed to fit the popular use cases.

typePriority
The default is to ignore type priorities when setting the starting position, and just use the
begin / end position to locate the left-most equal spot. If you want to respect type priorities,
specify this variant.

nonOverlapping
Normally, all Annotations satisfying the bounds are returned. If thisis set, annotations whose
begi n position is not >= the previous annotation's (going forwards) end position are skipped.
Thisisaso caled unambiguous iteration. If the iterator is run backwards, it isfirst run
forwards to locate all the items that would be in the forward iteration following the rules; and
then those are traversed backwards. Thisvariant isignored for cover i ng selection.

includeAnnotationsWithEndBeyondBounds
The Subiterator strict configuration is equivalent to the opposite of this. This only applied to
the cover edBy selection; if specified, then any Annotations whose end position is> the end
position of the bounding Annotation are included; normally they are skipped.

skipSameBeginEndType
While doing bounded iteration, if the Annotation being returned isidentical (hasthe same
_id()) with the bounding Annotation, it is always skipped.

Other annotations, which might have the same begin, end, and type values, are not skipped, but
instead, included, by default.

When this configuration is specified, any Annotation which has the same begin, end, and type
isalso skipped.

Note: If you do not want any of the indexed annotations to be skipped, you can
achieve this by

* insuring you haven't set ski pwhenSaneBegi nEndType()

UIMA Version 3.1.1 Select framework 23

Defaults for bounded selects

» making a bounding annotation with the begin / end / type you want for the
bound

» Don't add this bounding annotation to the index

4.3.7.

Defaults for bounded selects

The ordinary core UIMA Subiterator implementation defaults to using type order as part of the
bounds determination. uimaFI T, in contrast, doesn't use type order, and sets bounds according to
the begin and end positions.

Thissel ect implementation mostly follows the uimaFI T approach by default, but provides the
above configuration settings to flexibly alter this to the user's preferences. For reference, here are
the default settings, with some comparisons to the defaults for Subi t er at or s:

typePriority
default: false; type priorities are not used when moving to left-most among equal items.
Subiterators created using the Annotationlndex, in contrast, use type priorities.

nonOverlapping
default: false; no Annotations are skipped because they overlap. This corresponds to the
"ambiguous’ mode in Subiterators.

includeAnnotationsWithEndBeyondBounds
default: (only appliesto cover edBy selections; The default isto skip Annotations whose end
position lies outside of the bounds; this corresponds to Subiterator's "strict" option.

skipSameBeginEndType
default: only the single Annotation with the same _id() is skipped when using a bounded
iteration. Use this setting to expand the set of skipped Annotations to include all those equal to
the bound's begin, end and type.

4.3.8.

Following or Preceding

For an Annotation Index, you can specify all Feature Structures following or preceding a position.
The position can be specified either as an Annotation or by specifying an annotation begin

index. Both of these can have an additional shift offset amount as a 2nd parameter. Note that the
positioning arguments differ from the st ar t At specification, which uses both begin and end
values.

following
Position the iterator according to the argument, and then move the iterator forwards until the
Annotation at that position has its begin value >= to the positioning annotation's end value.

If the position is specified as an int, move the iterator forwards until the Annotation at that
position hasits begin value >= the specified int.

preceding
Position the iterator according to the argument, and then move it backwards until the
Annotation's (at that position) end value is <= to the positioning Annotation's begi nvalue.
If the position is specified as an int, treat this as the begin value.
Once positioned, the actual iteration starts at the beginning and ends at the last position.

The pr ecedi ng iteration skips over annotations whose end values are > the positioning
annotation's begin value, or the positioning int's value.

24

Select framework UIMA Version 3.1.1

Terminal Form actions

4.4. Terminal Form actions

After the sources and selection and ordering options have been specified, one terminal form action
may be specified. This can be an getting an iterator, array or list, or asingle value with various
extra checks, or a Java stream. Specifying any stream operation (except limit) converts the object to
astream; from that point on, any stream operation may be used.

Selection Terminal
ordering Form actions

{ Iterators } {Arrays and} {Single items} { Streams }

Lists
(iterable) asArray get L Any/all
stream
T asList single methods
iterator singleOrNull
spliterator

Figure 4.4. Select Terminal Form Actions

4.4.1. lterators

(Iterable)
The Sel ect FSs object directly implements| t er abl e, so it may be used in the extended Java
f or loop.

fslterator
returns a configured fslterator or sublterator. Thisiterator implementsLi st |t er at or aswell
(which, in turn, implements Javal t er at or). Modificationsto the list using add or set are
not supported.

iterator
Thisisjust the plain Javaiterator, for convenience.

spliterator
This returns a spliterator, which can be marginally more efficient to use than a normal iterator.
It is configured to be sequentia (not parallel), and has other characteristics set according to the
sources and selection/ordering configuration.

4.4.2. Arrays and Lists

asArray
Thistakes 1 argument, the class of the returned array type, which must be the type or subtype
of the select.

UIMA Version 3.1.1 Select framework 25

Single Items

asList
Returns a Javalist, configured from the sources and selection and ordering specifications.

4.4.3. Single Items

These methods return just a single item, according to the previously specified select configuration.
Variations may throw exceptions on empty or more than one item situations.

These have no-argument forms as well as argument formsidentical to st art At (see above). When
arguments are specified, they adjust the item returned by positioning within the index according to
the arguments.

Note: Positioning arguments with a Annotation or begin and end require an Annotation
Index. Positioning using a Feature Structure, by contrast, only require that the index being
use be sorted.

get
If no argument is specified, then returns the first item. If there is no item, then an exception is
thrown unlessnul | OKis set.

If any positioning arguments are specified, then this returns the item at that position unless
thereisno item at that position, in which case it throws an exception unless mul | OK'is set.

single
returns the item at the position, but throws exceptions if there are more than oneitemin the
selection, or if there are no items in the selection.

singleOr Null
returns the item at the position, but throws an exception if there are more than one item in the
selection.

isEmpty
returns true if the selection is empty.

4.4.4. Streams

any stream method
Select supports all the stream methods. The first occurance of a stream method converts the
select into astream, using spl i t er at or, and from then on, it behavesjust like a stream
object.

For example, here's a somewhat contrived example: you could do the following to collect the
set of types appearing within some bounding annotation, when considered in nonOverlapping
style:

Set <Type> foundTypes =
/1 items of MyType or subtypes
nyl ndex. sel ect (MyType. cl ass)
. cover edBy(nyBoundi ngAnnot at i on)
. nonOver | appi ng()
.map(fs -> fs.getType())
.col lect(Collectors.toCol |l ection(TreeSet::new);

Or, to collect by category a set of frequency values:

26

Select framework UIMA Version 3.1.1

Streams

Map<Cat egory, Integer> fregByCategory =
nmyl ndex. sel ect (MyType. cl ass)
.col l ect(Coll ectors
. groupi ngBy(MyType: : get Cat egory,
Col | ect ors. sunmi ngl nt (MyType

c:getFreq)));

UIMA Version 3.1.1 Select framework

27

Chapter 5. Defining CAS-transported custom
Java objects

One of the goals of v3 isto support more of the Java collection framework within the CAS, to
enabl e users to conveniently build more complex models that could be transported by the CAS. For
example, a user might want to store a Java " Set" object, representing a set of Feature Structures. Or
auser might want to use an adjustable array, like Java's ArrayList.

With the current version 2 implementation of JCas, users already may add arbitrary Java objects to
their JCas class definitions as fiel ds, but these do not get transported with the CAS (for instance,
during serialization). Furthermore, in version 2, the actual JCas instance you get when accessing

a Feature Structure in some edge cases may be a fresh instance, losing any previously computed
value held as a Javafield. In contrast, each Feature Structure in a CAS is represented as the same
unique Java Object (because that's the only way a Feature Structure is stored).

Version 3 has anew a capability that enables converting arbitrary Java objects that might be part

of a JCas class definition, into "ordinary" CAS vaues that can be transported with the CAS. Thisis
done using a set of conventions which the framework follows, and which developers writing these
classes make use of; they include two kinds of marker Javainterfaces, and 2 methods that are called
when serializing and deserializing.

The marker interfaces identify those JCas classes which need these extra methods
called. The extra methods are methods implemented by the creator of these JCas
classes, which marshal/unmarshal CAS feature data to/from the Java Object this
classis supporting.

Storing the Java Object data as the value of anormal CAS Feature means that they get
"transported” in a portable way with the CAS - they can be saved to external storage and read back
in later, or sent to remote services, etc.

5.1. Tutorial example

Here's atutorial example on how to design and implement your own special Java object. For this
example, we'll imagine we need to implement a map from FeatureStructures to FeatureStructures.

CAS Java Objects 29

Tutorial example

* Decide on Java Object
Step 1 * Can be standard Java library class like a
P ConcurrentSkipListSet
* Can be custom user-defined class
Step 2 * Decide on CAS representation for the data in this object
Step 3 * Define the UIMA type with features for the CAS
P representation of the data
Step 4 * Run JCasGen to get the initial prototype for this class
* Mark the JCas class with a special interface
* Modify the JCas class: add an additional field representing
Step 5 the new Java Object
* Write 2 methods to transfer data to/from the object and
the CAS data
(optional) * Support Select
P * Implement SelectViaCopyToArray

Figure5.1. Creating a custom Java CAS-stored Object

Step 1 is deciding on the Java Object implementation to use. We can define a special class, but in
this case, welll just use the ordinary Java HashMap<TOP, TOP> for this.

Step 2 is deciding on the CAS Feature Structure representation of this. For this example, let's
design thisto represent the serialized form of the hashmap as 2 FSArrays, one for the keys, and one
for the values. We could also use just one array and intermingle the keys and values. It's up to the
designer of this new JCas class to decide how to do this.

Step 3is defining the UIMA Type for this. Let's call it FS2FSmap. It will have 2 Features: an
FSArray for the keys, and another FSArray for the values. Let's name those features "keys' and
"values'. Notice that there's no mention of the Java object in the UIMA Type definition.

Step 4 isto run JCasGen on this classto get an initial version of the class. Of course, it will be
missing the Java HashMap, but we'll add that in the next step.

Step 5: modify 3 aspects of the generated JCas class.

1. Mark the class with one of two interfaces:
e U naSerializable
e Ui naSerializabl eFSs

These identify this JCas class a heeding the calls to marshal/unmarshal the data to/from the
Java Object and the normal CAS data features. Use the second form if the dataincludes
any Feature Structure references. In our example, the data does include Feature Structure
references, soweaddi npl enent's Ui maSeri al i zabl eFSs to our JCas class.

2. Add the Java Object as afield to the class

CAS Java Objects UIMA Version 3.1.1

Tutorial example

We'll define anew field:

final private Map<TOP, TOP> fs2fsMap = new HashMap<>();

3. Implement two methods to marshal/unmarshal the Java Object datato the CAS Data
Features

Now, we need to add the code that transl ates between the two UIMA Features "keys"

and "values' and the map, and vice-versa. We put this code into two methods, called
_init_fromcas_dataand_save_to_cas_dat a. These are special methods that are
part of this new framework extension; they are called by the framework at critical times
during deserialization and serialization. Their purpose is to encapsulate all that is needed to
convert from transportable normal CAS data, and the Java Object(s).

Inthisexample, the i nit _from cas_dat a method would iterate over the two
Features, together, and add each key value pair to the Java Object. Likewise, the
_save_t o_cas_dat a would first create two FSArray objects for the keys and values, and
then iterate over the hash map and extract these and set them into the key and value arrays.

public void _init_fromcas_data() {
FSArray keys = getKeys();
FSArray val ues = getVal ues();
fs2f sMap. cl ear () ;

for (int i = keys.size() - 1; i >=0; i--) {
f s2f sMap. put (keys. get (i), values.get(i));
}
}
public void _save to_cas_data() {
int i =0;

FSArray keys = new FSArray(this, fs2fsMap.size());
FSArray val ues = new FSArray(this, fs2fsMap.size());
for (Entry<TOP, TOP> entry : fs2fsMap.entrySet()) ({

keys.set (i, entry.getKey());

val ues. set (i, entry.getVal ues());

i ++;

}
set Keys(keys) ;
set Val ues(val ues) ;

Beyond this simple implementation, various optimization can be done. One typical oneis
to treat the use case where no updates were done as a special case (but one which might
occur frequently), and in that case having the _save to _cas data operation do nothing,
since the original CAS dataiis still valid.

One additiona "boilerplate’ method is required for all of these classes:
public FeatureStructurelnpl C _superdone() {return clone();}

For custom types which hold collections of Feature Structures, you can have those participate in the
Sel ect framework, by implementing the optional Interface Sel ect Vi aCopyToArr ay.

For more examples, please see the implementations of the semi-built-in classes described in the
following section.

UIMA Version 3.1.1 CAS Java Objects 31

semi-built-in UIMA Types

5.2. Additional semi-built-in UIMA Types for some
common Java Objects

Some additional semi-built-in UIMA types are defined in Version 3 using this new mechanism.
They work fully in Java, and are serialized or transported to non-Java frameworks as ordinary CAS
objects.

Semi-built-in means that the JCas cover classes for these are defined as part of the core Java
classes, but the types themselves are not "built-in". They may be added to any tyupe system by
importing them by name using the import statement:

<i nport name="org. apache. ui na. semi bui I tins"/>

If you have a Java project whose classpath includes uimaj-core, and you run the Component
Descriptor Editor Eclipse plugin tool on a descriptor which includes a type system, you can
configure this import by selecting the Add on the Import type system subpanel, and import by
name, and selecting org.apache.uima.semibuiltins. (Note: thiswill not show up if your project
doesn't include uimaj-core on its build path.)

5.2.1.

FSArrayList

or g. apache. ui ma. j cas. cas. FSArrayLi st islikethe current FSArray, except that it
implements the List API and supports adding to the array, with automatic resizing, like an
ArrayListin Java. It isimplemented internally using a Java ArrayL.ist.

The CASdataformisheld in aplain FSArray feature.

Theequal s() method istrueif both FSArrayList objects have the same size, and contents are
equal item by item. Thelist of supported operations includes al of the operations of the Java

Li st interface. This object aso includesthe sel ect methods, so it can be used as a source for the
sel ect framework.

5.2.2.

IntegerArrayList

or g. apache. ui ma. j cas. cas. | nt eger ArrayLi st islikethe current IntegerArray, except
that it implementsthe List APl and supports adding to the array, with automatic resizing, like an
ArrayListin Java.

The CAS dataform isheld in aplain IntegerArray feature.

Theequal s() method istrueif both IntegerArrayList objects have the same size, and contents
areequal item by item. The list of supported operations includes a subset of the operations of

the JavalLi st interface, where certain values are changed to Java primitivei nt s. To support the

I t er abl e interface, thereisaversion of i t er at or () wherethe result is"boxed" into an Integer.
For efficiency, there's also a method intListlterator, which returns an instance of IntListlterator,
which permitsiterating forwards and backwards, without boxing.

5.2.3.

FSHashSet and FSLinkedHashSet

org. apache. ui ma. j cas. cas. FSHashSet and
or g. apache. ui ma. j cas. cas. FSLi nkedHashSet store Feature Structuresin a (Linked)
HashSet, using whatever is defined as the Feature Structure's equal s and hashcode.

32

CAS Java Objects UIMA Version 3.1.1

Int2FS Int to Feature Structure map

Y ou may customize the particular equals and hashcode by creating a wrapper
classthat is a subclass of the type of interest which forwards to the underlying
Feature Structure, but has its own definition of equal s and hashcode.

The CAS dataform isheld in an FSArray consisting of the members of the set.

If you want a predictable iteratation order, use FSLinkedHashSet instead of FSHashSet.

5.2.4. Int2FS Int to Feature Structure map

Some applications find it convenient to have a map from ints to Feature Structures. In UIMA V2,
they made use of the low level CAS APIsthat allowed getting an Feature Structure from an int id
using | | _get FSFor Ref (i nt).

Inv3, use of the low level APIsin this manner can be enabled, but is discouraged, because it
prevents garbage collection of non-reachable Feature Structures.

or g. apache. ui ma. j cas. cas. | nt 2FS<T> mapsfromi nt sto Feat ure Struct uresof type
T. This provides an aternative way to have int -> FS maps, under user control of what exactly gets
added to them, supporting removes and clearing, under application control

Thei t er at or () method returns an Iterator over | nt Ent r y<T> objects - these are like java
Ent ry<K, V> objectsexceptthekeyisanint.

5.3. Design for reuse

While it is possible to have a single custom JCas class implement multiple Java Objects, thisis
typically not agood design practice, asit reduces reusability. It is usually better to implement one
custom Java object per JCas class, with an associated UIMA type, and have that as the reusable
entity.

UIMA Version 3.1.1 CAS Java Objects 33

Chapter 6. Logging

Logging has evolved; two major changes now supported by V3 are
* using apopular open-source standard logging facade, SLF4j, that can at run time discover
and hook to a user specified logging framework.
» Support for both old-style and new style substitutable parameter specification.

For backwards compatibilit, V 3 retains the existing V2 logging facade, so existing code will
continue to work. The APIs have been augmented by the methods availablein the SLF4j Logger
AP, plus the Java 8 enabled APIs from the Log4j implementation that support the Suppl i er
Functional Interface.

The old APIs support messages using the standard Java Util Logging style of writing substitutable
parameters using an integer, e.g., {0}, {1}, etc. The new APIs support messages using the modern
substitutable parameters without an integer, e.g. {}.

The implementation of this facade in V2 was the built-in-to-Java (java.util) logging framework. For
V3, thisis changed to be the SLF4j facade. Thisis an open source, standard facade which allows
deferring until deployment time, the specific logging back end to use.

If, at initialization time, SLFAJ gets configured to use a back end which is either the built-in Java
logger, or Log4j-2, then the UIMA logger implementation is switched to UIMA's implementation
of those APIs (bypassing SLF4j, for efficiency).

The SLF4j and other documentation (e.g., https://logging.apache.org/log4j/2.x/10g4j-df4j-impl/
index.html for log4j-2) describe how to connect various logging back ends to SLF4j, by putting
logging back-end implementations into the classpath at run time. For example, to use the back end
logger built into Java, you would include the sl f 4j - j dk14 Jar. This Jar isincluded in the UIMA
binary distribution, so that out-of-the-box, logging is available and configured the same as it was
for V2.

The Eclipse UIMA Runtime plugin bundle excludes the slf4j api Jar and back ends, but will "hook
up" the needed implementations from other bundles.

6.1. Logging Levels

There are 2 logging level schemes, and there is a mapping between them. Either of them may be
used when using the UIMA logger. One of the schemesisthe original UIMA v2 level set, whichis
the same as the built-in-to-java logger levels. The other is the scheme adopted by SLF4J and many
of its back ends.

Log statements are "filtered" according to the logging configuration, by Level, and sometimes
by additional indicators, such as Markers. Levelswork in ahierarchy. A given level of filtering
passes that level and al higher levels. Some levels have two names, due to the way the different
logger back-ends name things. Most levels are also used as method names on the logger, to indicate
logging for that level. For example, you could say aLogger . | og(Level . | NFO, nessage)
but you can also say aLogger . i nf o(message)). The level ordering, highest to lowest, and the
associated method names are as follows:

» SEVERE or ERROR,; error(...)

* WARN or WARNING; warn(...)

* INFO; info(...)

e CONFIG; info(UIMA_MARKER_CONFIG, ...)

Logging 35

https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/index.html
https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/index.html

Context Data

* FINE or DEBUG; debug(...)
* FINER or TRACE; trace(...)
* FINEST; trac(UIMA_MARKER_FINEST, ...)

The CONFIG and FINEST levels are merged with other levels, but distinguished by having
Mar ker s. If thefiltering is configured to pass CONFIG level, then it will pass the higher levels
(i.e., the INFO/WARN/ERROR or their aternative names WARNING/SEVERE) levels as well.

6.2. Context Data

Context datais kept in SLF4j MDC maps; there is a separate map per thread. Thisinformation is
set before calling Annotator's process or initialize methods. The following table lists the keys and
the values recorded in the contexts; these can be retrieved by the logging layouts and included in

log messages.

Because the keys for context data are global, the ones UIMA usesinternally are prefixed with
"uima_".

Key Name Description
uima_annotator the annotator implementation name.
uima_annotator_context_name the fully qualified annotator context name within the

pipeline. A top level (not contained within any aggregate)
annotator will have a context of "/".

uima_root_context_id A unique id representing the pipeline being run. Thisis
unique within a class-loader for the UIMA-framework.

uima_cas id A unique id representing the CAS being currently processed
in the pipeline. Thisis unique within a class-loader for the
UIMA-framework.

6.3. Markers used in UIMA Java core logging

Note: Not (yet) implemented; for planning purposes only.

6.4. Defaults and Configuration

By default, UIMA is configured so that the UIMA logger is hooked up to the SLF4j facade, which
may or may not have alogging back-end. If it doesn't, then any use of the UIMA logger will
produce one warning message stating that SLF4j has no back-end logger configured, and so no
logging will be done.

When UIMA isrun as an embedded library in other applications, sif4j will use those other
application's logging frameworks.

Each logging back-end has its own way of being configured; please consult the proper back-end
documentation for details.

For backwards compatibility, the binary distribution of UIMA includes the sIf4j back-end which
hooks to the standard built-in Java logging framework, so out-of-the-box, UIMA should be
configured and log by default as V2 did.

36

Logging UIMA Version 3.1.1

Throttling logging from Annotators

6.4.1. Throttling logging from Annotators

Sometimes, in production, you may find annotators are logging excessively, and you

wish to throttle this. But you may not have accessto logging settings to control this,

perhaps because UIMA isrunning as alibrary component within another framework.

For this specia case, you can limit logging done by Annotators by passing an additional

parameter to the UIMA Framework's produceAnalysisEngine API, using the key name

Anal ysi sEngi ne. PARAM THROTTLE_EXCESSI VE_ANNOTATOR_LOGG NG and setting the value
to an Integer object equal to the the limit. Using O will suppress all logging. Any positive number
allows that many log records to be logged, per level. A limit of 10 would allow 10 Errors, 10
Warnings, etc. The limit is enforced separately, per logger instance.

Note: Thisonly worksif the logger used by Annotators is obtained from the Annotator
base implementation class viathe get Logger () method.

UIMA Version 3.1.1 Logging 37

Chapter 7. Migrating to UIMA Version 3
7.1. Migrating: the big picture

Although UIMA V3 is designed to be backwards compatible with UIMA V2, there are some
migration steps needed. These fall into two broad use cases:

« if you have an existing UIMA pipeline/ application you wish to upgrade to use V3

« if you are"consuming" the Maven artifacts for the core SDK, as part of another project

7.2. How to migrate an existing UIMA pipeline to V3

UIMA V3 isdesigned to be binary compatible with existing UIMA V2 pipelines, so compiled and/
or JAR-ed up classes representing a V2 pipeline should run with UIMA v3, with three changes:

» Java8isrequired. (If you're aready using Java 8, nothing need be done.)

» Any defined JCas cover classes must be migrated or regenerated, and used instead. (If you
do not define any JCas classes or don't use JCas in your pipeline, then nothing need be
done.) A quick way to do thisisto create a Jar with the migrated JCas classes, and put it into
the classpath ahead of the other JCas class definitions.

 The runtime classpath needs to include the sif4j-api Jar, and an appropriate sif4j bridging
Jar, for details, see next.

Some adjustments may need to be made to logging setup, typicaly by including additional Jars
(provided in the UIMA Binary distribution) in your application's classpath. If you are using the
standard UIMA Launch scripts, thisis already done. For custom application setups, insure that the
classpath includes the (now) required jar "slf4j-api-xxxx.jar" (replace xxxx with the version). If you
were using the standard UIMA based logging, to get the similar behavior, include the sf4j-jdk14-
xxxx.jar; this enables the standard Java Utility Logging facility.

Some Maven projects use the JCasGen maven plugin; these projects JCasGen maven plugin, if
switched to UIMA V3, automatically generate the V3 versions. For proper operation, please run
maven clean install; the clean operation ought to remove the previously generated JCas class,
including the UIMA V2 xxx_Type classes. These are no longer used, and won't compilein V3.

Y ou can use any of the methods of invoking JCasGen to generate the new V3 versions. If using the
Eclipse plugins (i.e., pushing the JCas Gen) button in the configuration editor, etc.), the V3 version
of the plugin must be the one installed into Eclipse.

If you have the source or classfiles, you can aso migrate those using the migration tool described
in this section. This approach is useful when you've customized the JCas class, and wish to
preserve those customizations, while converting the v2 style to the v3 style.

7.3. Migrating JCas classes

If you have customized JCasGen classes, these can be migrated by running the migration tool,
which is available as a stand-alone command line tool (r unV3mni gr at eJCas. sh or ...bat),or
as Eclipse launch configurations.

Thistool can migrate either sets of

» Javasource files (xxx.java) or

Migrating to V3 39

Migrating JCas classes

» Compiled Java class files (including those contained in JARs or PEARS)
Usually, if you have the source code it is best to migrate the sources. Otherwise, you can migrate
the compiled classes. The compiled classes are run through a decompiler, and then the derived
sources are migrated.

When migrating sour ce files, you specify one or more "roots" - placesin afile directory, or asingle
java JCas source file (the one not endingin"_Type"). When directories are specified, the tool scans
those directories recursively (including inside Jars and PEARS), looking for JCas source files. If
just one source fileis specified, it work on just that one source file. When a source file is processed,
it is copied to the output spot and migrated. The output is arranged in parallel directories (before
and after migration), for easy side-by-side comparing in atool such as Eclipse file compare.

After checking the migration results, including comparing the files, you replace the original source
with the migrated versions. Also, the origina V2 source would contain a source file for each JCas
classendingin”_Type"; these are not used in version 3 and should be del eted.

You may also migrate class files; this can be used when the source files are not available. This
option has a decompilation step, to produce the source to be migrated and requires a classpath
(passed astheni gr at i onCl asspat h parameter); this classpath is used to resolve symbols during
the decompilation, and should be the classpath used when running those classes. For classfiles, the
migration tool attempts to compile the results and, for Jars and PEARS, to update those migrated
classesin acopy of the original packaging (meaning, within Jars or PEARS):

The classesRoots are used to locate .class files, perhaps within Jars and PEARS.

These are decompiled, using specia versions of the migrateClasspath.

The resultant sources are migrated.

The migrated sources are compiled.

If the original classes came from Jars or PEARS, copies of these are made with the migrated
classes replaced.

When scanning directories from source or classroots, if aJar or a PEAR is encountered, it is
recursively scanned.

When migrating from compiled classes:
» Theclassis decompiled, and the resulting source is migrated.

» The next 2 steps are skipped if no Java compiler isavailable. A compiler isavailableif the
migrate utility is being run using a JDK (as opposed to a JRE version of Java).

» The migrated classes are compiled. During this processes, the classpath used is the same as
the decompile classpath, except that the uima-core Jar for version 3 (from the classpath used
to run the migration tool) is prepended so that the migrated version can be compiled.

» Finally, if the original "packaging" of the classfilesisaJar or PEAR, it is copied and
updated with the migrated classes (provided there was no compile error).

The results of the migration include the migrated files, a set of logs, and for classesRoots: the
compiled classes, and repackaging of them into copies of origina Jars and/or PEARs. The
migration operation is summarized in the console output, detailing anything that might need
inspection to verify the migration was done correctly.

If al is OK, the migration will say that it "finished with no unusual conditions", at
theend.

To complete the migration, fix any reported issues that need fixing, and then update your UIMA
application to use these classes/Jars/PEARS in place of the version 2 ones.

40

Migrating to V3 UIMA Version 3.1.1

Running the migration tool

The actual migration step is a source-to-source transformation, done using a parse of the source
files. The parts in the source which are version 2 specific are replaced with the equivalent version 3
code. Only those parts which need updating are modified; other code and comments which are part
of the source file are left unchanged. Thisis intended to preserve any user customization that may
have been done.

Note: After running thetool, it isimportant to examining the console output and logs. Y ou
can confirm that the migration completed without any unusual conditions, or, if something
unusual was encountered, you can take corrective action.

7.3.1.

Running the migration tool

Thetool can be run as a stand-alone command, using the launcher scriptsr unv3nmi gr at eJCas;
there are two versions of this— one for windows (ending it ".bat") and one for linux / mac (ending
in".sh"). If you run this without any arguments, it will show a brief help for the arguments.

There are al'so a pair of Eclipse launch configurations (one for migrating source file(s), the other
for compiled classes and JARs and PEARS), which are available if you have the uimaj-examples
project (included in the binary distribution of UIMA) in your Eclipse workspace.

7.3.1.1. Using Eclipse to run the migration tool

There are two Eclipse launch configurations; one works with source code, the other with compiled
classes or Jars or PEARs. The launch configurations are named:

* UIMA Run V3 migrate JCas from sources roots

* UIMA Run V3 migrate JCas from classes roots
When running from class directory roots, the classes must not have compile errors, and may
contain Jars and PEARs. Both launchers write their output to atemporary directory, whose name is
printed in the Eclipse console log.

To use the Eclipse launcher to migrate from source code,
* First select the eclipse project containing the source code to transform; this project's "build
path" will also supply the classpath used during migration.

Alternatively, you may select just one source file to migrate.
* run the migrate-from-sources launcher.
Thiswill scan the directory tree of the project, looking for source files which are JCasfiles, and
migrate them, or alternatively, just work on the single selected source file. No existing files are
modified; everything is written to the output directory.

To use the launcher for compiled code,
* First select the eclipse project that provides the classpath for the compiled code. Thisis
required for proper "decompiling” of the classes and recompiling the transformed results.
» Thelauncher will additionally prompt you for another directory which the migration tool
will use as the top of atree to scan for compiled Java JCas classes to be migrated.

7.3.1.2. Running from the command line

Command line: Specifying input sources

Input is specified using these arguments:

" -sour cesRoots'
alist of one or more directories, separated by the a path separator character (*;" for Windows,
":" for others), or asingle sourcefile

UIMA Version 3.1.1 Migrating to V3 41

Understanding the reports

Migrates each candidate source file found in any of thefile tree roots, skipping over non-JCas
classes.

" -classesRoots"
alist of one or more directories containing class files or Jars or PEARS, separated by the a path
separator character (*;" for Windows, ":" for others).

Decompiles, then migrates each candidate class file found in any of the file tree roots (skipping
over non-JCas classes).
Y ou can specify either of these, but not both.

Command line: Specifying a classpath for the migration

When migrating from compiled classes, a classpath is required to locate and decompile the JCas
classes to be migrated. This classpath should include the JCas classes to be decompiled. The
compiled classes must not have compile errors.

When migrating from sourcesRoots, this argument is required only if the JCas classes have
references to other non-migrated classes (other than core UIMA classes). For example, if your
JCas class had areference to a user defined Utility class, that would need to be in the classpath. For
plain, non-customized JCas classes, this argument is unnecessary.

To specify this parameter, use the argument - ni gr at eCl asspat h. The Eclipse launcher "UIMA
run V3 migrate JCas from classes roots" sets this argument using the selected Eclipse project's
classpath. When migrating within a PEAR, the migration tool automatically adds the classpath
specified by the PEAR (if any) to the classpath.

7.3.1.3. Handling duplicate definitions

Sometimes, a classpath or directory tree may contain multiple instances of the same JCas class.
These might be identical, or they might be different versions.

The migration utility handles this by migrating each instance. The migrated forms are stored in the
output directory prefixed by the root-id (see above), as the parent directory. The different versions
can then be conveniently compared using tooling such as Eclipse's file compare.

7.3.2.

Understanding the reports

The output directory contains alogs directory with additional information. A summary isaso
written to System.out.

Each file translated has both av2 source and av3 source. When theinput is".class' files, the v2
source isthe result of the decompilation step, prior to any migration.

The process of scanning directoriesto find JCas class to migrate may come across multiple
instances of the same class. There are two subcases:

* Theinstances are the same.

» Theinstances are different (two non-identical definitions for the same class). Sometimes
these arise when migrating from compiled classes, where the compilation was done by
different versions of the Java compiler, and the resulting decompilations are logically equal
but have some fields or methods in a different order.

This diagram illustrates some of the potentials for identical and non-identical duplicate definitions
for the same classname, that the tool may encounter. The blue boxes represent ordinary file

42

Migrating to V3 UIMA Version 3.1.1

Understanding the reports

directories or Jars, and the other boxes with labels Cnl and Cn2 represent the definitions for a
classes named Cn1 and Cn2; the different colors represent non-identical definitions, as an example.
Note that a definition for a class might appear sometimes not within a Jar (or a PEAR, not shown
here), aswell aswith that.

| Rootl | | Root2 |
e —
| o Cnl| (Cn2 || - n2
o |
| | Cnl
Cnl Cn2 |Jar1|
o
|_£'|-Th:z
BN
|Jar2 |
]
LJ n
=

The migration tool allows for all of these variants. It will migrate all versions, and will (when
migrating from compiled Jars and PEARS) compile and reassemble these.

The output directories prefix the package/classname holding the source code with a prefix of "a0",
"al", etc. The"a' stands for alternative, and the O is for the first alternative, and the 1, 2, ... arefor
other non-equal alternatives.

When the migration is run from compiled classes, then, if possible, the resulting migrated
classes are recompiled and if from Jars or PEARS, reassembled into copies of those artifacts. The
compilation for the same classname, with the same sourcecode, could be different for different

UIMA Version 3.1.1 Migrating to V3 43

Understanding the reports

containers because each compilation is done with that container's classpath (e.g. Jar or Pear) and
with respect to the compilation units of that container.

Because of this, the compiled results for a given source instance, are done separately, and kept
in output directories, indexed additionally by the container number, as"c0", "cl1", A list of

all container numbers and the migrated classes within those containers, is printed out to enable
correlating these by hand when necessary.

The overal directory output directory tree looks like:

Directory structure, starting at -outputDirectory
convert ed/
v2/
a0/ pkg/ nane. ../ d assnane. j ava
/ C assnane2. java etc
al/ pkg/ nane.../C assnane.java if there are nultiple
di fferent versions

v3/
a0/ pkg/ nane. ../ d assnane. j ava
/ Cl assnane2. java etc
al/ pkg/ nane.../C assnane.java if there are nultiple
di fferent versions

v3-cl asses/ for Jars and PEARs, the conpiled class
/Il xyz is the path in the container to the

I start of the pkg/nane.../d assnane. cl ass
// the "a0", "al", ... is extra but serves to
I identify which alternative of the source

23/ a0/ xyz/ pkg/ nane. . ./ Cl assnane. cl ass
33/ a0/ xyz/ pkg/ nane. ../ d assnane. cl ass
42/ a0/ xyz/ pkg/ nane. ../ d assnane. cl ass

pears/
/1l xyz_updat ed_pear _copy is the path
[/ relative to the container, of the PEAR

33/ xyz_updat ed_pear _copy. pear

jars/
/'l xyz_updated_jar_copy is the path
/1 relative to the container, of the Jar

42/ xyz_updat ed_j ar _copy.j ar

not - convert ed/

| ogs/
processed. t xt
fail ed. txt
ski ppedBui | ti ns. t xt
nonJCasFi | es. t xt
wor kar oundDi r . t xt
del et edCheckMbdi fi ed. t xt
manual | nspecti on. t xt
pear Fi | eUpdat es. t xt
jarFil eUpdat es. t xt

Migrating to V3 UIMA Version 3.1.1

Examples

The converted subtree holds all the sources and migrated versions that were successfully migrated.
The not-converted subtree hold the sources that failed in some way the migration. The logs contain
many kinds of entries for different issues encountered:

processed.txt
List of successfully processed classes

failed.txt
List of classesthat failed to migrate

skippedBuiltins.txt
List of classes representing built-ins that were skipped. These need manual inspection to see
how to merge with new v3 built-ins.

NonJCasFiles.txt
List of filesthat were thought to be JCas classes but upon further analysis appear to not be.
These need manual inspection to confirm.

deletedCheckM odified.txt
List of classwhere aversion 2 if statement doing the "featOkTst" was apparently modified.
In the migrated code, this statement was deleted, perhaps incorrectly. These need manual
inspection to confirm.

manuall nspection.txt
List of files where the migration found a get or set method, where the version 2 code was
accessing a casFeatCode with the feature name not matching. These need manual inspection.

jarsFileUpdates.txt
List of Jar files and classes which were replace in them.

pear skileUpdates.txt
List of Pear files and classes which were replace in them.

7.3.3.

Examples
Run the command line tool:
cd $U MA_HOME
bi n/ runV3m gr at eJCas. sh
-m grat eC asspat h /hone/ ne/ nyproj/xyz.jar:$U MA_ HOVE/ | i b/ ui ma-core.jar

-cl assesRoot s / hone/ ne/ nyproj/xyz.jar:/hone/ me/ myproj/target/cl asses

-outputDirectory /tenp/ mgratejcas

Run the Eclipse launcher:

First, make sure you've installed the V3 UIMA pluginsinto Eclipse!

Startup an Ecli pse wor kspace containing the project
with JCas source files to be m grated.

Sel ect the Java project with the JCas sources to be mi grated.

UIMA Version 3.1.1 Migrating to V3 45

Consuming V3 Maven artifacts

Eclipse -> nmenu -> Run -> Run configurations
Use the search box to find
"U M run V3 migrate JCas from sources" | auncher.

Please read the console output summarization to see where the output went, and about any
conditions found during migration which need manual inspection and fixup.

7.4. Consuming V3 Maven artifacts

Projects may have tests which write to the UIMA log. Because V3 switched to SLFA4J as the default
logger, unless SLF4J can find an adapter to some back-end logger, it will issue a message and
substitute a"NO-OP" back-end logger. If your test cases depend on having the V2 default logger
(which isthe one built into Java), you need to add a "test" dependency that specifies the SLF4J-to-
JDK 14 adapter to your POM. Here's the xml for that:

<dependency>
<gr oupl d>or g. sl f 4j </ groupl d>
<artifactld>slf4j-jdkld</artifactld>
<version>1.7.24</version> <!-- or sone version you need -->
<scope>t est </ scope>

</ dependency>

46 Migrating to V3 UIMA Version 3.1.1

Chapter 8. PEAR support

PEARSs continue to be supported in Version 3, with the same capabilities asin version 2. Here'sa
brief review.

PEARSs are both a packaging facility, and an isolation facility. The packaging facility allows
putting together into one PEAR file al the parts needed for a particular (reusable) UIMA pipeline,
including annotators and other data resources, and a classpath to use. PEARSs are loaded using
specia class loaders that load first from whatever classpath is specified by the PEAR; this serves
to isolate dependencies and insure that the PEAR makes use of whatever versions of classesit
depends on (and specifiesin its classpath).

PEARSs establish a boundary within a UIMA pipeline — annotator code is running either inside
aPEAR, or not. Note that PEARs cannot be nested. The CAS, flowing through apipeline, is
dynamically updated with the current PEAR context (if any).

8.1. JCas issues

JCas classes defining Javaimplementations for UIMA Types may be defined within a PEAR.
These are loaded using the isolating Classloader, just like all the other PEAR resources. As aresult,
this may cause someissuesif the same JCas classis a so defined outside the PEAR boundary, and
loaded with the normal UIMA classloader. The result of having the same JCas class both on the
PEAR classloader and outside that classloader will be that Java will have both classes |oaded, and
code within the PEAR will be linked with one of them, and code outside the PEAR will be linked
with the other.

Sometimes, thisis exactly what you might want. For example, you might have in the pear, a special
JCas definition of a UIMA type "Token" which the PEAR uses, while you might have another
JCas definition for that same UIMA type outside of the PEAR. Note that UIMA will always merge
Type definitions from inside and outside of PEARS, when it sets up apipeline - it merges all type
definitions found for the whole pipeline.

A consequence of having two loaded class definitions in two contexts for the same UIMA type
means that the classes have the same names, but are different (because of different loading
classloaders), and assigning one to the other in Javawill produce a ClassCast exception.

Othertimes, you may not want different classes. For instance, the class definitions might be
identical, and you want to create some "Token" annotations within the PEAR, and have them used
by JCas references outside of the PEAR.

In this case, the simplest thing to do isto install the PEAR, but then update its classpath so it no
longer includes the JCas classes that came with the PEAR. When classes are not found with the
specia PEAR class loader, that loader delegates to its parent, which isthe normal UIMA class
loader. This action will cause the PEAR to use the identically same JCas class within the PEAR
asisused outside of the PEAR, and no Class Cast Exception issues will arise. Thisisthe most
efficient way to run with PEARSs that use JCas classes where you want to share results inside and
outside of PEARSs.

Version 3 has special support for the case where there are different definitions of JCas classes
for the same UIMA type, inside and outside the PEAR. It does this using what are called PEAR
Trampolines. When there are multiple JCas definitions, the one defined outside of the PEAR is
the one stored internally in UIMA's indexes and types that have references to Feature Structures.
Accessing the Feature Structures checks (by asking the CAS) to seeif itsin a particular PEAR

PEAR support 47

Custom Java Objects

context (there may be several in one pipeline), and if so, atrampoline instance of the Feature
Structure is created / used / accessed. The trampoline instance sharesinternally the CAS data

with the base instance, but is a separate instance of the PEAR's JCas class definition. This allows
seamless access both inside and outside of the PEAR context to the particular JCas class definition
needed.

8.2. Custom Java Objects

Custom Java Objects may store references to Feature Structures. If it is desired to create these
inside a PEAR, and yet have the references work outside a PEAR, the implementor of these must
insure that the actual stored JCas class for a Feature Structure is the base version, not the PEAR
version, and also insure that any references are properly converted (while within a PEAR context).

Refer to the implementation of FSHashSet and FSAr r ayLi st to see what needs to be done to
make these " Pear aware".

48 PEAR support UIMA Version 3.1.1

Chapter 9. Migration aids

To aid migration, some features of UIMA V3 which might cause migration difficulties can be
disabled. Users may initialy want to disable these, and get their pipelines working, and then over
time, re-enable these while fixing any issues that may come up, one feature at atime.

Global VM properties for UIMA V3 that control these are described in the table below.

9.1. Properties Table

This table describes the various VM defined properties; specify these on the Java command line
using - Dxxxxxx, where the xxxxxx is one of the properties starting with ui ma. from the table

below.

Title

Property Name & Description

Use UIMA V2 format
for toString() for
Feature Structures

uima. v2_pretty_print_fornat

The native v3 format for pretty printing feature structures includes an
id number with each FS, and some ather minor improvements. If you
have code which depends on the exact format that v2 UIMA produced
for the toString() operation on Feature Structures, then include thisflag
to revert to that format.

Disable Type System
consolidation

ui ma. di sabl e_t ypesystem consol i dati on
Default: equal Type Systems are consolidated.

When type systems are committed, the resulting Type System (Java
object) is considered read-only, and is compared to aready existing
Type Systems. Existing type systems, if found, are reused. Besides
saving storage, this can sometimes improve locality of reference, and
therefore, performance. Setting this property disables this consolidation.

Disable subtype of
FSArray creation

ui ma. di sabl e_subtype_fsarray_creation

Default: Subtypes of FSArrays can be created and are created when
deserializing CASes.

UIMA has some limited support for typed arrays. These are declared in
type system descriptors by including an elementType specification for a
feature whose range is FSArray. See Section 2.3.3, “Features’.

The XCAS and the Xmi serialization forms serialize these as FSArray,
with no element type specification included in the serialized form. The
deserialization code, when deserializing these, looks at the type system's
feature declaration to seeif it has an elementType, and if so, changes the
type of the Feature Structure to that type.

UIMA Version 2's CAS API did not have the ahility to create typed
FSArrays. Thiswas added in V3, but will be disabled if thisflag is set.

Setting this flag will cause all FSArray creations to be untyped.

Migration aids 49

Properties Table

Default CASsto
support V2 1D
references

ui ma. default_v2 id_references

In version 3, Feature Structures are managed somewhat differently from
V2.

 Feature Structure creation doesn't remember amap from the id
to the FS, so the LowL evel Cas method getFSForRef(int) isn't
supported. (Exception: Feature Structures created with the low
level API calls are findable using this).

« Creation of Feature Structures assign "ids" as incrementing
integers. In V2, the "id" isthe address of the Feature Structure
in the v2 Heap; these ids increment by the size of the Feature
Structure on the heap.

» Seridization only serializes "reachable” Feature Structures.
When this mode is set, the behavior is modified to emulate V2's.
 Feature Structures are added to an id-to-featureStructure map.

« IDsare assign incrementing by the size of what the Feature
Structure would have beenin V2.

 Serialization includes unreachable Feature Structures (except for
Xmi and XCAS - because thisis how V2 operates))

This property sets the default value, per CAS, for that CAS's
I | _enabl ev2l dRef s modeto true. Thismodeisisaso
programmatically settable, which overrides this default.

For more details on how this setting operates and interacts with the
associated APIs, Section 2.4, “Preserving V2 1ds’ [6]

Trading off runtime checks for speed

Disabling runtime
feature validation

ui ma. di sabl e_runtime_feature_validation

Once code is running correctly, you may remove this check for
performance reasons by setting this property.

Disabling runtime

ui ma. di sabl e_runtime_feature_val ue_val i dation

feature value
validation Default: features being set into FS features which are FSs are checked
for proper type subsumption.
Once code is running correctly, you may remove this check for
performance reasons by setting this property.
Reporting
Report feature ui ma. report.fs.pinni ng="nnn"

structure pinning

Default: not enabled; nnn is the maximum number of reports to produce.
If nnn is omitted, it defaultsto 10.

50

Migration aids UIMA Version 3.1.1

Properties Table

When enabled, this flag will cause reports to System.out with call traces
for the first nnn instances of actions which lead to pinning Feature
Structures in memory.

Typicaly, this should not happen, and no-longer-reachable Feature
Structures are garbage collected.

But some operations (such as using the CAS low level APIs, which
return integer handles representing Feature Structures) pin the Feature
Structures, in case code in the future uses those integer handles to access
the Feature Structure.

It is recommended that code be improved over time to use JCas access
methods, instead of low-level CAS APIs, to avoid pinning unreachable
Feature Structures. This report enables finding those parts of the code
that are pinning Feature Structures.

UIMA Version 3.1.1

Migration aids 51

	UIMA Version 3 User's Guide
	Table of Contents
	Chapter 1. Overview of UIMA Version 3
	1.1. What's new in UIMA Java SDK version 3
	1.2. Java 8 is required

	Chapter 2. Backwards Compatibility
	2.1. JCas and non-JCas APIs
	2.1.1. Additional reserved names in the JCas generated classes

	2.2. Serialization forms
	2.2.1. Delta CAS Version 2 Binary deserialization not supported

	2.3. APIs for creating and modifying Feature Structures
	2.4. Preserving V2 ids, with low level CAS Api accessibility
	2.5. PEAR support
	2.6. toString()
	2.7. Logging configuration is somewhat different
	2.8. Type System sharing
	2.9. Some checks moved to native Java
	2.10. Some class hierarchies have been modified
	2.11. Enabling multiple versions of type systems to work with a single common JCas class

	Chapter 3. New and Extended APIs
	3.1. UIMA FSIndex and FSIterators improvements
	3.2. New Select API
	3.3. New custom Java objects in the CAS framework
	3.4. Built-in lists and arrays
	3.4.1. Built-in lists and arrays have common super classes / interfaces

	3.5. Many UIMA objects implement Stream or Collection
	3.6. Reorganized APIs
	3.7. Use of JCas Class to specify a UIMA type
	3.8. JCasGen changes
	3.8.1. JCas additional static fields

	3.9. Generics added
	3.10. Other changes

	Chapter 4. The select framework for working with CAS data
	4.1. Select's use of the builder pattern
	4.2. Sources of Feature Structures
	4.2.1. Use of Type in selection of sources
	4.2.2. Sources and generic typing

	4.3. Selection and Ordering
	4.3.1. Boolean properties
	4.3.2. Configuration for any source
	4.3.3. Configuration for any index
	4.3.4. Configuration for sort-ordered indexes
	4.3.5. Bounded sub-selection within an Annotation Index
	4.3.6. Variations in Bounded sub-selection within an Annotation Index
	4.3.7. Defaults for bounded selects
	4.3.8. Following or Preceding

	4.4. Terminal Form actions
	4.4.1. Iterators
	4.4.2. Arrays and Lists
	4.4.3. Single Items
	4.4.4. Streams

	Chapter 5. Defining CAS-transported custom Java objects
	5.1. Tutorial example
	5.2. Additional semi-built-in UIMA Types for some common Java Objects
	5.2.1. FSArrayList
	5.2.2. IntegerArrayList
	5.2.3. FSHashSet and FSLinkedHashSet
	5.2.4. Int2FS Int to Feature Structure map

	5.3. Design for reuse

	Chapter 6. Logging
	6.1. Logging Levels
	6.2. Context Data
	6.3. Markers used in UIMA Java core logging
	6.4. Defaults and Configuration
	6.4.1. Throttling logging from Annotators

	Chapter 7. Migrating to UIMA Version 3
	7.1. Migrating: the big picture
	7.2. How to migrate an existing UIMA pipeline to V3
	7.3. Migrating JCas classes
	7.3.1. Running the migration tool
	7.3.1.1. Using Eclipse to run the migration tool
	7.3.1.2. Running from the command line
	Command line: Specifying input sources
	Command line: Specifying a classpath for the migration

	7.3.1.3. Handling duplicate definitions

	7.3.2. Understanding the reports
	7.3.3. Examples

	7.4. Consuming V3 Maven artifacts

	Chapter 8. PEAR support
	8.1. JCas issues
	8.2. Custom Java Objects

	Chapter 9. Migration aids
	9.1. Properties Table

