UIMA Tools Guide and Reference

Written and maintained by the Apache
UIMA™ Development Community

Version 3.1.0

Copyright © 2006, 2019 The A pache Software Foundation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date August, 2019

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. CDE USEI'S GUIAR ...ttt ettt e e e e et ettt a e e e e e e e eetaba e e e e e e e eeeaennnn s 1
1.1. Launching the Component Descriptor EQItOrcovvveiiiiiiiiiiiiie e ee e 1
1.2. Creating @ NeW AE DESCIIPLOLuuuiiii e 1
1.3. Pages Within the EiTOruueiiiiiiiiiiii e 3

1.3.1. Adjusting the display Of PagESccvvveviieiiei e 4
L4, OVENVIEW PagE ..ot e e e e e e e s 4
1.4.1. Implementation DELailSccooiiiiiiiiiii e 4
1.4.2. RUNtime INfOrmationcoooiiiiiiiiiiiii 4
1.4.3. Overadl Identification INfOrMatioNuueuiiiiiiiiiiiiie 5
1.5, AQOregae PaGE ... ieeeti ettt e e 5
1.5.1. Adding components More than ONCEcovvveeiieeiiiiin e ee e e e 7
1.5.2. Adding or Removing components in aflowcccccviiiiiiiiiccenee, 7
1.5.3. Adding remote AnalySIS ENGINESccoeiiiiiiiiiieeeee e 7
1.5.4. ConNecting t0 REMOLE SEIVICESuuvvrureiiiiiiiiiiiiiiiibiiii bbb 9
1.5.5. Finding Analysis Engines by Searchingccovevvvuveiiinieeeiieeiiiieineeeeeeeenenns 9
1.5.6. Component ENQINE FIOWcoouiiiiiiiiiiiiiiiiiiiiieeee ettt 9
1.6. Parameters DefiNition PagEooiveiiiiiiiiiiini et 10
OG0 I U T o I 0T 12
1.6.2. Adding or Editing a Parameteruceiiiiieiiiiiiiis e 13
1.6.3. Parameter declarations fOr AQQregalesoouveeeuiiiniiieeeieeeiiie e 14
1.7. Parameter SettingS Pagecoovveviieiiiii e 15
1.8. TYPE SYSLEM PAOE . .cevniiiiii e e e e e e e e 16
ST I oo 1 1] o TR 21
1.9, CapabilitiES PAJE .. ccieeeeiiiiie ettt e e e e eaane 22
1.9.1. Sofa (and View) Name MaPPINGS «....ccevverrruiieieeereeeeeiirs e e eeeeeesrri e eeeeeeenes 25
L1.10. INAEXES PAGE ... 27
1.12. RESOUICES PAJEceeviieeie et 30
00 T 71 o] o 32
1.11.2. ReSoUrceS With AQQregaesuuuuuuuumeunnniiiiiiei e 32
1.12.3. IMPOrtS @nd EXPOITSuiiieiiiiiiiiiiiiiee ettt 33
112, SOUMCE PAOR .. ettt ettt 33
1.12.1. Source formatting — indentationcouvviiiiiiieeieeee e 33
1.13. Creating a Self-Contained TYPe SYSIEMccoviiiiiiiiii e 33
1.14. Creating Other DesCriptor COMPONENLSuuuiieeeerieeeiiiraeeeeereeeeennanr e e eeeeeeerenns 35

2. CPE Configurator USEr'S GUIEuuuiiieeiiieeiiiis e e e e e e e e e e e e e e 37
2.1. Limitations of the CPE CoNfigUIatorcooooieieiiiiieeeee e 37
2.2. Starting the CPE CONfigUIELOTciieeeiieeiiiiies e e e et e e e eeeeeeennas 37
2.3. Selecting Component DESCIIPLONSvvvvvreiieeeeeeeeeiiiis e e e e e e ee e e e e e e e ee e e eeees 38
2.4. Running a Collection Processing ENGINEcoooooiiiiieiiieeeeeeeeee 39
2.5, THE FIE IMBNU ...ttt bebnenennee 39
2.6. ThE HEIP MENU ..covviiiii et e et e e e e e e e e anan s 40

3. Document ANalYZer USEr'S GUITEuuuuuuuriiiiiiiiiiiiiiiiiiiiibeiibaiibabebsbebeeaeeeeeseeeeeeeeenenenenee 41
3.1. Starting the DocUMENt ANAYZENuuiiii i eeeeeees 41
G U o = o A 41
3.3. Viewing the AnalySIS RESUITSoiiiiiiiiciiiie e 42
3.4. Configuring the ANNOLALION VIBWESuuiiiiiiiiiiiiiiiiie et 45
3.5, INEraCtiVE MOOE ... 46
BB VIBW MOOE ... 46

4. ANNOLEEION VIBWES ..o 49

5. CAS ViSUal DEDUGOEY ... eeeeiieiiiiiiaee e e ettt e e e e e e e ettt s e s e e e e e e e et e e s e e e e eeeasannnaaeeeaeeennnnns 51
5.1 INEOAUCLION ... 51

UIMA Tools Guide and Reference iii

UIMA Tools Guide and Reference

o300 It I T o T A 0 51

5.1.2. Command [iN€ ParamELerSccoevuruiiiiieeeee et e e et e e e e e eanaaaans 52

5.2, Error HandliNg ...coooeeeeei e 52

5.3 PrefarenCes File ... 53

B, THE IMIENUS ...ttt bb bbb bee e 53
541 The File MeNU ..., 53

54.2. The EAIt MENUcoooviiiiiiiiiii 55

54.3. The RUN MENU ...ooooiiiiiiiiiii 56

5.4.4. The tOOIS MENU ...coooiiiiiieee e 57

5.5. The Main DiSplay ATBaAuuuuuuuiuiiiiiiiiiiiiiiiiiitibe bbb 58
55.1. The StAIUS Barcoooeiiieeeeeeee e 61

5.5.2. Keyboard Navigation and ShOrtCutscccoeevviiiiiiiieeeecieiiee e 62

6. Eclipse Analysis Engine Launcher's GUIAEccooveiiiiiiiiiiiiiecceeeiiii e 63
6.1. Creating an Analysis Engine launch configurationccccvvvvvviinieeeeeeeeciiinneeen, 63

6.2. Launching an AnalySIS ENQINEuuiiiiiiiiiicie e e e e eaaanes 64

7. Cas Editor USEr'S GUIEcooeeieeee e 65
L INEOAUCTION ... 65

7.2. Launching the Cas EdItOrcoovvuiiiiiiii e e e e e e e eeaees 65
7.2.1. Specifying atype SYStEM ..coooeeeieeeeeeee e 65

7.3, ANNOALTION EAITONooeviiiiiiiiiiiiiiiiiiii e 66
A0S 5 T = [} o ST PO PP PPPPPPPPPPPPPPPP 66

7.3.2. Configure annotation SEYIINGuveeueereriruiiiiiiiiieiiieeeieeeeeeaeeeeeeeeeeeeeeeaee. 68

7.3.3. CAS VIBW SUDPOIT ... 70

7.3.4. OULIING VIBW ..ottt ettt et et e e e eeeeeeeenenees 70

735, EQIt VIBWS .o 71

7.3.6. FEALUrESITUCIUIE VIBW ...vvveiii ettt 72

7.4. Implementing a custom Cas Editor VIiewoeeiiie i 72
7.4.1. Annotation Status View Sampleccoovviiiiiiiiieeeceeees e 73

8. JCASGEN USEN'S GUITE ... 75
8.1. Running stand-alone WithoUt ECHIPSEovviiiiieiiiicie e 76

8.2. Running stand-alone With EClIPSEcvvvviiiii e 76

8.3. RUNNING Within ECHPSEvuvuiiiiiiiiiiiiiiiiiiiiiititiiibiiebetebetebebebeeebebeeeeeeeeeeeeeeeeeeeeeeeene 77

8.4. Using the jcasgen-maven-pluginoeuuieninreeeeeeiiiines e e e e ee et e e e e e e eeeneees 78

9. PEAR Packager USEr'S GUITEcecvviiiiiiee e eeeeeeiis e e et e e e e e e et e e e e e e eeannn s 81
9.1. Using the PEAR ECliPSE PIUGIN ..cooooii i, 81
9.1.1. Add UIMA Nature t0 YOUF PrOJECEvvvvrrurrririrnriiiiiiiriniiiiiibiieneneineenenennnees 81

9.1.2. Using the PEAR Generation Wizardccoooeeviiieiiiiiiiieeeeeeeiiic e e eeeeens 83

9.2. Using the PEAR command line packager ..., 86

10. The PEAR Packaging Maven PIUGINuuiiiiiiiiiiii et 89
10.1. Specifying the PEAR Packaging Maven PIugincoouviiiiiieeiiieccie e 89

10.2. Automatically including dependenCiesccoovveeviveiiiiiiiiie e 91

10.3. Running from the command lINEccooiiiiiiiiiiiieeee 92

10.4. Building the PEAR Packaging Plugin From SOUICeccuvvveinieeeiiieiiiiiieeeee, 92

11. PEAR INStAllEr USEI'S GUITE ... 95
12. PEAR Merger USEr'S GUITEceeiiiiiiiiiiiiiiiieieeeeeeeee ettt eeeeeeeeeeeees 97
12.1. Details Of the MErging PrOCESScuuuuuiiiieeeiieiiiiie e e e e et e e e e e e eee e e e e eeeeeees 97

12.2. Testing and Modifying the resulting PEARccooooiiiiiiiiiiiii e eee e 98

12.3. Restrictions and LimitationScoooiiiiiiiiiiii 98

iv UIMA Tools Guide and Reference UIMA Version 3.1.0

Chapter 1. Component Descriptor Editor
User's Guide

The Component Descriptor Editor is an Eclipse plug-in that provides a forms-based interface for
creating and editing UIMA XML descriptors. It supports most of the descriptor formats, except
the Collection Processing Engine descriptor, the PEAR package descriptor and some remote
deployment descriptors.

1.1. Launching the Component Descriptor Editor

Here's how to launch thistool on a descriptor contained in the examples. This presumes you have
installed the examples as described in the SDK Installation and Setup chapter.

» Expand the uimaj-examples project in the Eclipse Navigator or Package Explorer view

» Within this project, browse to the file descriptorg/tutorial/exl/RoomNumberAnnotator.xml.

Right-click on thisfile and select Open With — Component Descriptor Editor. (If this
option is not present, check to make sure you installed the plug-ins as described in

Section 3.1, “Installation” of the UIMA Overview & SDK Setup book. The EMF pluginis
also required.)

» This should open agraphical editor and display the contents of the RoomNumberAnnotator
descriptor.

1.2. Creating a New AE Descriptor

A new AE descriptor file may be created by selecting the File — New — Other... menu. This
brings up the following dialog:

CDE User's Guide

Creating a New AE Descriptor

Select a wizard

Wizards:
== UIMA -
@ Analysis Engine Descriptor File :
% Type System Descriptor File
—-[= Collection Processing Components
: E;" Cas Consumer Descriptor File
i @’ Cas Initizlizer Descriptor File
i @’ Collection Reader Descriptor File
== Importable Parts -
: Ef External Resource and Bindings (Resource Manager Configuration) Descriptor Fi|E§
i |§|’ Flow Controller Descriptor File
Index Collection Descriptor File
Type Priorities Descriptor File

Mext = SR Cancel

If the user then selects UIMA and Analysis Engine Descriptor File, and clicks the Next > button,

the following dialog is displayed. We will cover creating other kinds of components later in the
documentation.

. Mew Analysis Engine Descriptor Fle .
Analysis Engine (AE) Descriptor File
Create a new AE Descriptar File

Parert Folder:]test Browse...

File name: |ae Descriptorxml

< Back [et ‘ Finish | Cancel

After entering the appropriate parent folder and file name, and clicking Finish, an initiadl AE
descriptor fileis created with the given name, and the descriptor is opened up within the
Component Descriptor Editor.

At this point, the display inside the Component Descriptor Editor is the same whether one started
by creating anew AE descriptor, asin the preceding paragraph, or one merely opened a previously

CDE User's Guide UIMA Version 3.1.0

Pages within the Editor

created AE descriptor from, say, the Package Explorer view. We show a previously created AE in
the figure below:

2 RegExAnnotator.xml 57 ==
|RegExAnnotator, xml

Overview

Lo
LT
(]

Implementation Language O C/c++ (& Java
Engine Type & Primitive € Aggregate

+ Runtime Information

This section describes information about how to run this component
updates the CAS

multiple deployment allowed
D returns new artifacts

Mame of the Java dass file com.ibm.uima.examples. cas. RegExAnnotator

+ Owerall Identification Information

This section specifies the basic identification infarmation for this descriptor
Mame RegEx Annotator

Version

Vendar

Description: | Matches regular expressions in document text,

Gver‘-.riew_ Agagregate [Parameters | Parameter Settings [Type System . Capabilities | Indexes [Resources [Su:uurce.

To see dl the information shown in the main editor pane with less scrolling, double click the title
tab to toggle between the “full screen” and normal views.

It is possible to set the Component Descriptor Editor as the default editor for al .xml files by

going to Window - Preferences, and then selecting File Associations on the left, and *.xml on the
right, and finally by clicking on Component Descriptor Editor, the Default button and then OK. If
AE and Type System descriptors are not the primary .xml files you work with within the Eclipse
environment, we recommend not setting the Component Descriptor Editor as your default editor
for al .xml files. To open an .xml file using the Component Descriptor Editor, if the Component
Descriptor Editor is not set as your default editor, right click on the file in the Package Explorer,

or other navigational view, and select Open With - Component Descriptor Editor. This choiceis
remembered by Eclipse for subsequent open operations.

1.3. Pages within the Editor

The Component Descriptor Editor follows a standard Eclipse paradigm for these kinds of editors.
There are several pages in the editor; each one can be selected, one at atime, by clicking on the
bottom tabs. The last page contains the actual XML source file being edited, and is displayed as
plain text.

The same set of tabs appear at the bottom of each page in the Component Descriptor Editor. The
Component Descriptor Editor uses this “multi-page editor” paradigm to give the user a view of

UIMA Version 3.1.0 CDE User's Guide 3

Adjusting the display of pages

conceptually distinct portions of the Descriptor metadata in separate pages. At any point in time the
user may click on the Source tab to view the actual XML source. The Component Descriptor Editor
is, inaway, just afancy GUI for editing the XML. The tabs provide quick access to the following
pages. Overview, Aggregate, Parameters, Parameter Settings, Type System, Capabilities, Indexes,
Resources, and Source. We discuss each of these pagesin turn.

1.3.1. Adjusting the display of pages

Most pagesin the editor have a“sash” bar. Thisisalight gray bar which separates sub-sections of
the page. This bar can be dragged with the mouse to adjust how the display areais split between
the two sash panes. Y ou can also change the orientation of the Sash so it splits vertically, instead of
horizontally, by clicking on the small icons at the top right of the page that look like this:

lm :
o -)
1

All of the sections on a page have subtitles, with an indicator to the left which you can click to
collapse or expand that particular section. Collapsing sections can sometimes be useful to free up
screen area for other sections.

1.4. Overview Page

Normally, the first page displayed in the Component Descriptor Editor isthe Overview page
(the name of the page is shown in the GUI panel at the top left). If thereisan error reading and
parsing the source, the Source page is shown instead, giving you the opportunity to correct the
problem. For many components, the Overview page contains three sections: Implementation
Details, Runtime Information and overall |dentification Information.

1.4.1.

Implementation Details

In the Implementation Details section you specify the Implementation Language and Engine

Type. There are two kinds of Engines: Aggregate, and non-Aggregate (also called Primitive). An
Aggregate engine is one which is composed of additional component engines and contains no code,
itself. Several of the pages in the Component Descriptor Editor have different formats, depending
on the engine type.

1.4.2.

Runtime Information

Runtime information is only applicable for primitive engines and is disabled for aggregates

and other kinds of descriptors. Thisiswhere you specify the class name of the annotator
implementation, if you are doing a Javaimplementation, or the C++ shared object or dll name,

if you are doing a C++ implementation. Most Analysis Engines will specify that they update the
CAS, and that they may be replicated (for performance reasons) when deployed. If a particular
Analysis Engine must see every CAS (for instance, if it is counting the number of CASes), then
uncheck the “multiple deployment allowed” box. If the Analysis Engine doesn't update the CAS,
uncheck the “updates the CAS’ box. (Most CAS Consumers do not update the CAS, and this
parameter defaults to unchecked for new CAS Consumer descriptors).

Analysis engines are written using the CAS Multiplier APIs (see UIMA Tutoria and Developers
Guides Chapter 7, CAS Multiplier Developer's Guide) can create additional CASes for analysis. To
specify that they do this, check the “returns new artifacts’.

CDE User's Guide UIMA Version 3.1.0

Overall |dentification Information

1.4.3. Overall Identification Information

The Name should be a human-readable name that describes this component. The Version, Vendor,
and Description fields are optional, and are arbitrary strings.

1.5. Aggregate Page

For primitive Analysis Engines, Flow Controllers or Collection Processing components, the
Aggregate page is not used. For aggregate engines, the page looks like this:
& NamesAndPerscriTities TAE.xml 53
MamesAndPersonTities_TAE.umi
Aggregate Delegates and Flows

= Component Engines + Component Engine Flow
Thee folowing engines are incudsd in this aggregats. Choose a fow type and describe the execution order of
YOUr Engines.
Delcgale | Key Nome | The table shows the dalegates usng ther kay names.
E—_’l?cfmTI&Mta:w_'-'-'-&mm:sD!ﬂ'f.:-:'nl PersonTiteAnnotator Bl M | Foeed Flow -

!f:‘-linrdb' lameRecogrizer_RegEx_TAE.xml NameR ecogrirer

!ﬂr‘ﬂfﬁtﬂffﬂq“m
[PersonTiteAnnotator

i L
mm

[acd-..] [Rever]

DOverview | Aggregate | Parameters | Parameter Settings | Type System | Capabiities | Indexes | Resources | Source

On the left we see alist of component engines, and on the right information about the flow. If you
hover the mouse over an item in the list of component engines, that engine's description meta data
will be shown. If you right-click on one of these items, you get an option to open that delegate
descriptor in another editor instance. Any changes you make, however, won't be seen until you
close and reopen the editor on the importing file.

Engines can be added to the list on the left by clicking the Add button at the bottom of the
Component Engine section. This brings up one of the following two dialogs:

UIMA Version 3.1.0 CDE User's Guide

Aqggregate Page

Select one or more component engines from the workspace:

- examples

.Classpath

project

bin

data

deploy

descriptors
MixedAggregate. xml

+

+

+

+- analysis_engine

+|- Cas_consumer

+- cas_multiplier
o Tl rrllarfine_nrmraccinn_annina
.<. U
OR.

[Eirnwse the file system...

) Import by Name
@ Import By Location

Add selected AEs to end of flow

Cancel

This dialog lets you select a descriptor from your workspace, or browse the file system to select a

descriptor.

Or, if you have selected to import by name, this dialog is shown:

Select one or more component engines from the workspace:

by-name xml resource
MixedAggregate. xml
analysis_engine /GovernmentOfficialRecognizer_RegEx_TAE. xml
analysis_engine MamesAndGovernmentOffidals_TAE.xml
analysis_engine MamesAndPersonTitles_TAE. xml
analysis_engine [PersonTitleAnnatator. xml
analysis_engine PersonTileAnnatator _WithinMamesOnly, xml
analysis_engine RegExAnnotator.xml
analysis_engine SimpleEmailRecognizer_RegEx_TAE. xml

.. amzhicic anning KimnlahlzmaD armonizar DanFy TAE vl

OR

(=) Impart by Name
O Import By Location

Add selected AEs to end of flow

source of by-name resource 7]
C:\a\Edipse\3. 3apache\examples\descriptors
C:\a\Edipse\3. Iapache\examples\descriptors
C:\a\Edipse\3. Iapache\examples\descriptors
C:\a\Edipse\3. Iapache\examples\descriptors
C:\a\Edipse\3. Iapache\examples\descriptors
C:\a\Edipse\3. Iapache\examples\descriptors
C:\a\Edipse\3. Iapache\examples\descriptors
C:\a\Edipse\3. Iapache\examples\descriptors

i zlEHineal? Flanarhalavamnlacidacrrintare V.

2]

Cancel

CDE User's Guide

UIMA Version 3.1.0

Adding components more than once

Y ou can specify that the import should be by Name (the name is looked up using both the Project's
class path, and DataPath), or by location. If it is by name, the dialog shows the available xml

files on the class path, to pick from. If the one you want isn't showing, this meansit isn't on the
enclosing Eclipse Java Project's classpath, nor on the datapath, and one of those needs to be
updated to include the path to the resource. If the name picked iscont conpany/ pr od/ xyz. xm ,
the name in the descriptor will be “com conpany. prod. xyz”. The "Browse the file system..."
button is disabled when import by name is checked, because the file system is not the source of the
imports - rather, its the resources on the classpath or datapath that are.

If it isby location, the file reference is converted to arelative reference if possible, in the
descriptor.

Thefinal selection at the bottom tells whether or not the selected engine(s) should automatically be
added to the end of the flow section (the right section on the Aggregate page). The OK button does
not become activated until a descriptor file is selected.

To remove an analysis engine from the component engine list smply select an engine and click the
Remove button, or press the delete key. If the engineis already in the flow list you will be warned
that deletion will also delete the specified engine from thislist.

1.5.1. Adding components more than once

Components may be added to the |eft panel more than once. Each of these components will be
given akey which isunique. A typical reason this might be doneis to use a component in aflow
several times, but have each use be associated with different configuration parameters (different
configuration parameters can be associated with each instance).

1.5.2. Adding or Removing components in a flow

The button in-between the Component Engines and the Flow List, labeled >>, adds a chosen engine
to the flow list and the button labeled << removes an engine from the flow list. To add an engine

to the flow list you must first select an engine from the left hand list, and then press the >> button.
Engines may appear any number of timesin the flow list. To remove an engine from the flow list,
select an engine from the right hand list and press the << button.

1.5.3. Adding remote Analysis Engines

There are two ways to add remote engines. add an existing descriptor, which specifies aremote
engine (just asif you were adding a non-remote engine) or use the Add Remote button which will
create aremote descriptor, save it, and then import it, all in one operation. The Add Remote button
enables you to easily specify the information needed to create a remote service descriptor for a
remote AE - one that runs on a different computer connected over the network. There are 3 kinds of
these: two are variants of the Service Client descriptor, described in UIMA References Section 2.7,
“Service Client Descriptors’; the other isthe UIMA-AS JM S Service descriptor, described in
UIMA References ??7?. The Add Remote button creates an instance of one of these descriptors,
savesit asafilein the workspace, and imports it into the aggregate.

Of course, if you aready have aremote service descriptor, you can add it to the set of delegates
using the Add button, just like adding other kinds of analysis engines.

After clicking on Add Renot e, the following dialog is displayed:

UIMA Version 3.1.0 CDE User's Guide 7

Adding remote Analysis Engines

r ™
= Add Remote Service |

Fill in the information about the remote service and press OK

Service kind: AnalysisEngine -
Protocol Service Type LUIMA-AS IMS *
URI of service or IMS Broker:

Endpoint Mame (JMS5 Service):

Binary Serialization (JM5 Service): false *
Ignore Process Errors (JIM5 Service): false -
Key (a short mnemonic for this service): |

Where the generated remote descriptor file will be stored:

Ci/au/runtime-testCOEtestjmsimport/ sxml

£ ;

Timeouts, in milliseconds. This is ignored for the Vinc protocel. Specify 0 to wait
forever, If not specified, a default timeout is used,

Timeout: Process:
Timeout: (JM5) GetMeta:

Timeout: (IM5) Collection Processing Complete:

For the Vinci protocel, you can optionally specify the Host/Port for the Vinci Name
Service

missing JMS endpoint
[¥] Add to end of flow

' Import by Name

@ Import By Location

] Cancel

L% "y

To define aremote service you specify the Service Kind, Protocol Service Type, URI and Key.

Y ou can also specify a Timeout in milliseconds, used by the SOAP and JM S services, and a

VNS Host and Port used by the Vinci Service. The IM S service has additional timeouts and other
parameters you may specify. Just like when one adds an engine from the file system, you have the
option of adding the engine to the end of the flow. The Component Descriptor Editor currently only
supports Vinci and SOAP services using this dialog.

Remote engines are added to the descriptor using the <import ... > syntax. The information you
specify hereis saved in the Eclipse project as afile, using a generated name, <key-name>.xml,
where <key-name> is the name you listed as the Key. Because of this, the key-name must be a

CDE User's Guide UIMA Version 3.1.0

Connecting to Remote Services

valid file name. If you want a different name, you can change the path information in the dialog
box.

1.5.4. Connecting to Remote Services

If you are using the Vinci protocoal, it requires that you specify the location of the Vinci Name
Server (an |P address and a Port number). Y ou can specify these in the service descriptor, or

globally, for your Eclipse workspace, using the Eclipse menu item: Window — Preferences... —
UIMA Preferences.

If the remote serviceis available (up and running), additional operations become possible. For
instance, hovering the mouse over the remote descriptor will show the description metadata from
the remote service.

1.5.5. Finding Analysis Engines by searching

The next button that appears between the component engine list and the flow list isthe Find AE
button. When this button is pressed the following dialog is displayed, which allows one to search
for AEs by name, by input or output types, or by a combination of these criteria. This function
searches the existing Eclipse workspace for matching * .xml descriptor source files; it does not look
inside Jar files.

P o

—IFind an Analysis Engine (AE), CAS Consumer, or Remote Service Descriptor |24

Specify @ name pattern and/or additional constraints, and then push the Search button

Descriptor file name pattern {e.g. ab®cde):

Descriptor must specify the input type:

Descriptor must specify the output type:

Loak in:

] Al projects -

Search |

The search automatically adds a“ match any characters’ - style (*) wildcard at the beginning
and end of anything entered. Thus, if person is specified for an output type, a“* person*”

search is performed. Such a search would match such things as “ my.namespace.person” and
“person.governmentOfficial.” One can search in all projects or one particular project. The search
does an implicit and on all fields which are left non-blank.

1.5.6. Component Engine Flow

The UIMA SDK currently supports three kinds of sequencing flows: Fixed,
CapabilityL anguageFH ow, and user-defined (see UIMA References Section 2.4.2.3,
“FlowConstraints’). The first two require specification of alinear flow sequence; this linear flow

UIMA Version 3.1.0 CDE User's Guide 9

Parameters Definition Page

sequence can aso be read by a user-defined flow controller (what use is made of it is up to the user-
defined flow controller). The Component Engine Flow section allows specification of these items.

The pull-down labeled Flow Kind picks between the three flow models. When the user-defined
flow is selected, the Browse and Search buttons become enabled to let you pick the flow controller
XML descriptor to import.

» Component Engine Flow

Choose a flow type and describe the execution order of your engines.
The table shows the delegates using their key names.,

Flow Kind: | User-defined Flow |-

Flow Controller: |, flow_controller WhiteboardFlowController, xml
Key Mame: WhiteboardFlowController

By MameRecoanizer I:I
@PEI’SDHTI'HEAHHUT&WF -

The key name valueis set automatically from the XML descriptor being imported, and enables
parameters to be overridden for that descriptor (see following sections).

The Up and Down buttons to the right in the Flow section are activated when an engine in the flow
is selected. The Up button moves the selected engine up one place in the execution order, and down
moves the selected engine down one place in the execution order. Remember that engines can
appear multiple timesin the flow (or not at al).

1.6. Parameters Definition Page

There are two pages for parameters: the first one is where parameters are defined, and the second
one is where the parameter settings are configured. The first page is the Parameter Definition page
and has two alternatives, depending on whether or not the descriptor is an Aggregate or not. We
start with a description of parameter definitions for Primitive engines, CAS Consumers, Collection
Readers, CAS Initidizers, and Flow Controllers. Here is an example:

10

CDE User's Guide UIMA Version 3.1.0

Parameters Definition Page

GovernmentOfficialRecognizer_RegEx_TAE.xml
Parameter Definitions i

+ Configuration Parameters

This section shows all configuration parameters defined for this engine.
[7] Use Parameter Groups

<Mot in any group= Add

Multi Opt String Name: Patterns
Multi Opt String Name: TypeMNames
Multi Opt String MName: ContainingAnnotationTypes

Single Opt Boolean X0 Mame: AnnotateEntireContainingAnnotation

Remove

b Not Used

Overview | Aggregate | Parameters | Parameter Settings | Type Systern | Capabilities | Indexes | Resources | Source

Thefirst checkbox at the top simplifiesthingsif you are not using Parameter Groups (see the
following section for a discussion of groups). In this case, leave the check box unchecked. The
main area shows alist of parameter definitions. Each parameter has a name, which must be

unique for this Analysis Engine. The first three attributes specify whether the parameter can have
asingle or multiple values (an array of values), whether it is Optional or Mandatory, and what

the value type it can hold (String, Integer, Float, and Boolean). If an external override name has
been specified an attribute of "XO" isincluded. See UIMA References Section 2.4.3.4, “External
Configuration Parameter Overrides’ for a discussion of external configuration parameter overrides.

In addition to using the buttons on the right to edit this information, you can double-click a
parameter to edit it, or remove (delete) a selected parameter by pressing the delete key. Use the
Add button to add a new parameter to the list.

Parameters have an additional description field, which you can specify when you add or edit a
parameter. To see the value of the description, hover the mouse over the item, as shown in the
picture below. If the parameter has an external override nameits value isincluded in the hover.

UIMA Version 3.1.0 CDE User's Guide 11

Using groups

GovernmentOfficialRecognizer_RegEx_TAE.xml

Parameter Definitions

+ Configuration Parameters

This section shows all configuration parameters defined for this engine,
[7] Use Parameter Groups

4 <MNotin any group>

Add...
Multi Opt String MNarme: Patterns
Multi Opt String Mame: TypeMNames AddGroup
Multi Opt String Marme: ContainingAnnotationTypes

5ingle Opt Boolean X0 Mame: AnnotateEntireContainingAnnotation

Set if the entire annotation is to be annotated; instead of just the
portion that matches the pattern, (ExternalOverrideMame = annotateAllContaining)

b Mot Used

Overview | Aggregate | Parameters | Parameter Settings | Type System | Capabilities | Indexes | Resources | Source

1.6.1. Using groups

The group concept for parameters arose from the observation that sets of parameters were
sometimes associated with different configuration needs. As an example, you might have an
Analysis Engine which needed different configuration based on the language of a document.

To use groups, you check the “Use Parameter Groups’ box. When you do this, you get the ability
to add groups, and to define parameters within these groups. Y ou a so get a capahility to define
“Common” parameters, which are parameters which are defined for all groups. Here is a screen
shot showing some parameter groups in use:

12

CDE User's Guide UIMA Version 3.1.0

Adding or Editing a Parameter

E]?GnvemmerrtDHin:ialHecngnizer_ﬁegEx_TF-.ExrnI A @?‘aecunﬁgumtiuﬂml & B

[===

Configuration Parameters

This section shows all corfiguration parameters defined for this engine.
lse Parameter Groups

Default Group | |
SearchStrateqgy |r‘-|'3'|'lE -
: Mot in amy group: Add
= =Cammon:
Single Req Integer MName: myNewFam2 AddGroup
Multi Req Boolean Mame:x
= GROUP Mames: myMNewGroup Edit
Multi Opt Float MName: 57
—- GROUP Mames: myNewGroup2 mg3 Remove

Single Opt Integer Name: parameterinGroup2
Overview Aggregate | Parameters F‘ammet....ﬁ-rpe .S'_.r....l.ﬁapabil... |I'IE|EIES'”§

Y ou can see the “<Common>" parameters as well as two different sets of groups.

The Default Group is an optional specification of what Group to useif the parameter is not
available for the group requested.

The Search strategy specifies what to do when a parameter is not available for the group requested.
It can have the values of None, language fallback, or default_fallback. These are more fully
described in the section UIMA References Section 2.4.3.1, “ Configuration Parameter Declaration” .

Groups are added using the Add Group button. Once added, they can be edited or removed,

using the buttons to the right, or the standard gestures for editing (double-clicking the item) and
removing (pressing the delete key after an item is selected). Removing a group removes all the
parameter definitions in the group. If you try and remove the “<Common>" group, it just removes
the parameters in the group.

Each entry for agroup in the table specifies one or more group names. For example, the highlighted
entry above, specifies two groups. “myNewGroup2” and “mg3”. The parameter definition
underneath is considered to be in both groups.

1.6.2. Adding or Editing a Parameter

When creating or modifying a parameter both a unique name and a valid type must be specified.
The Description and External Override fields are optional. The defaults for the two checkboxs
indicate a single-valued optional parameter in the example below:

UIMA Version 3.1.0 CDE User's Guide 13

Parameter declarations for Aggregates

r ™~
= Edit Parameter ﬂ

Specify a parameter name & type

Parameter names must be unique within this descriptor
Parameter Name | [&nnotateEntireContainingAnnotation
Parameter Type | Boolean =

Set if the entire annotation is to be annotated; instead of ustthe -+
portion that matches the pattern.

Description:

External Overnide | annotateAllContaining

[Parameter is multi-valued

[] Parameter is mandatory

| ok || canea |

1.6.3. Parameter declarations for Aggregates

Aggregates declare parameters which always must override a parameter setting for a component
making up the aggregate. They do this using the version of this page which is shown when the
descriptor is an Aggregate; here's an example:

e S -

= Configuration Parameters = Delegate Component Parameters

This saction shows 8l corfiguration parameters defined for this engine Thiz saction shows o delegate componerts by their Kay names, and what
B paramaters they have

Diouble-chek & pammater of & group you want to specly ovemdes for thess
Dedatt Growp | | paramebers i this agoregate: this wil add & default Configuration Farsmeber in

SaarchStralegy !f:! g6 ook :I" this Aggregate for thal pararster, and sed the cvemdes
= Delegate Hey Nome: GovemmenrtDficialFecognizer

=1 Mot i amy group> =1 <hal inany >
= Muli Opt Stang Name: Patters :[Mok ‘:::m;'ﬁi Name: Patiemns
Ordemdes: GovemmeniOfficial Recogrezer Pattems Muli Opt Sting Wame: Typehlames
= Multi Opt Siong Name: TypeHames Muki Opt Stang Mame: ContaringAnrotation Types
Crommides: NameRacognizer/ Typeliames :I Sngle Opt Boclean Mame: Arnctats ErtreCortaningAnnotation
o cemmon > = Dslagate Key Nama: NameRscogrizer
=: =i ¢Mot in-amy group>
Muki Opi Steng Name: Paftams
[Pk Tt Sang ™ Hame: Typatiames|
Muti Opt Sting Name: ContairngAnnotation Types
Single Opt Boclean Mame: Arnotate EntreCortaining Annotation

&l 5] | Comate Ovemde [(Cremtenonshared Ovenide |

| Ovenview | Aggregate | Fammeters Faramater Settings | Type System | Capebities | Indexes | Fesources | Source |

Thereisan additional panel shown (on the right) which lists al of the components by their key
names, and shows for each of them their defined parameters. To add a new override for one or
more of these parameters to the aggregate, select the component parameter you wish to override

14 CDE User's Guide UIMA Version 3.1.0

Parameter Settings Page

and push the Create Override button (or, you can just double-click the component parameter). This
will automatically add a parameter of the same name (by default —you can change the name if you
like) to the aggregate, putting it into the same group(s) (if groups are being used in the component —
thisisrequired), and setting the properties of the parameter to match those of the component (thisis
required).

Note: If the name of the parameter being added already isin use in the aggregate, and the
parameters are not compatible, a new parameter name is generated by suffixing the name
with a number. If the parameters are compatible, the selected component parameter is
added to the existing aggregate parameter, as an additional override. If you don't want this
behavior, but want to have a new name generated in this case, push the Create non-shared
Override button instead, or hold down the “ shift” key when double clicking the component
parameter.

In the above example, the user has just double-clicked the “ TypeNames® parameter in the
“NameRecognizer” component. This added that parameter to this aggregate under the “<Not in any
group>" section —since it wasn't part of a group.

Once you have added a parameter definition to the aggregate, you can use the buttons on the right
side of the |eft panel to add additional overrides or remove parameters or their overrides. Y ou can
also remove groups,; removing agroup is like removing all the parameter definitions in the group.

In addition to adding one parameter at a time from a component, you can also add all the
parameters for a group within a component, or all the parametersin the component, by selecting
those items.

If you double-click (or push Create Override) the “<Common>" group or a parameter in the
<Common> group in acomponent, a specia group is created in the Aggregate consisting of all of
the groups in that component, and the overriding parameter (or parameters) are added to that. This
is done because each component can have different groups belonging to the Common group notion;
the Common group for a component is just shorthand for all the groups in that component.

The Aggregate's specification of the default group and search strategy override any specifications
contained in the components.

1.7. Parameter Settings Page

The Parameter Settings page is rather straightforward; it is where the user defines parameter
settings for their engines. An example of such apageis given below:

UIMA Version 3.1.0 CDE User's Guide 15

Type System Page

| = Person Title Annotator sl £ O
Configuration Parameters Values
This section list all configuration parameters, ether as plain Specify the value of the selected corfiguration
parameters, or as pant of one or more groups. Select one to parameter.

ghow, or get the value in the right hand panel.

W,
= <hot in any group> e
Muti Reg Stang Mame: CivilianTitles .
Multi Req Sting Mame: Miitary Titles ;:;:::ug rent
Muli Req Sting Name: Govemment itles| Vice Pres.
Single Opt Sting Name: ContainingAnnotation Typ Pras, D
| Govemor
Vauelist: |4 Govemor E
Gav,
Lt. Gow. I:
Senator

Owverview | Aggregate | Parameters | Parameter Settings | Type System'Capabﬂums Indexes | Resources | Source

For single valued attributes, the user simply types the default value into the Value box on the right
hand side. For multi-valued parameters the user should use the Add, Edit and Remove buttonsto
manage the list of multiple parameter values.

Values within groups are shown with each group separately displayed, to allow configuring
different values for each group.

Values are checked for validity. For Boolean valuesin alist, usethewordst r ue or f al se.

Note: If you specify avaue in asingle-valued parameter, and then delete all the characters
in the value, the CDE will treat thisasif you wanted to not specify any setting for this
parameter. In order to specify a0 length string setting for a String-valued parameter, you
will have to manually edit the XML using the “Source” tab.

1.8. Type System Page

This page declares the type system used by the annotator. For aggregates it is derived by merging
the type systems of all constituent AEs. The types used by the AE constitute the language in which
the inputs and outputs are described in the Capabilities page and a so affect the choice of indexes
on the Indexes page. The Type System page looks like the following:

16 CDE User's Guide UIMA Version 3.1.0

Type System Page

{PersonTitleAnnotator.xml

Type System Definition EE
= Types (or Classes) Imported Type Systems
The following types (classes) are defined in this analysis engine descriptor, The following type systems are
The grayed out itermns are imported or merged from other descriptors, and cannot be edited included as part of this one.
here. (To edit them, edit their source files). Add ==

Type Mame or Feature Name SuperType or Range Elermnent Type
: : _ [Add Tyee| [Set DataPath
—| example.PersonTitle uirna.tcas.Annotation m
Kind example.PersonTitleKind |7 Kind Location/Mame
=] example.PersonTitleKind uima.cas.5tring Edit... |
Allowed Value: Civilian | P l
Allowed Value: Military : —
Allowed Value: Government Export... |
JCasGen |
mited

JCasGen only those types defined within this project
‘You can change the default in UIMA prefs or in the UIMA menu

ol e

Before discussing this page in detail, it isimportant to note that there are 3 settings that affect the
operation of this page. These are accessed by selecting the UIMA - Settings (or by going to the

Eclipse Window - Preferences — UIMA Preferences) and checking or unchecking one of the
following: “ Auto generate .java files when defining types’, “ Generate JCasGen classes only for
types defined within the local project scope”’ and “Display fully qualified type names.”

When the Auto generate option is checked and the devel opment language for the AE is Java, any
time a change is made to a type and the change is saved, the corresponding .javafiles are generated
using the JCasGen tool. The results are stored in the primary source directory defined for the
project. The primary source directory isthat listed first when you right click on your project and

select Properties — Java Build Path, click on the Source tab and look in the list box under the text
that reads:. “ Source folder on build path.” If no source folders are defined, you will get awarning
that you have no source folders defined and JCasGen will not be run. (For information on JCasGen
see UIMA Tools Guide and Reference Chapter 8, JCasGen User's Guide). When JCasGen is run,
you can monitor the progress of the generation by observing the status on the Eclipse status line
(normally at the bottom of the Eclipse window). JCasGen runs on the fully-merged type system,
consisting of the type specification plus any imported type system, plus (for aggregates) the merged
type systems of al the components in an aggregate.

Warning: If the components of the aggregate have different definitions for the same type
name, the CDE will show awarning. It is possible to continue past this warning, in which
case the CDE will produce the correct Java source files representing the merged types
(that is, the type definition that contains all of the features defined on that type by all of
your components). However, it is not recommended to use this feature (of having different
definitions for the same type name) since it can make it difficult to combine/package your
annotator with others. See UIMA References Section 5.5, “Merging Types’ for more
information.

Note: In addition to running automatically, you can manually run JCasGen on the fully
merged type system by clicking the JCasGen button, or by selecting Run JCasGen from
the UIMA pulldown menu:

UIMA Version 3.1.0 CDE User's Guide 17

Type System Page

i TAE xml - Eclipse Platform
o Bun UIMA Window Help
. {1 RunJCasGen ; o
- : Settings P « Auto generate JCAS source java files when changing types
2/ NamesAndPersonTiles_TA v Display fully qualfied type names

When “ Generate JCasGen classes only for types defined within the local project scope” is checked,
then JCasGen skips generating classes for types that are imported from sources outside this project.
This might be done, for instance, if you have an aggregate which isimporting type systems from its
delegates, some of which are defined in other projects, and have JCasGen'd files already present in
those other projects.

The UIMA settings and preferences for controlling this are used to initialize a particular instance
of the editor, when it is started. Following that, you can override this setting, just for that editor, by
checking or unchecking the box shown on the type system page:

JCasGen

[¥] limited

Note: If thisis checked, and one of the types that would be excluded has merged

type features, an error message is issued - because JCasGen will need to be run for
the combined (merged) type in order to get a class definition that will work for this
configuration (have access to all the features). If this happens, you have to run without
limiting JCasGen, and manually delete any duplicated/unwanted source resullts.

When “Display fully qualified type names’ isleft unchecked, the namespace of typesis not
displayed, i.e. if afully qualified type name is my.namespace.person, only the abbreviated type
name person will be displayed. In the Type page diagram shown above, “Display fully qualified
type names’ isin fact unchecked.

To add, edit, or remove types the buttons on the top left section are used. When adding or editing
types, fully qualified type names should of course be used, regardless of whether the “Display fully
qualified type names’ is unchecked. Removing or editing atype will have a cascading effect in that
the type removal/edit will effect inputs, outputs, indexes and type priorities in the natural way.

When atypeis added, thisdialog is shown:

18

CDE User's Guide UIMA Version 3.1.0

Type System Page

__ Add a Type

Use this panel to spedify a type.

Type names must be globally unique, unless you are intentionally redefining
another type.

Type Name]swe.t&'pename.vuu,chmse

Supertype: |uima,tcas.Annotation Browse

Description:

oK I Cancel

Type names should be specified using a namespace. The namespace is like a Java package name,
and serves to insure type names are unigue. It also serves as the package name for the generated
JCas classes. The namespace name is the set of names up to the last period in the string.

The supertype must be picked from an existing type. The entry field for the supertype supports
Eclipse-style content assist. To use it, put the cursor in the supertype field, and type aletter or two
of the supertype name (lower caseisfine), either starting with the name space, or just with the type
name (without the name space), and hold down the Control key and then press the spacebar. When
you do this, you can see alist of suitable matching types. Y ou can then type more letters to narrow
down your choices, or pick the right entry with the mouse.

To see the available types and pick one, press the Browse button. This will show the available
types, and as you type letters for the type name (in lower case — capitalization isignored), the
available types that match are narrowed. When you've typed enough to specify the type you want,
press Enter. Or you can use the list of matching type names and pick the one you want with the
mouse.

Once you've added the type, you can add featuresto it by highlighting the type, and pressing the
Add button.

If the type being defined is a subtype of uima.cas.String, the Add button allows you to add allowed
values for the string, instead of adding features.

To edit atype or feature, you can double click the entry, or highlight the entry and press the Edit
button. To delete atype or feature, you highlight the entry to be deleted, and click the delete button
or push the delete key.

If the range of afeature is an array or one of the built-in list types, an additional specification
allows you to specify if multiple references to the object referenced by this feature are alowed. If
they are not allowed then the XMI serialization of instances of this type use a more efficient format.

UIMA Version 3.1.0 CDE User's Guide 19

Type System Page

If the range of afeature is an array of Feature Structures, then it is possible to specify an element
type for the array. Thisinformation is used in the XMI serialization and also by the JCas generation
routines to generate more efficient code.

- =

"~ Add a Feature

Use this panel to add or edit a feature
The feature name must be unique within this type

Feature Mame |arra1,rExample

Range Type: |uima.cas.FSArray Browse I

References: | Mot Specified - defaults to multiple references not allowed |«

Element Type: | example.PersonTitle Im]
Description:
oK Cancel

It is also possible to import type systems for inclusion in your descriptor. To do this, use the Type
Import panel's Add. . . button. This alows you to import atype system descriptor.

When importing by name, the name is resolved using the class path for the Eclipse project
containing the descriptor file being edited, or by looking up this name in the UIMA DataPath.

The DataPath can be set by pushing the Set DataPath button. It will be remembered for this
Eclipse project, as a project Property, so you only have to set it once (per project). The value of the
DataPath setting is written just like a class path, and can include directories or JAR files, just asis
true for class paths.

The following dialog allows you to pick one or more files from the Eclipse workspace, or one file
(at atime) from the file system:

20

CDE User's Guide UIMA Version 3.1.0

Exporting

7 -1

= Import File(s) Selection

Use this panel to select a file in the Warkspace

=I- uimaj-examples |

.classpath B |

project

bin

data

deploy

descriptors

MixedAggregate. xml

—I- analysis_engine
GovernmentOffidalRecognizer_RegEx_TAE.xml
MamesAndGovernmentOfficials_TAE. xml
MamesAndPersonTitles_TAE. xml]

1] [

OR

[Bruwse the file system...

() Import by Name
G} Import By Location

Cancel

Thisis essentially the same dialog as was used to add component engines to an aggregate. To
import from atype system descriptor that is not part of your Eclipse workspace, click the Browse
the file system.... button.

Imported types are validated, and if OK, they are added to the list in the Imported Type Systems
section of the Type System page. Any types they define are merged with the existing type system.

Imported types and features which are only defined in imports are shown in the Type System
section, but in a grayed-out font; these type cannot be edited here. To change them, open up the
imported type system descriptor, and change them there.

If you hover the mouse over an import specification, it will show more information about the
import. If you right-click, it will bring up a context menu that allows opening the imported filein
the Editor, if theimported file is part of the Eclipse workspace. Changes you make, however, won't
be seen until you close and reopen the editor on the importing file.

It is not possible to define types for an aggregate analysis engine. In this case the type system is
computed from the component AEs. The Type System information is shown in a grayed-out font.

1.8.1. Exporting

In addition to importing type specifications, you can export as well. When you push the Export...
button, the editor will create a new importable XML descriptor for the typesin this type system,
and change the existing descriptor to import that newly created one.

UIMA Version 3.1.0 CDE User's Guide 21

Capabilities Page

~ Export an importable part
Spedify a base file name, and perhaps alter the path where it should be stored,
and press OK

Base file name (without path or following ".xmi";

| myTypes

Where the generated part descriptor file will be stored:

C: [Edipse fworkspace fexamples /descriptors/analysis_engine fmyTypes. xml

" Import by Name
+ Import By Location

OK | Cancel [

The base file name you type isinserted into the path in the line below automatically. Y ou can
change the path where the generated part descriptor is stored by overtyping the lower text box.

When you click OK, the new part descriptor will be generated, and the current descriptor will be
changed to import that part.

1.9. Capabilities Page

Capabilities comein “sets’. Y ou can have multiple sets of capabilities; each one specifies
languages supported, plus inputs and outputs of the Analysis Engine. The idea behind having
multiple sets is the concept that different inputs can result in different outputs. Many Analysis
Engines, though, will probably define just one set of capabilities. A sample Capabilities pageis
given below:

22

CDE User's Guide UIMA Version 3.1.0

Capabilities Page

Bf PemsonTtleAnnotator E:g: B2
Person Title Annotator i
Capabilities: Inputs and Outputs B [k

+ Component Capabilities
This section describes the languages handled, and the inputs needed and outputs provided in
terms of the Types and Features.

| Name | Input | Output | Name Space | [Add 5|
= Capability
=] Languages | Add Language |
Sofas - [Add Type]
= Type: P Tl Qutput e
ype m::m -] mgm 2xamp | Add Sofa |
| . |
| |
| Remove |

¢ Sofa Mappings (Only used in aggregate Descriptors)

Grorven] Rosoqels | Paraneters | Farameler Safinga T7pe Syatem | Copsbitios [Paeeea] 7

When defining the capabilities of a primitive analysis engine, input and output types can be any
type defined in the type system. When defining the capabilities of an aggregate the inputs must be a
subset of the union of the inputsin the constituent analysis engines and the outputs must be a subset
of the union of the outputs of the constituent analysis engines.

To add atype, first select something in the set you wish to add the type to, and press Add Type.
The following dialog appears presenting the user with alist of types which are candidates for
additional inputs:

.'WTmutnaWrSH =)

Mark one or more types as Input and/or Output by clicking the mouse in the
comesponding input and/or output column, and press OK

Type Name |m.n|&.stpm|TypeNarmpace|
iAnnctation uima tcas i
Documernt Annotation uima tcas

Person Title Kind example

Follow the instructions to mark the types asinput and / or output (atype can be both). By default,
the <all features> flag is set to true. If you want to specify a subset of features of atype, read on.

UIMA Version 3.1.0 CDE User's Guide 23

Capabilities Page

When types have features, you can specify what features are input and / or output. A type doesn't
have to be an output to have an output feature. For example, an Analysis Engine might be passed
asinput atype Token, and it adds (outputs) a feature to the existing Token types. If no new Token
instances were created, it would not be an output Type, but it would have features which are output.

To specify features asinput and / or output (they can be both), select atype, and press Add. The
following dialog box appears:

Spﬁyfﬂmirwﬂ!wm

Designate by mouse clicking one or more features in the Input and./or Output
column, to designate as Input and/or Output press "OK"

Feature Namel Input | Output |

Kind Yes

OK Cancel

To mark afeature as being input and / or output, click the mouse in the input and / or output
column for the feature. If you select <all features>, it unmarks any individual feature you selected,
since <all features> subsumes all the features.

The Languages part of the capability is where you specify what languages are supported by the
Analysis Engine. Supported languages should be listed using either atwo letter SO-639 language
code, or an 1SO-639 language code followed by a hyphen and then a two-letter | SO-3166 country
code. Add alanguage by selecting Languages and pressing the Add button. The dialog for adding
languages is given below.

[Add Language

Enter a two letter 1S0-633 language code, followed optionally by a twodetter
150-3166 country code (Examples: fr or fr-CA)

| b I Cancel

The Sofa part of the capability is optional; it allows defining Sofa names that this component uses,
and whether they are input (meaning they are created outside of this component, and passed into it),
or output (meaning that they are created by this component). Note that a Sofa can be either input or
output, but can't be both.

To add a Sofa name (which is synonymous with the view name), press the Add Sofa button, and
this dialog appears.

24

CDE User's Guide UIMA Version 3.1.0

Sofa (and view) name mappings

~1 Add a Sofa &

Use this panel to specify a Sofa Name.

Sofa names must be unique within a Capabilty Set, and are simple names without
name spaces {no dots in the name).

Type the name in the box below, and specify f &t is an input Sofa
(created outside of this component), or an output Sofa (created by this
component).

Sofa Name IsomeNewSufaName

Input / Output: ' Input ¢ Output

DKICanoedl

1.9.1. Sofa (and view) name mappings

Sofa names, once created, are used in Sofa Mappings. These are optiona mappings, donein an
aggregate, that specify which Sofas are the same ones but with different names. The Sofa Mappings
section is minimized unless you are editing an Aggregate descriptor, and have one or more Sofa
names defined for the aggregate. In that case, the Sofa Mappings section will look like this:

UIMA Version 3.1.0 CDE User's Guide 25

Sofa (and view) name mappings

& NamesAndGovemmentOfficials_TAExml 3 L]
NamesAndGovemmentOfficials_TAExmi
Capabilities: Inputs and Outputs =

+ Component Capabilities
This section describes the languages handled, and the inputs needed and outputs provided in
temns of the Types and Features.

| Name | Input | Output | Name Spac |PddCaDabii}rﬁet|
=] Set
—| Languages | Add Language |
-:1 | Add Type |
(=] Sofas
MylnputSofa Irpast | N O |
Type: GovemmentOfficial Output example
Type: Name Output example | Edi... |
%l [£ | Femoys |
= Sofa Mappings

This section shows all defined Sofas for an Aggregate and their mappings to the component
Sofas.

Add Aggregate Scofa Names using the Capabilities section; Select an Aggregate Sofa Name
and Add/Edt mappings for that Sofa in this section.

=1 Input
> AnotherSc

GovemmentOfficialRecognizer/so2 |:|

= MylnputSofa
GovemmentOfficial Recognizer/sol

NameRecognizer
Outputs

| Overview | Aggregate | Parameters | Parameter Settings | Type System | Capabilties | Indexes

Here the aggregate has defined two input Sofas, named “MyInputSofa’, and “ AnotherSofa”.
Any named sofas in the aggregate's capabilities will appear in the Sofa Mapping section, listed
either under Inputs or Outputs. Each name in the Mappings has O or more delegate (component)
sofa names mapped to it. A delegate may have multiple Sofas, as in this example, where the
GovernmentOfficial Recognizer delegate has Sofas named “sol” and “so2”.

Delegate components may be written as Single-View components. In this case, they have

one implicit, default Sofa (“_InitialView”), and to map to it you use the form shown for the
“NameRecognizer” —you map to the delegate's key name in the aggregate, without specifying a
Sofaname. Y ou can a so specify the sofa name explicitly, e.g., NameRecognizer/_InitialView.

To add a new mapping, select the Aggregate Sofa name you wish to add the mapping for, and press
the Add button. This brings up awindow like this, showing all available delegates and their Sofas;
select one or more (use the normal multi-select methods) of these and press OK to add them.

26

CDE User's Guide UIMA Version 3.1.0

Indexes Page

"1 Assign Components and their sofas to an Aggregate Sofa Name

Change the selection as needed to reflect bindings.

Select all the delegate sofas from the list below which should be associated with the aggregate sofa name “MylnputSofa”.
Hold down the Shift or Control keys to select multiple tems.

{GovemmentOfficialHecognizer/so1 |
GovemmentOfficialHecognizer/so2
NameRecognizer

| OK I Cancel

To edit an existing mapping, select the mapping and press Edit. Thiswill show the existing
mapping with all mapped items * selected”, and other available items unselected. Change the items
selected to match what you want, deselecting some, and perhaps selecting others, and press OK.

1.10.

Indexes Page

The Indexes page is where the user declares what indexes and type priority lists are used by the
analysis engine. Indexes are used to determine which Feature Structures of a particular type are
fetched, using an iterator in the UIMA API. An unpopulated Indexes page is displayed below:

UIMA Version 3.1.0 CDE User's Guide 27

Indexes Page

' B PersonTitleAnnotator_WithinNamesOnly.xml £
EPEfsnnﬁHe_Almotator_\ﬂﬁH'ﬁersQﬂy,xnﬂ

Indexes

« Indexes

The following indexes are defined on the type system for this

ENgine.
MName J Type | Kind
—| Annotation Index (Builtsn) Annotation sorted
begin Standard
end Reverse
TYPE PRIORITY Standard
1< I

~ Priority Lists
This section shows the defined Prioinity Lists

&' Index Imports

The following index
definitions are induded as
part of this one,

[Thaen | [oe]

Set DataPath

Kind [LocationMName]

+ Type Priority
Imports

The following type priority
imports are induded as part
of the type priorities:

s

A B

Set DataPath I

Kind | Location/Name |

;hgg'egate'ParamebHs'Parmter Settings | Type System | Capabilities | Indexes | Resources |

Both indexes and type priority lists can have imports. These imports work just like the type system
imports, described above. Both indexes and type priority lists can be exported to new component
descriptors, using the Export... button, just like the type system export operation described above.

The built-in Annotation Index is aways present. It is based on the built-in type
ui ma. t cas. Annot at i on and has keys begin (Ascending), end (Descending) and
TYPE_PRIORITY. There are no built-in type priorities, so this last sort item does not play arolein

the index unless type priorities are specified.

Type priority may be combined with other keys. Type priorities are defined in the Priority Lists
section, using one or more priority list. A given priority list gives an ordering among a group of
types. Types that appear higher in the priority list are given higher priority, in other words, they
sort first when TYPE_PRIORITY is specified as the index key. Subtypes of these types are also
ordered in a consistent manner, unless overridden by another specific type priority specification.
To get the ordering used among all the types, al of the type priority lists are merged. This gives

28

CDE User's Guide

UIMA Version 3.1.0

Indexes Page

apartial ordering among the types. Ties are resolved in an unspecified fashion. The Component
Descriptor Editor checks for incompatible orderings, and informs the user if they exist, so they can
be corrected.

To create a new index, use the Add Index button in the top left section. This brings up this dialog:
B Add an index

Add or Edit an index specification

The Index name must be globally unigue.

Index Name: |ea-‘.amp|e.index'|

Index Kind: FDﬁEd

CAS Type ':‘Iluima.tcas.ﬁnnntatiu:un Browse
Feature Name | Sorting Direction Add
begin Standard
end Standard

Sort Keys:

Each index needs a globally unigue index name. Every index indexes one CAS type (including its
subtypes). If you're using Eclipse 3.2 or later, the entry field for this has content assist (start typing
the type name and press Control — Spacebar to get help, or press the Browse button to pick atype).

Indexes can be sorted, in which case you need to specify one or more keysto sort on. Sort keys are
selected from features whose range type is Integer, Float, or String. Some elements will be disabled
if they are not relevant. For instance, if the index kind is“bag”, you cannot provide sort keys. The
order of sort keys can be adjusted using the up and down buttons, if necessary.

Note: Thereisusually no need to explicitly declare a Bag index in your descriptor.
Asof UIMA v2.1, if you do not declare any index for atype (or any of its supertypes),
aBag index will be automatically created. Thisindex is accessed using the

get Al | I ndexedFS(. ..) method defined on the index repository.

A set index will contain no duplicates of the same type, where a duplicate is defined by the
indexing comparator. That is, if you commit two feature structures of the same type that are equal
with respect to the indexing comparator, only the first one will be entered into the index. Note that
you can still have duplicates with respect to the indexing order, if they are of a different type. A set
index is not guaranteed to be sorted. If no keys are specified for a set index, then all instances are
considered by default to be equal, so only the first instance (for a particular type or subtype of the
type being indexed) isindexed. On the other hand, “bag” indicates that all annotation instances are
indexed, including duplicates.

The Priority Lists section of the Indexes page is used to specify Priority Lists of types. Priority
Lists are unnamed ordered sets of type names. Add a new priority list by clicking the Add Set
button. Add atype to an existing priority list by first selecting the set, and then clicking Add. You

UIMA Version 3.1.0 CDE User's Guide 29

Resources Page

can use the up and down buttons to adjust the order as necessary; these buttons move the selected
item up or down.

Although it is possible to import self-contained index and type priority files, the creation of such
filesis not yet supported by the Component Descriptor Editor. If you create these files using
another editor, they can be imported using the corresponding Import panels, shown on the right.
Imports are specified in the same manner as they are for Type System imports.

1.11.

Resources Page

The resources page describes resource dependencies (for primitive Analysis Engines) and external
Resource specification and their bindings to the resource dependencies.

Only primitive Analysis Engines define resource dependencies. Primitive and Aggregate Analysis
Engines can define external resources and connect them (bind them) to resource dependencies.

When an Aggregate is providing an external resource to be bound to a dependency, the binding is
specified using a possibly multi-level path, starting at the Aggregate, and specify which component
(by its key name), and then if that component is, in turn, an Aggregate, which component (again

by its key name), and so on until you reach a primitive. The sequence of key names is made into
the binding specification by joining the partswith a“/” character. All of thisis done for you by the
Component Descriptor Editor.

Any external resource provided by an Aggregate will override any binding provided by any lower
level component for the same resource dependency.

There are two views of the Resources page, depending on whether the Analysis Engineis an
Aggregate or Primitive. Here's the view for a Primitive:

30

CDE User's Guide UIMA Version 3.1.0

Resources Page

2 PersorTitieAnnotator_WithinNamesOnly.xml 52 | =
PersonTiteAnnotator_WithinMamesOnly. xml

Resources

+ Resources Needs, Definitions and + Resource Dependencies
Bindings

Primitives dedare what resources they need. A
Specify External Resources; Bind them to primitive can anly bind to one external resource.
dependendies on the right panel by selecting the

corresponding dependency and dicking Bind. Bound I Optional? l Ll I Interf

Bindings

The following definitions are included:
| Add.. |

Set DataPath

Kind I Location/Mame I

Remaye |

Bl w2

Aggregate | Parameters | Parameter Settings i Type System | Capabilities | Indexes !Resuurces I My

To declare aresource dependency, click the Add button in the right hand panel. This puts up the
diaog:
Add an Bxtemal Resource Dependency

The only required field is the key name,
which must be unigue within this primitive Analysis Engine descriptor.

Key [

Diescription:

Inteface I

[Check this box f this resource is optional

[F Cancel

UIMA Version 3.1.0 CDE User's Guide

Binding

The Key must be unique within the descriptor declaring it. The Interface, if present, isthe name of
aJavainterface the Analysis Engine uses to access the resource.

Declare actua External resource on the left side of the page. Clicking “Add” brings up this dialog:
.kaEﬂmﬂFhﬁmn:eDeﬁritinn .

Define and name an extemal resounce

The first URL field iz used to identify the extemal resounce.

if both URL fields are used. they form a name by concatenating the first with the
document language and then with the second {suffod URL.

The {optional) Implementation specifies a Java class which implements the
interface used by the Analysis Engine to access the resource.

MName: J|

Description:

URL: |

URL Suffic |

Implemertation |

i), | Cancel

The Name must be unique within this Analysis Engine. The URL identifies afile resource. If both
the URL and URL suffix are used, the file resource is formed by combining the first URL part

with the language-identifier, followed by the URL suffix; see UIMA References Section 2.4.1.9,
“Resource Manager Configuration” . URLS may be written as “relative” URLS; in this case they are
resolved by looking them up relative to the classpath and/or datapath. A relative URL has the path
part starting without an intial “/”; for example: file:my/directory/file. An absolute URL starts with
file:/ or file:/// or file://some.network.address/. For more information about URLS, please read the
javaDoc information for the Javaclass“URL”.

The Implementation is optional, and if given, must be a Java class that implements the interface
specified in any Resource Dependencies this resource is bound to.

1.11.1. Binding

Once you have an external resource definition, and a Resource Dependency, you can bind them
together. To do this, you select the two things (an external resource definition, and a Resource
Dependency) that you want to bind together, and click Bind.

1.11.2. Resources with Aggregates

When editing an Aggregate Descriptor, the Resource definitions panel will show all the resources
at the primitive level, with paths down through the components (multiple levels, if needed) to get to
the primitives. The Aggregate can define external resources, and bind them to one or more uses by
the primitives.

32

CDE User's Guide UIMA Version 3.1.0

Imports and Exports

1.11.3. Imports and Exports

Resource definitions and their bindings can be imported, just like other imports. Existing Resource
definitions and their bindings can be exported to a new importable part, and replaced with an
import for that importable part, using the “ Export...” button, just like the similar function on the

Type System page.

1.12. Source Page

The Source page is atext view of the xml content of the Analysis Engine or Type System being
configured. An example of this page is displayed below:

& NamestndGovemmentOfiicials_TAExml |7 = A
{MamesindGovemmentOfficials_TAE xmi

~
<tasDescription xmlns="http://oima.watson,ibm.com/rescurceSpecifier™>
<fram Inplementation>com. ibm. uins . java<,/framevorkInplemencacions>
<primitive>falsas/primitives
<delegacesAnalysisingineSpeciliers>
yeTGover neOfficialRecognizer™>
Zover alRecognizer RegEx TAE.xmr >
</delegateAnalysisEngine>
<delegateAnalysisEngine key="HameRecognizer™>
<import location="SimplelameRecognizer RegEx TAE.xml™/>
</delegatefinal ysiaEngine> - "
<fdelegacehnalysisEngineSpecifiers>
<analysisEngineMetaDacad>
<name>pggregate TRE - Name Recognizer and Government Official Recognizer«<)
<descriprtion>Detects MNames and Government Officials</description> ~
% >

Ovanview .lggmgade. Parameters Paramader 5er1m«;,u. T)'pe Sysem. C,apahlh‘.u. Indexes | Resources | Source

Changes made in the GUI are immediately reflected in the xml source, and changes made in the
xml source are immediately reflected back in the GUI. The thought here is that the GUI view and
the Source view are just two ways of looking at the same data. When the dataisin an unsaved state
the file name is prefaced with an asterisk in the currently selected file tab in the editor pane inside
Eclipse (as in the exampl e above).

Y ou may accidentally create invalid descriptors or XML by editing directly in the Source view.
If you do this, when you try and save or when you switch to a different view, the error will be
detected and reported. In the case of saving, the file will be saved, even if it isin an error state.

1.12.1. Source formatting — indentation

The XML isindented using an indentation amount saved as a global UIMA preference. To change
this preference, use the Eclipse menu item: Windows — Preferences — UIMA Preferences.

1.13. Creating a Self-Contained Type System

It is aso possible to use the Component Descriptor Editor to create or edit self-contained type

systems. To create a self-contained type system, select the menu item File —» New — Other and

then select Type System Descriptor File. From the next page of the selection wizard specify a
Parent Folder and File name and click Finish.

UIMA Version 3.1.0 CDE User's Guide 33

Creating a Self-Contained Type System

I New %]

Select a wizard

Wizards:

|-= Eclipse Modeling Framework

= Example EMF Model Creation Wizards
= Java

|-[z= Java Emitter Templates

J-= Plug4n Development

= Simple

J-[= UIMA

b Ef Pnatysis Engine Descriptor File
P % Type System Descriptor File
-2 Examples

B I e = o o [e B

£ Back Mext = Eirish Cancel I

.EHEITrpES;stmDmriﬁnrﬁle ﬁ
Type System Descriptor File
Create a new Type System Descriptor file

Parent Folder:],l-‘testfdescﬁptn:-rsfanahfsis_engine Browse... |

File name:]t'_.fpe System Descriptor xml

< Back Mests | Frish | Cancel

Thiswill take you to aversion of the Component Descriptor Editor for editing atype system file
which contains just three pages: an overview page, atype system page, and a source page. The
overview pageis a bit more spartan than in the case of an AE. It looks like the following:

CDE User's Guide

UIMA Version 3.1.0

Creating Other Descriptor Components

gmes:,rstemml e =m
hypesystem xml
Overview

= Overall Identification Information
Thig gection specifies the basic identfication information for this

descriptor

Mame bypesystem
Version 10
Wendar

Description: & sample description would go here |

Owerview | Type System | Source

Just like an AE has an associated name, version, vendor and description, the sameistrue of a self-
contained type system. The Type System page isidentical to that in an AE descriptor file, asis
the Source page. Note that a self-contained type system can import type systems just like the type
system associated with an AE.

A type system component can also be created from an existing descriptor which contains atype
system definition section, by clicking on the Export... button on the Type System page.

1.14. Creating Other Descriptor Components

The new wizard can create several other kinds of components. Collection Processing Management
(CPM) components, flow controllers, and importable parts (besides Type Systems, described
above, Indexes, Type Priorities, and Resource Manager Configuration imports).

The CPM components supported by this editor include the Collection Reader, CAS Initializer, and
CAS Consumer descriptors. Each of these is basically treated just like a primitive AE descriptor,
with small changes to accommodate the different semantics. For instance, a CAS Consumer can't
declare in its capabilities section that it outputs types or features.

Flow controllers are components that control the flow of CASes within an aggregate, an are edited
in asimilar fashion as a primitive Analysis Engine.

The importable part support requires context information to enable the editor to work, because
much of the power of this editor comes from extensive checking that requires additional
information, other than what is available in just the importable part. For instance, when you create
or edit an Indexes import, the facility for adding new indexes needs the type information, which is
not present in this part when it is edited alone.

To overcome this, when you edit these descriptors, you will be asked to specify a context
descriptor, usually a descriptor which would import the part being edited, which would have the
additional information needed.

Various methods are used to guess what the context descriptor should be - and if the guessis
correct, you can just press the Enter key to confirm. The last successful context file is remembered
and will be suggested as the context file to use at the next edit session

UIMA Version 3.1.0 CDE User's Guide 35

Chapter 2. Collection Processing Engine
Configurator User's Guide

A Collection Processing Engine (CPE) processes collections of artifacts (documents) through
the combination of the following components. a Collection Reader, Analysis Engines, and CAS
Consumers.

The Caollection Processing Engine Configurator (CPE Configurator) isagraphical tool that allows
you to assemble and run CPEs.

For an introduction to Collection Processing Engine concepts, including developing the
components that make up a CPE, read UIMA Tutorial and Developers Guides Chapter 2,

Callection Processing Engine Developer's Guide. This chapter is auser's guide for using the CPE
Configurator tool, and does not describe UIMA's Collection Processing Architecture itself.

2.1. Limitations of the CPE Configurator

The CPE Configurator only supports basic CPE configurations.

It only supports “Integrated” deployments (although it will connect to remotesif particular CAS
Processors are specified with remote service descriptors). It doesn't support configuration of the
error handling. It doesn't support Sofa Mappings; it assumes all Single-View components are
operating with the _InitialView Sofa. Multi-View components will not have their names mapped. It
sets up afixed-sized CAS Pool.

To set these additional options, you must edit the CPE Descriptor XML file directly. See UIMA
References Chapter 3, Collection Processing Engine Descriptor Reference for the syntax. Y ou may
then open the CPE Descriptor in the CPE Configurator and run it. The changes you applied to the
CPE Descriptor will be respected, although you will not be able to see them or edit them from the
GULI.

2.2. Starting the CPE Configurator

The CPE Configurator tool can be run using the cpeGui shell script, which islocated in the bi n
directory of the UIMA SDK. If you'veinstalled the example Eclipse project (see UIMA Overview
& SDK Setup Section 3.2, “ Setting up Eclipse to view Example Code”, you can aso run it using
the“UIMA CPE GUI” run configuration provided in that project.

Note: If you are planning to build a CPE using components other than the examples
included in the UIMA SDK, you will first need to update your CLASSPATH environment
variable to include the classes needed by these components.

When you first start the CPE Configurator, you will see the main window shown here:

Earlier versions of UIMA supported another component, the CAS Initializer, but this component is now deprecated in UIMA Version 2.

CPE Configurator User's Guide 37

Selecting Component Descriptors

[ﬁ Coltection Processing Engine Configurator E@

Filk View Help

H@ Unstructured Information Management Architecture

CRe:

A Apache Incubator Praject.

Colection Reader

finahysis Engines [

(o) (=) (]

CAS Consumers |

(e) (=<)

— (D] n| = ‘

alzed

2.3. Selecting Component Descriptors

The CPE Configurator's main window is divided into three sections, one each for the Collection
Reader, Analysis Engines, and CAS Consumers.?

In each section of the CPE Configurator, you can select the component(s) you want to use by
browsing to (or typing the location of) their XML descriptors. Y ou must select a Collection Reader,
and at least one Analysis Engine or CAS Consumer.

When you select a descriptor, the configuration parameters that are defined in that descriptor will
then be displayed in the GUI; these can be modified to override the values present in the descriptor.

For example, the screen shot below shows the CPE Configurator after the following components
have been chosen:

exanpl es/ descriptors/col |l ecti onReader/Fi | eSyst enCol | ecti onReader . xni
exanpl es/ descri pt ors/ anal ysi s_engi ne/ NanesAndPer sonTi t | es_TAE. xnl
exanpl es/ descri pt ors/cas_consuner/ Xnm Wit er CasConsuner . xm

’Thereisalso afourth pane, for the CAS Initializer, but it is hidden by default. To enableit clickthe Vi ew — CAS I nitiali zer
Panel menuitem.

38 CPE Configurator User's Guide UIMA Version 3.1.0

Running a Collection Processing Engine

;| Collection Processing Engine Configurator E]T_E_J
Fie Wiew Help o
Eﬂ Unstructured Information Management Architecture

A Aneche monbator Project.

Colection Reader

Desortor: | RksysteralectionReader. il
Input Direchorys | o\ anache-uimal sxamplesidata

Encading:
Language:

Anzlysis Engines

[Ad:l... ” £]l B |

[*] Anoregate TAE - Mame Recoonizer and Parson Tithe Annotabor

CAS Carsumers

[aod.. |[=2 J[z= |

[3] i Wriber CAS Corsumer

Outpuk Direchonys o ipampiuimal_outpus

I @uu o

ritialzed

2.4. Running a Collection Processing Engine

After selecting each of the components and providing configuration settings, click the play
(forward arrow) button at the bottom of the screen to begin processing. A progress bar should

be displayed in the lower left corner. (Note that the progress bar will not begin to move until all
components have completed their initialization, which may take several seconds.) Once processing
has begun, the pause and stop buttons become enabl ed.

If an error occurs, you will be informed by an error dialog. If processing completes successfully,
you will be presented with a performance report.

2.5. The File Menu

The CPE Configurator's File Menu has the following options:

» Open CPE Descriptor
» Save CPE Descriptor
 Save Options (submenu)

 Refresh Descriptors from File System

UIMA Version 3.1.0 CPE Configurator User's Guide 39

TheHelp Menu

» Clear All
» Exit

Open CPE Descriptor will allow you to select a CPE Descriptor file from disk, and will read in
that CPE Descriptor and configure the GUI appropriately.

Save CPE Descriptor will create a CPE Descriptor file that defines the CPE you have constructed.
This CPE Descriptor will identify the components that constitute the CPE, aswell asthe
configuration settings you have specified for each of these components. Later, you can use “Open
CPE Descriptor” to restore the CPE Configurator to the state. Also, CPE Descriptors can be used to
easily run a CPE from a Java program — see UIMA Tutoria and Developers Guides Section 3.3.1,
“Running a CPE from a Descriptor” .

CPE Descriptors also allow specifying operational parameters, such as error handling options that
are not currently available for configuration through the CPE Configurator. For more information
on manually creating a CPE Descriptor, see UIMA References Chapter 3, Collection Processing
Engine Descriptor Reference.

The Save Options submenu has one item, "Use <import>". If thisitem is checked (the default),
saved CPE descriptors will use the <i npor t > syntax to refer to their component descriptors. If
unchecked, the older <i ncl ude> syntax will be used for new components that you add to your
CPE using the GUI. (However, if you open a CPE descriptor that used <import>, these imports will
not be replaced.)

Refresh Descriptorsfrom File System will reload all descriptors from disk. Thisis useful if you
have made a change to the descriptor outside of the CPE Configurator, and want to refresh the

display.
Clear All will reset the CPE Configurator to itsinitial state, with no components selected.

Exit will close the CPE Configurator. If you have unsaved changes, you will be prompted as to
whether you would like to save them to a CPE Descriptor file. If you do not save them, they will be
lost.

When you restart the CPE Configurator, it will automatically reload the last CPE descriptor file that
you were working with.

2.6. The Help Menu

The CPE Configurator's Help menu provides “ About” information and some very simple
instructions on how to use the tool.

40 CPE Configurator User's Guide UIMA Version 3.1.0

Chapter 3. Document Analyzer User's Guide

The Document Analyzer is atool provided by the UIMA SDK for testing annotators and AEs. It
reads text files from your disk, processes them using an AE, and allows you to view the results. The
Document Analyzer is designed to work with text files and cannot be used with Analysis Engines
that process other types of data.

For an introduction to devel oping annotators and Analysis Engines, read UIMA Tutorial and
Developers Guides Chapter 1, Annotator and Analysis Engine Developer's Guide. This chapter isa
user's guide for using the Document Analyzer tool, and does not describe the process of developing
annotators and Analysis Engines.

3.1. Starting the Document Analyzer

To run the Document Analyzer, execute the document Anal yzer script that isin the bi n directory
of your UIMA SDK installation, or, if you are using the example Eclipse project, execute the
“UIMA Document Analyzer” run configuration supplied with that project.

Note that if you're planning to run an Analysis Engine other than one of the examplesincluded in
the UIMA SDK, you'll first need to update your CLASSPATH environment variable to include the
classes needed by that Analysis Engine.

When you first run the Document Analyzer, you should see a screen that looks like this:

=

File Help

r"'\\ Unstructured
. LLJ Information Management

ks MO | 2rgnitestre

Input Directory: In::'I,apache—uima'l,examples'l,data Browse, ,

Input File Format: Ixmi VI [Lenient deserialization Character Encoding: [UTF-3

Dubput Directory: In::'I,apache—uima'I,examples'l,data'l,processed Browse, ,

il

Location of Analysis Engine XML Descriptor: Ic:Iapache-uima'l,examples'l,descriptors'l,analysis_engine'l,F‘ersonTitIeAnnotator.xml Browse. ,

#ML Taqg containing Text {optional): I

Language: Fn hi I

Run | Interactive | View |

3.2. Running an AE

TorunaAE, you must first configure the six fields on the main screen of the Document Analyzer.

Input Directory: Browse to or type the path of adirectory containing text files that you want to
analyze. Some sample documents are provided in the UIMA SDK under the exanpl es/ dat a
directory.

Input File Format: Set thisto "text". It can, aternatively, be set to one of the two serialized forms
for CASes, if you have previously generated and saved these. For the CAS formats only, you can
also specify "Lenient deserialization"; if checked, then extratypes and featuresin the CAS being

Document Analyzer User's Guide 41

Viewing the Analysis Results

deserialized and loaded (that are not defined by the Annotator-to-be-run's type system) will not
cause adeserialization error, but will instead be ignored.

Character Encoding: The character encoding of the input files. The default, UTF-8, also works
fine for ASCII text files. If you have a different encoding, select it here. For more information on
character sets and their names, see the Javadocsfor j ava. ni o. char set . Char set .

Output Directory: Browseto or type the path of a directory where you want output to be written.
(Aswelll seelater, you won't normally need to look directly at these files, but the Document
Analyzer needs to know where to write them.) The files written to this directory will be an XML
representation of the analyzed documents. If this directory doesn't exit, it will be created. If the
directory exists, any filesin it will be deleted (but the tool will ask you to confirm this before doing
s0). If you leave this field blank, your AE will be run but no output will be generated.

L ocation of AE XML Descriptor: Browse to or type the path of the descriptor for the AE that
you want to run. There are some example descriptors provided in the UIMA SDK under the
exanpl es/ descri pt ors/ anal ysi s_engi ne and exanpl es/ descri ptors/tutori al
directories.

XML Tag containing Text: Thisisan optiona feature. If you enter avalue here, it specifiesthe
name of an XML tag, expected to be found within the input documents, that contains the text to

be analyzed. For example, the value TEXT would cause the AE to only analyze the portion of the
document enclosed within <TEXT>...</TEXT> tags. Also, any XML tags occuring within that text
will be removed prior to analysis.

Language: Specify the language in which the documents are written. Some Analysis Engines, but
not al, require that this be set correctly in order to do their analysis. Y ou can select avaue from
the drop-down list or type your own. The value entered here must be an 1SO language identifier,
the list of which can be found here: http://www.ics.uci.edu/publietf/http/rel ated/i so639.txt.

Once you've filled in the appropriate values, press the “Run” button.

If an error occurs, adialog will appear with the error message. (A stack trace will aso be printed
to the console, which may help you if the error was generated by your own annotator code.)
Otherwise, an “Analysis Results” window will appear.

3.3. Viewing the Analysis Results

After a successful analysis, the “ Analysis Results” window will appear.

| Analysis Results

These are the Analyzed Documents.

Select viewver type ahd double-click file to open.
[#] IBM_LiteSciences txt

[#] Mewe_IBM_Fellows txd

@ SeminarChallengesinSpeechRecognition txt
@ TrainablelnformationExtractionSyatems tx
@ UIMASummerSchool 2003 fd

[#] Ui, _Seminars tx

@ WiatzonConferenceRooms txd

(% uzer colore (O HTML () XML

[Edit Style Map ” Performance Stats ” Cloze]

42 Document Analyzer User's Guide UIMA Version 3.1.0

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

Viewing the Analysis Results

The “Results Display Format” options at the bottom of this window show the different ways you
can view your analysis—the Java Viewer, Java Viewer (JV) with User Colors, HTML, and XML.
The default, Java Viewer, is recommended.

Once you have selected your desired Results Display Format, you can double-click on one of the
filesin thelist to view the analysis done on that file.

For the Java viewer, two different view modes are supported, each represented by one of two radio
buttons titled " Annnotations’, and " Features':

In the "Annotations" view, each annotation which is declared to be an output of the pipeline (in
the top most Annotator Descriptor) is given a checkbox and a color, in the bottom panel. Y ou
can control which annotations are shown by using the checkboxes in the bottom panel, the Select
All button, or the Deselet All button. The results display |ooks like this (for the AE descriptor
exanpl es/ descriptors/tutorial/ex4/ Meeti ngDet ect or TAE. xml):

ﬁ Annatation Results for UIMASummerSchool2003.tetxmi in Chau\tiuimaj-2.7.0\apache-uima-bin‘examples\data‘\processed @

UIMA Summer School 4 | [ClidkIn Text to See Annotation Detail
Annotations

August 26, 2003 L\\:

UIMA 101 - The New UIMA Introduction
(Hands-on Tutorial)

9:00AM-5:00PM in HAW GN-K35

m

August 28, 2003
FROST Tutorial
9:00AM-5:00PM in HAW GN-K35

September 15, 2003

UIMA 201: UIMA Advanced Topics
(Hands-on Tutorial)
9:00AM-5:00PM in HAW 1553

September 17, 2003

The UIMA System Integration Test and Hardening Service
The "SITH"

3:00PM-4:30PM in HAW GM-K35

UIMA Summer School Tutorial and Presentation Details
UIMA 101: The new UIMA tutorial
Tuesday August 26 9:00AM - 4:30PM in GN-K35 -

Annotation Types |

DateAnnat [] DocumentAnnota. .. Meeting RoomMNumber TimeAnnot

i (7) Features

[Select Al H Deselect All H Hide Unselected]

Y ou can click the mouse on one of the highlighted annotations to see alist of al its featuresin the
frame on the right.

In the "Features’ view, you can specify a combination of asingle type, asingle feature of that
type, and some feature values for that feature. The annotations whose feature values match will be
highlighted. Step by step, you first select a specific type of annotations by using aradio button in
thefirst tab of the legend.

UIMA Version 3.1.0 Document Analyzer User's Guide 43

Viewing the Analysis Results

fa ™
'ﬁ Annotation Results for UIMASummerSchool 2003 tetxmi in Chaultiuimaj-2.7.0\apache-uima-bint\examples\data\processed ﬁ

Click In Text to See Annotation Detail
|| | ® Annotations

»

UIMA Summer School

August 26, 2003

UIMA 101 - The New UIMA Introduction
(Hands-on Tutorial)

9:00AM-5:00PM in HAW GN-K35

m

August 28, 2003
FROST Tutorial —
(| 5:00AM-5:00PM in HAW GN-K35

September 15, 2003

UIMA 201: UIMA Advanced Topics
(Hands-on Tutorial)
9:00AM-5:00PM in HAW 15-F53

September 17, 2003

The UIMA System Integration Test and Hardening Service
The "SITH”

3:00PM-4:30PM in HAW GN-K35

UIMA Summer School Tutorial and Presentation Details
UIMA 101: The new UIMA tutorial
Tuesday August 26 :004M - 4:30PM in GN-K35 -

Annotation Types | Features | Feature Values

() DocumentAnnota... () Meeting (") RoomMumber () TimeAnnot
Mode: () Annotations (@) Features
[Select Al] [Deselect All] [Hide Unselected]
g 4

Selecting this automatically transitions to the second tab, where you then select a specific feature of
the annotation type.

' ™
ﬁ Annatation Results for UIMASummerSchool2003.tetxmi in Chau\tiuimaj-2.7.0\apache-uima-bin‘examples\data‘\processed ﬁ

UIMA Summer School » | [Click In Text to See Annotation Detail
|| | ® Annotations

August 26, 2003

UIMA 101 - The New UIMA Introduction
(Hands-on Tutorial)

9:00AM-5:00PM in HAW GN-K35

m

August 28, 2003
FROST Tutorial —
(| 5:00AM-5:00PM in HAW GN-K35

September 15, 2003

UIMA 201: UIMA Advanced Topics
(Hands-on Tutorial)
9:00AM-5:00PM in HAMas15-F53

September 17, 2003

The UIMA System Integration Test and Hardening Service
The "SITH"

3:00PM-4:30PM in HAW GN-K35

UIMA Summer School Tutorial and Presentation Details
| |UMA 101: The new UIMA tutorial
Tuesday August 26 $:004M - 4:30PM in GN-K35 -

Annotation Types | Features | Feature Values

s [end (@) shortDatesString
Mode: () Annotations (@) Features
[Select Al] [Deselect All] [Hide Unselected]
g 4

Selecting this again automatically transitions you to the thrid tab, where you select some specific
feature values in the third tab of the legend.

Document Analyzer User's Guide UIMA Version 3.1.0

Configuring the Annotation Viewer

'ﬁ Annotation Results for UIMASummerSchool 2003 tetxmi in Chaultiuimaj-2.7.0\apache-uima-bint\examples\data\processed l&]

Click In Text to See Annotation Detail
|| | ® Annotations

»

UIMA Summer School

August 26, 2003

UIMA 101 - The New UIMA Introduction
{Hands-on Tutorial)

9:00AM-5:00PM in HAW GN-K35

m

August 28, 2003
FROST Tutorial —
9:00AM-5:00PM in HAW GN-K35

September 15, 2003

UIMA 201: UIMA Advanced Topics
{Hands-on Tutorial)
9:00AM-5:00PM in HAW 15-F53

September 17, 2003

The UIMA System Integration Test and Hardening Service
The "SITH"

3:00PM-4:30PM in HAW GN-K35

UIMA Summer School Tutorial and Presentation Details
UIMA 101: The new UIMA tutorial
Tuesday August 26 3:004M - 4:30PM in GN-K35 -

| Annotation Types I Feamres| Feature Values |

8/26/03 E [Cl9/15/03 [9/17/03
Mode: () Annotations (@) Features
[Select Al] [Deselect All] [Hide Unselected]

In each of the above two view modes, you can click the mouse on one of the highlighted
annotations to see alist of al its features in the frame on the right.

If you are viewing a CAS that contains multiple subjects of analysis, then a selector will appear at
the bottom right of the Annotation Viewer window. Thiswill alow you to choose the Sofa that you
wish to view. Note that only text Sofas containing a non-null document are available for viewing.

3.4. Configuring the Annotation Viewer

The“JV User Colors’ and the HTML viewer allow you to specify exactly which colors are used
to display each of your annotation types. For the Java Viewer, you can also specify which types
should beinitialy selected, and you can hide types entirely.

To configure the viewer, click the “Edit Style Map” button on the “ Analysis Results’ dialog. You
should see adialog that looks like this:

o Stylo Map Editor %]
[epwars |[comspsens | -~ a1 & @ |
| bkt | Annctaton Lebel Anrctation Type | Fesbarn Backprourd Fooeground Checked Hidden [
|| & cinem o i sl Sokerizen Toker F—— ot dm a2l Bk BeRT e Smderce []
[Tdken ool o s 2 g ot Sl Wb O) —] [[0

[save] [comcel][_mesmt]

UIMA Version 3.1.0 Document Analyzer User's Guide 45

Interactive Mode

To change the color assigned to atype, simply click on the colored cell in the “ Background”
column for the type you wish to edit. Thiswill display adialog that allows you to choose the color.
For the HTML viewer only, you can also change the foreground color.

If you would like the type to be initially checked (selected) in the legend when the viewer isfirst
launched, check the box in the “ Checked” column. If you would like the type to never be shown in
the viewer, click the box in the “Hidden” column. These settings only affect the Java Viewer, not
the HTML view.

When you are done editing, click the “Save” button. Thiswill save your choicesto afilein the
same directory as your AE descriptor. From now on, when you view analysis results produced by
this AE using the “JV User Colors’ or “HTML” options, the viewer will be configured as you have
specified.

3.5. Interactive Mode

Interactive Mode allows you to analyze text that you type or cut-and-paste into the tool, rather than
requiring that the documents be stored asfiles.

In the main Document Analyzer window, you can invoke Interactive Mode by clicking the
“Interactive” button instead of the “Run” button. Thiswill display a dialog that looks like this:

-

ﬁ Annotation Input

Type or cut-and-paste in your text to be annotated. Then click on Analyze.

The quick brown fox jumps over the lazy dng.|

Results Display Format: @ JavaViewer | JVusercolors O HTML O XML

[Analyze ” Close]

Y ou can type or cut-and-paste your text into this window, then choose your Results Display Format
and click the “ Analyze” button. Y our AE will be run on the text that you supplied and the results
will be displayed as usual.

3.6. View Mode

If you have previously run a AE and saved its analysis results, you can use the Document
Analyzer's View mode to view those results, without re-running your analysis. To do this, on the

46 Document Analyzer User's Guide UIMA Version 3.1.0

View Mode

main Document Analyzer window simply select the location of your analyzed documentsin the
“Output Directory” dialog and click the “View” button. Y ou can then view your analysis results as
described in Section Section 3.3, “Viewing the Analysis Results’ [42].

UIMA Version 3.1.0 Document Analyzer User's Guide 47

Chapter 4. Annotation Viewer

The Annotation Viewer isatool for viewing analysis results that have been saved to your disk as
external XML representations of the CAS. These are saved in aparticular format called XMI. In the
UIMA SDK, XML versions of CA Ses can be generated by:

* Running the Document Analyzer (see Chapter 3, Document Analyzer User's Guide, which
saves an XML representations of the CAS to the specified output directory.

* Running a Collection Processing Engine that includes the XMI Writer CAS Consumer
(exanpl es/ descri pt ors/ cas_consuner/ Xm Wit er CasConsuner. xn).

» Explicitly creating XML representations of the CAS from your own application using the
org.apache.uima.cas.impl. XM | Serializer class. The best way to learn how to do thisisto
look at the example code for the XM1 Writer CAS Consumer, located in exanpl es/ src/
or g/ apache/ ui ma/ exanpl es/ xm / Xm Wit er CasConsuner. j ava.

Note: The Annotation Viewer only shows CAS views where the Sofa data type is a String.

Y ou can run the Annotation Viewer by executing the annot at i onVi ewer shell script located in
the bin directory of the UIMA SDK or the "UIMA Annotation Viewer" Eclipse run configuration
inthe ui maj - exanpl es project. Thiswill open the following window:

r'ﬁ Annotation Viewer g@

File Help

r“"-t Unstructured Information Management Architecture

\
. An Apache Incubator Project.
Input Direckary: | Criapache-uimalexamplesidatalprocessed

TypeSysten or AE Descriptor File: | Ziiapache-uimalexamplesidescriptorsanalysis_engineiPers | Browse.,

Select an input directory (which must contain XMl files), and the descriptor for the AE that
produced the Analysis (which is needed to get the type system for the analysis). Then press the
“View” button.

Thiswill bring up adialog where you can select a viewing format and double-click on a document
toview it. Thisdialog is the same as the one that is described in Section 3.3, “Viewing the Analysis
Results’.

IAn older form of a different XML format for the CAS is also provided mainly for backwards compatibility. This form
is called XCAS, and you can see examples of its use in exanpl es/ src/ or g/ apache/ ui na/ exanpl es/ cpe/
XCasW it er CasConsuner. j ava.

Annotation Viewer 49

Chapter 5. CAS Visual Debugger

5.1. Introduction

The CAS Visual Debugger isatool to run text analysis enginesin UIMA and view the results. The
tool isimplemented as a stand-alone GUI tool using Java's Swing library.

Thisisadeveloper'stool. It isintended to support you in writing text anaysis annotators for
UIMA (Unstructured Information Management Architecture). As adevelopment tool, the
emphasisis not so much on pretty pictures, but rather on navigability. It isintended to show you
all the information you need, and show it to you quickly (at |east on afast machine ;-).

The main purpose of this application isto let you browse all the data that was created when you ran
an analysis engine over some text. The display mimics the access methods you have in the CAS
APl interms of indexes, types, feature structures and feature values.

Asinthe CAS, there is special support for annotations. Clicking on an annotation will select the
corresponding text, and conversely, you can display al annotations that cover a given position in
the text. Thiswill be explained in more detail in the section on the main display area.

As usual, the graphicsin this manual are for illustrative purposes and may not look 100% like the
actual version of CVD you are running. This depends on your operating system, your version of
Java, and avariety of other factors.

5.1.1.

Running CVD

Y ou will usually want to start CVD from the command line, or from Eclipse. To start CVD from
the command line, you minimally need the uima-core and uima-tools jars. Below isasample
command line for sh and its offspring.

java -cp ${U MA HOVE}/ Il i b/ ui ma-core.jar: ${U MA HOVE}/ | i b/ ui ma-tool s.jar
or g. apache. ui ma. t ool s. cvd. CVD

However, there is no need to type this. The ${ UIMA_HOME} /bin directory contains a cvd.sh and
cvd.bat file for Unix/Linux/MacOS and Windows, respectively.

In Eclipse, you have aready to use launch configuration available when you have installed the
UIMA sample project (see UIMA Overview & SDK Setup Section 3.2, “ Setting up Eclipse to
view Example Code”). Below is a screenshot of the the Eclipse Run dialog with the CVD run
configuration selected.

CAS Visua Debugger 51

Command line parameters

Create, manage, and run configurations ;—..

Run a Java application

- —+i
9-5*:_—b|'

type filter text

Mame: | UIMA CAS Visual Debugger

{3 Main . 0= Arguments | =}, JRE “; Classpath E,y Source | 2
='.= Edlipse Application Project:
‘CE' Equinox OSGi Framework

4 Java Applet uimaj-examples

23] Java Application

O cvo Main dass:

i ,UIMA Annatation Viewer . org.apache.uima. tools.annot_view. Gladis
1 {UIMA CAS Visual Debuager:

31 UIMA CPE GUI []indude libraries when searching for a main dass

7] UMA Document Analyzer [Jindude inherited mains when searching for a main dass

4] UIMA ICasGen D Stop in main

3] UIMA JCasGen Merge
37 UIMA PEAR Installer

5.1.2. Command line parameters

Y ou can provide some command line parameters to influence the startup behavior of CVD.
For example, if you want to run a certain analysis engine on a certain text over and over again
(for debugging, say), you can make CVD load the annotator and text at startup and execute the
annotator. Here's alist of the supported command line options.

Table 5.1. Command line options

Option Description

-text <textFile> Loadsthetext file<t ext Fi | e>

-desc <descriptorFile> Loads the descriptor <descri pt or Fi | e>

- exec Runs the pre-loaded annotator; only allowed in
conjunction with - desc

- dat apat h <dat apat h> Sets the data path to <dat apat h>

-ini <iniFile> Makes CVD use alternative ini file

<t ext Fi | e> (default is ~/annotViewer.pref)

-| ookandfeel <Infd ass> Uses alternative look-and-feel <l nf Gl ass>

5.2. Error Handling

On encountering an error, CVD will pop up an error dialog with a short, usually incomprehensible
message. Often, the error message will claim that there is more information available in the log
file, and sometimes, thisis actually true; so do go and check the log. Y ou can view thelog file by
selecting the appropriate item in the "Tools' menu.

52 CAS Visua Debugger UIMA Version 3.1.0

Preferences File

Exception

® org.apache.uima.analysis_engine.AnalysisEngineProcessException
More detailed information is in the log file.

OK

5.3. Preferences File

The program will attempt to read on startup and save on exit afile called annotViewer.pref in
your home directory. This file contains information about choices you made while running the
program: directories (such as where your data files are) and window sizes. These settings will

be used the next time you use the program. There is no user control over this process, but thefile
format is reasonably transparent, in case you feel like changing it. Note, however, that the file will
be overwritten every time you exit the program.

If you use CVD for severa projects, it may be convenient to use a different ini filesfor each
project. You can specify theini file CVD should use with the

-ini <iniFile>

parameter on the command line.

5.4. The Menus

We give a brief description of the various menus. All menu items come with mnemonics (e.g., Alt-
F X will exit the program). In addition, some menu items have their own keyboard accel erators that
you can use anywhere in the program. For example, Ctrl-S will save the text you've been editing.

5.4.1. The File Menu

The File menu lets you load, create and save text, load and save color settings, and import and
export the XCAS format. Here's a screenshot.

UIMA Version 3.1.0 CAS Visua Debugger 53

The File Menu

CAS Visual Debugger (CVD)
file | Edit Run Tools Help

New Text...

Open Text File

Save Text As...

Code Page [
Recently used ... b

Load Color Settings
Sawve Color Settings

Read Type System File

Exit

Below isalist of the menu items, together with an explanation.

* New Text... Clearsthetext area. Text you typeiswritten to an anonymous buffer. You
can use "Save Text As..." to save the text you typed to afile. Note: whenever you modify
the text, be it through typing, loading afile or using the "New Text..." menu item, previous
analysis results will be lost. Since the previous analysisis specific to the text, modifying the
text invalidates the analysis.

* Open Text File. Loadsanew text fileinto the viewer. The next time you run an anaysis
engine, it will run the text you loaded last. Depending on the annotator you're using, the
program may run slow with very large text files, so you may want to experiment.

» SaveText File. Savesthe currently open text file. If nofileis currently loaded (either
because you haven't loaded afile, or you've used the "New Text..." menu item), this menu
item is disabled (and Ctrl-Swill do nothing).

» SaveText As.. Savethetextto afile of your choosing. This can be an existing file,
which is then overwritten, or it can be a new file that you're creating.

* ChangeCodePage. Allowsyou to change the code page that is used to load and save
text files. If you're sure the text you're loading isin ASCII or one of the 8-bit extensions such
as 1S0O-8859-1 (I1SO Latinl), there is probably nothing you need to do. Just load the text and
look at the display. If you see no funny characters or square boxes, chances are your selected
code page is compatible with your text file. Note that the code page setting is also in effect
when you save files. Y ou can observe the effects with a hex editor or by just looking at the
file size. For example, if you savethe default text This is where the text goes. toa
file on Windows using the default code page, the size of the file will be 28 bytes. If you now
change the code page to UTF-16 and save the file again, the file size will be 58 bytes: two
bytes for each character, plus two bytes for the byte-order mark. Now switch the code page
back to the default Windows code page and reload the UTF-16 file to see the difference in

CAS Visua Debugger UIMA Version 3.1.0

The Edit Menu

the editor. CVD will display all code pages that are available in the VM you're running it
on. Thefirst code page in thelist is the default code page of your system. Thisisaso CVD's
default if you don't make a specific choice. Y our code page selection will be remembered in
CVD'sini file.

Load Color Settings. Load previously saved color settings from afile (see Tools/
Customize Annotation Display). It ishighly recommended that you only load automatically
generated files. Strange things may happen if you try to load the wrong file format. On
startup, the program attempts to load the last color settings file that you loaded or saved
during a previous session. If you intend to use the same color settings as the last time you
ran the program, there is therefore no need to manually load a color settingsfile.

Save Color Settings. Save your customized color settings (see Tools/Customize
Annotation Display). ThefileisaJava propertiesfile, and as such, reasonably transparent.

What is not transparent is the encoding of the colors (integer encoding of 24-bit RGB
values), so changing the file by hand is not really recommended.

Read Type System File. Load atype system file. Thisalows you to load an XCASfile
without having to have access to the corresponding annotator.

Write Type System File. Create atype system file from the currently loaded type
definitions. In addition, you can save the current CAS as a XCASfile (see below). This
allowsyou to later load the type system and XCAS to view the CAS without having to rerun
the annotator.

Read XM| CASFile. Read an XMI CASfile. Important: XMI CASisaseridization
format that serializes a CAS without type system and index information. It is therefore
impossible to read in a stand-alone XMI CASfile. XMI CASfiles can only beinterpreted
in the context of an existing type system. Consequently, you need to first load the Analysis
Engine that was used to create the XM file, to be ableto load that XM file.

Write XM CASFile. Writesthe current analysis out asan XMI CASfile.

Read XCASFile. Read an XCASfile. Important: XCAS is a serialization format that
serializes a CAS without type system and index information. It is therefore impossible to
read in a stand-alone X CAS file. XCAS files can only be interpreted in the context of an
existing type system. Consequently, you need to load the Analysis Engine that was used to
create the XCASfileto be ableto load it. Loading a X CAS file without loading the Analysis
Engine may produce strange errors. Y ou may get syntax errors on loading the XCASfile, or
worse, everything may appear to go smoothly but in reality your CAS may be corrupted.

Write XCASFile. Writesthe current analysis out as an XCASfile.

Exit. Exitsthe program. Y our preferences will be saved.

5.4.2. The Edit Menu

File

Edit | Run To

Anal undo cuiz

CAH

Cut

Copy
Paste Ctrl-\

UIMA Version 3.1.0 CAS Visua Debugger 55

The Run Menu

The "Edit" menu provides a standard text editing menu with Cut, Copy and Paste, aswell as
unlimited Undo.

Note that standard keyboard accelerators Ctrl-X, Ctrl-C, Ctrl-V and Ctrl-Z can be used for Cut,
Copy, Paste and Undo, respectively. The text area supports other standard keyboard operations
such as navigation HOME, Ctrl-HOME etc., as well as marking text with Shift- <ArrowKey>.

5.4.3. The Run Menu

File

rAnalysis K | pad AE Chrl-L

Edit | Run | Tools Help

CAS Indey Run HmmTagger TAE Ctrl-R
e Sofaln -
o= Annot

Run collectionProcessComplete

Recently used ...]
Language]
Set data path

In the Run menu, you can load and run text analysis engines.

Load AE. Loadsand initializes atext analysis engine. Choosing this menu item will
display afile open dialog where you should choose an XML descriptor of a Text Analysis
Engine to process the current text. Even if the analysis engine runs fast, this will take a
while, since thereisalot of setup work to do when anew TAE iscreated. So be patient.
When you develop a new annotator, you will often need to recompile your code. Gladis will
not reload your annotator code. When you recompile your code, you need to terminate the
GUI and restart it. If you only make changes to the XML descriptor, you don't need to restart
the GUI. Simply reload the XML file.

Run AE. Before you have (successfully) loaded a TAE, this menu item will be disabled.
After you have loaded a TAE, it will be enabled, and the name changes according to the
name of the TAE you have loaded. For example, if you've loaded "The World's Fastest
Parser", you will have amenu item called "Run The World's Fastest Parser”. When you
choose the item, the TAE is run on whatever text you have currently loaded. After aTAE
has run successfully, the index window in the upper left-hand corner of the screen should be
updated and show the indexes that were created by this run. We will have more to say about
indexes and what to do with them later.

Run AE on CAS. Thisalowsyou to run an analysis engine on the current CAS. Thisis
useful if you have loaded a CAS from an XCASfile, and would like to run further analysis
onit.

Run collectionProcessComplete. When you select thisitem, the analysis engine's
collectionProcessComplete() method is called.

Performance Report. After you've run your analysis, you can view a performance
report. It will show you where the time went: which component used how much of the
processing time.

56

CAS Visua Debugger UIMA Version 3.1.0

The tools menu

* Recentlyused. Collectsalist of recently used analysis engines as a short-cut for loading.

* Language. Some annotators do language specific processing. For example, if you
run lexical analysis, the results may be quite different depending on what the analysis
engine thinks the language of the document is. With this menu item, you can manually set
the document language. Alternatively, you can use an automatic language identification

annotator. If the analysis engines you're working with are language agnostic, there is no need

to set the language.

5.4.4. The tools menu

The tools menu contains some assorted utilities, such asthe log file viewer. Here you can also set
thelog level for UIMA. A more detailed description of some of the menu items follows below.

5.4.4.1. View Type System

Options

uima.cas.Long
uima.cas.Double
uima.cas.5ofa

¢ uima.cas.AnnotationBase

[»

¥ uimatcas Annotation | f¢

uima.tcas.Documents
example EmailAddres

Example.PersonTitle| =

example. Mame
arg.apache.uima.exa

org.apache.dima.exal« §§

|Feature

Value Type

Defined On

‘sofa

uima.cas.5ofa

uima.cas. Annotation...

hegin |uima.cas.Integer uima.tcas. Annotation
§§ end uima.cas.Integer uima.tcas.Annotation
|Kind example PersonTitlekind [example PersonTitle

q| Il | [b

Brings up a new window that displays the type system. This menu item is disabled until the first
time you have run an analysis engine, since there is no type system to display until then. An

exampleis shown above.

Y ou can view the inheritance tree on the left by expanding and collapsing nodes. When you select
atype, the features defined on that type are displayed in the table on the right. The feature table has
three columns. Thefirst gives the name of the feature, the second one the type of the feature (i.e.,

what values it takes), and the third column displays the highest type this feature is defined on. In
this example, the features "begin" and "end" are inherited from the built-in annotation type.

In the options menu, you can configure if you want to see inherited features or not (not yet

implemented).

UIMA Version 3.1.0

CAS Visua Debugger

57

The Main Display Area

5.4.4.2. Show Selected Annotations

& AnnotationIndex - nlu.ne.NamedEntity [= IEIIﬂ

While the House and Senate intelligence aversight committee have received classified e
information about planned covert operations against , the C.LA. has nottald
lawmakers how the agency and the Bush administration see those aperations fitting into
the larger war on , or the global war on terrorism, Congressional officials said.

"WWhat they haven'ttold us is how does the intelligence piece fit into the larger offensive
against, ar how dao these exdra demands on our intelligence capabilities effect aur
commitment to the war on terrorism in SEEEREER," said one official.

Congressional leaders complained that they have heen leftin the dark on how the
intelligence cammunity will he used just as they are about to debate a resolution to
supportwar with [En.

Congressional leaders said the decision to fight the Congressional request may stem
from a fear of exposing divisions within the intelligence community over the
administration's strategy, perhaps including a debate between the agency and the
Pentagon over the military's role in intelligence operations in .

Giely; Donald H. Rumsfeld has been moving ta strengthen his contral over
the military's intelligence apparatus, potentially setting up a turfwar for dominance among ||
American intelligence officials. Mr. Rumsfeld has also been pushing to expand the rale of |

Figure5.1. Annotations produced by a statistical named entity tagger

To enable this menu, you must have run an analysis engine and selected the ~* Annotationlndex" or
one of its subnodes in the upper left hand corncer of the screen. It will bring up a new text window
with al selected annotations marked up in the text.

Figure 5.1, “ Annotations produced by a statistical named entity tagger ” [58] shows the results

of applying a statistical named entity tagger to a newspaper article. Some annotation colors have
been customized: countries are in reverse video, organizations have a turquois background, person
names are green, and occupations have a maroon background. The default background color
isyellow. Thiscolor isalso used if there is more than one annotation spanning a certain text.
Clearly, thisdisplay isonly useful if you don't have any overlapping annotations, or at least not too
many.

This menu item is also available as a context menu in the Index Tree area of the main window.

To useit, select the annotation index or one of its subnodes, right-click to bring up a popup menu,
and select the only item in the popup menu. The popup menu is actually a better way to invoke the
annotation display, since it changes according to the selection in the Index Tree area, and will tell
you if what you've selected can be displayed or not.

5.5. The Main Display Area

The main display area has three sub-areas. In the upper |eft-hand corner is the index display,
which shows the indexes that were defined in the AE, as well as the types of the indexes and their
subtypes. In the lower left-hand corner, the content of indexes and sub-indexesis displayed (FS
display). Clicking on any node in the index display will show the corresponding feature structures
inthe FSdisplay. Y ou can explore those structures by expanding the tree nodes. When you click
on anode that represents an annotation, clicking on it will cause the corresponding text span to
marked in the text display.

58

CAS Visua Debugger UIMA Version 3.1.0

The Main Display Area

File Edit Bun Tools Help
rAnalysis Results

CAS Index Repository
o= Sofalndex [0]
o= Annotationindex [443]

Annotationindex - uima.tcas.An
¢ [0..99]
o= [0]=uimaicas.Docume
o= [1]=org.apache.uima.s
o= [2] = org.apache.uima.s
o= [3]= org.apache.uima.e
9 [4]= example Name|
o= s0fz = uima.cas.5ol
begin=12
and=2
= [5] = org.apache.uima.s
o= [6] = org.apache.uima.g =
4] i | []

L] »

rClicode\ApacheUIMAwimaj-examples'srcimain'data‘\Apache]

Welcome to Apache LIMA {Unstructured Information
Management Architecture), a incubator project of the
Apache Software Foundation (ASF).

Qur goal is a thriving community of users and
developers of UIMA frameworks, supporting
components far analysing unstructured content such as
text, audio and video.

What is LIMA?

nstructured Information Management applications are
software systems that analyze large volumes of
unstructured information in arder to discover knowledge
that is relevantto an end user.

LIIMA s a framework and SDK for developing such
applications. An example LIM application might ingest
plain text and identify entities, such as persons, places,
arganizations; or relations, such as works-for or
located-at.

UIMA enables such an application to be decomposed
into components, for example "language identification”
-="language specific segmentation” -= "sentence

boundary detection” -= "entity detection (personiplace

F Y

-

I[1 3:30:13] Done running AE Aggregate TAE - Tokenizer, Mame Recog |UIMA_AnaIysis_ |n: 12

L - L

-

Figure 5.2. Sate of GUI after running an analysis engine

Figure 5.2, “ State of GUI after running an analysis engine” [59] shows the state after running

the UIMA_Analysis Example.xml aggregate from the uimaj-examples project. There are two
indexesin the index display, and the annotation index has been selected. Note that the number of
structuresin an index is displayed in square brackets after the index name.

Since displaying thousands of sister nodes is both confusing and slow, nodes are grouped in powers
of 10. Assoon asthere are no more than 100 sister nodes, they are displayed next to each other.

In our example, a name annotation has been selected, and the corresponding token text is
highlighted in the text area. We have also expanded the token node to display its structure (not

much to seein this simple example).

In Figure 5.2, “ State of GUI after running an analysis engine” [59], we selected an annotation
in the FS display to find the corresponding text. We can also do the reverse and find out what
annotations cover acertain point in the text. Let's go back to the name recognizer for an example.

UIMA Version 3.1.0

CAS Visua Debugger

59

The Main Display Area

File Edit Bun Tools Help
-rAnalysis Results ——— [Cicode\ApacheUIMA wimaj-examples'src\imain'data\Apache]

o= Sofalndex [0]
o= Annotationindex [443]

CAS Index Repository with some support for Perl, Python and TCL. -

Apache UIMA mailing lists:

lUsers - uima-usergincubatar.apache.arg
Developers - uima-devi@incubator.apache.org
Commits - uima-commits@incubator.apache.org

Annotationindex - uima.tcas AnL2f| ||| Apache LIMA project committers:
¢ [0..99] =
o= [0] = uimatcas.Docume Michael Baessler
o= [1]=org.apache.uima.s —
& [2] = org.apache.uima.g Position: 2267
o= [3]= org.apache.uima.e [0] = uima.tcas.DocumentAnnotation
- [4]= example.Name [371] = org.apache.uima.examples.tokenizer.Sentence
o= [5] = arg.apache.uima.e
o [6] = arg.apache.uima.e el T EETLE T
o= [7] = org.apache.uima.s [403] = org.apache.uima.examples.tokenizer.Token
o= [8] = example.Mame
o= 4] = Drg.apache.uima.ez ken Coar (ASF member and Vice President)

4] l | [] Sam Ruby (ASF member)

-

I[1 3:30:13] Done running AE Agagregate TAE - Tokenizer, Mame Recogn |UIMA_AnaIysis_ |r: 2267

Figure 5.3. Finding annotations for a specific location in the text

We would like to know if the Michael Baessler has been recognized as aname. So we position
the cursor in the corresponding text span somewhere, then right-click to bring up the context menu
telling us which annotations exist at this point. An example is shownin Figure 5.3, “ Finding

annotations for a specific location in the text ” [60].

60

CAS Visua Debugger

UIMA Version 3.1.0

The Status Bar

File Edit Bun Tools Help
rAnalysis Results

CAS Index Repository
o= Sofalndex [0]
o= Annotationindex [443]

o= [94] = arg.apache.uimal =
o= [§5] = org.apache.uima
©= [968] = org.apache.uima
o= [97] = arg.apache.uima
o= [§8] = org.apache.uima
©= [99] = org.apache.uima

o= (1001584

o= [200..284)

o= [300..394)

©= [400] = arg.apache.uima.ex

o= [401] = org.apache.uima.ex

o= [402] = example.Mame

4] ll | []

[4]

B[(=1[ES

with some support for Perl, Python and TCL.

Apache UIMA mailing lists:

lUsers - uima-usergincubatar.apache.arg
Developers - uima-devi@incubator.apache.org
Commits - uima-commits@incubator.apache.org

Apache UIMA project committers:

Michael Baessled
Edward Epstein
Thilo Goetz
Adam Lally
Marshall Schor

Apache LIMA project Mentars:

ken Coar (ASF member and Vice President)
Sam Ruby (ASF member)

rClicode\ApacheUIMAwimaj-examples'srcimain'data‘\Apache]

F Y

I[1 3:30:13] Done running AE Agaregate TAE - Tokenizer, Mame Reo |UIMA_AnaIysis_ |22 7-22

il | [N

Figure 5.4. Selecting an annotation from the context
menu will highlight that annotation in the FSdisplay

At this point (Figure 5.3, “ Finding annotations for a specific location in the text ” [60]),
we only know that somewhere around the text cursor position (not visible in the picture), we
discovered a name. When we select the corresponding entry in the context menu, the name

annotation is selected in the FS display, and its covered text is highlighted. Figure 5.4, “ Selecting

an annotation from the context menu will highlight that annotation in the FS display " [61]

shows the display after the name node has been selected in the popup menu.

We're glad to see that, indeed, Michael Baessler is considered to be aname. Notethat in the FS
display, the corresponding annotation node has been selected, and the tree has been expanded to

make the node visible.

NB that the annotations displayed in the popup menu come from the annotations currently
displayed in the FS display. If you didn't select the annotation index or one of its sub-nodes, no

annotations can be displayed and the popup menu will be empty.

5.5.1. The Status Bar

At the bottom of the screen, some useful information is displayed in the status bar. The left-
most area shows the most recent major event, with the time when the event terminated in square

brackets. The next area shows the file name of the currently loaded XML descriptor. This area
supports atool tip that will show the full path to the file. The right-most area shows the current

cursor position, or the extent of the selection, if a portion of the text has been selected. The

numbers correspond to the character offsets that are used for annotations.

UIMA Version 3.1.0

CAS Visua Debugger

61

Keyboard Navigation and Shortcuts

5.5.2. Keyboard Navigation and Shortcuts

The GUI can be completely navigated and operated through the keyboard. All menus and menu
items support keyboard mnemonics, and some common operations are accessible through keyboard

accelerators.

Y ou can move the focus between the three main areas using Tab (clockwise) and Shi ft - Tab
(counterclockwise). When the focus is on the text area, the Tab key will insert the corresponding
character into the text, so you will needtouseCtrl - Taband Ct r | - Shi f t - Tab instead.
Alternatively, you can use the following key bindings to jump directly to one of theareas. Ctrl - T
tofocusthetext area, Ctr | - 1 for theindex repository frameand Ct r | - F for the feature structure

area.

Some additional keyboard shortcuts are available only in thetext area, suchasCt r | - X for Cut,
Crl-CforCopy, Ctrl-VforPasteand Ct r | - Z for Undo. The context menu in the text area can
be evoke through the Al t - Ent er shortcut. Text can be selected using the arrow keys while holding

the Shift key.

The following table shows the supported keyboard shortcuts.

Table 5.2. Keyboard shortcuts

Shortcut Action Scope
arl-0 Open text file Global
arl-S Savetext file Global
arl-L Load AE descriptor Global
arl-R Run current AE Global
crl-1 Switc_h focus to index Global
repository
arl-T Switch focus to text area Global
Crl-F Switch focus to FS area Global
Crl-X Cut selection Text
arl-C Copy selection Text
arl-v Paste selection Text
arl-z Undo Text
Al t-Enter Show context menu Text

CAS Visua Debugger

UIMA Version 3.1.0

Chapter 6. Eclipse Analysis Engine Launcher's
Guide

The Analysis Engine Launcher is an Eclipse plug-in that provides debug and run support for
Analysis Engines directly within eclipse, like a Java program can be debugged. It supports most of
the descriptor formats except CPE, UIMA AS and some remote deployment descriptors.

Main =i JRE | 7 Classpath EEnwronmem El Commeon

Project:

Tesy (Browse ...)

Descriptor

F ~
desc.xml Browse ...

Input Resource:

r ~
inputDir Browse ...

M Recursively, read all files under each directory

Input Format:

() CASes (XMI or XCAS format

@ Plain Text, encoding: | UTF-8 3

Output Folder:

N r A
outDir Browse ...

E Clear the output folder

6.1. Creating an Analysis Engine launch
configuration

To debug or run an Analysis Engine alaunch configuration must be created. To do this select "Run
-> Run Configurations' or "Run -> Run Configurations' from the menu bar. A dialog will open
where the launch configuration can be created. Select UIMA Analysis Engine and create a new
configuration via pressing the New button at the top, or viathe New button in the context menu.
The newly created configuration will be automatically selected and the Main tab will be displayed.

The Main tab defines the Analysis Engine which will be launched. First select the project which
contains the descriptor, then choose a descriptor and select the input. The input can either be a
folder which contains input files or just asingle input file, if the recursively check box is marked
the input folder will be scanned recursively for input files.

The input format defines the format of the input files, if it is set to CA Sesthe input resource
must be either in the XMI or XCAS format and if it is set to plain text, plain text input filesin
the specified encoding are expected. The input logic filters out all files which do not have an
appropriate file ending, depending on the chosen format the file ending must be one of .xcas, .xmi
or .txt, all other files are ignored when the input isafolder, if asingle fileis selected it will be
processed independent of the file ending.

The output directory isoptional, if set all processed input fileswill be written to the specified
directory in the XMI CAS format, if the clear check box is marked all filesinside the output folder
will be deleted, usually this option is not needed because existing files will be overwritten without
notice.

Eclipse Analysis Engine Launcher's Guide 63

Launching an Analysis Engine

The other tabs in the launch configuration are documented in the eclipse documentation, see the
"Java development user guide -> Tasks -> Running and Debugging".

6.2. Launching an Analysis Engine

To launch an Analysis Engine go to the previously created launch configuration and click on
"Debug" or "Run" depending on the desired run mode. The Analysis Engine will now be launched.
The output will be shown in the Console View. To debug an Analysis Engine place breakpoints
inside the implementation class. If abreakpoint is hit the execution will pause like in a Java
program.

64 Eclipse Analysis Engine Launcher's Guide UIMA Version 3.1.0

Chapter 7. Cas Editor User's Guide
7.1. Introduction

The CAS Editor is an Eclipse based annotation tool which supports manual and automatic
annotation (viarunning UIMA annotators) of CASes stored in files. Currently only text-based
CAS are supported. The CAS Editor can visualize and edit al feature structures. Feature Structures
which are annotations can additionally be viewed and edited directly on text.

e) Cas Editor - Java/demao2.xmi - Eclipse SDK
[Qe | ¥ . .) & Cas Edwor
(& Corpus Explorer | | demo2.xmi £ 2= owttine ([l FeatureStructure View
- In o speech in Cleveland on Wednesday, Wr, DB will olso make @ cose for the -
o test package of roughly S188 billion in expanded business tox cuts and infrostructure
e spending disclosed by the Whike House in bits ond pieces over the past few doys Tem
 tesis ARnGLation
Organization
White House
PRrsON
Obama
() ea w ¢) edie view a
Featu Valu F {l
[Anroration Seyles
Type Style
Documentinnotation BRACKET
[# Organization BACKCROUND
i+ Parsan
= Amnataticn SOUIGGLES

7.2. Launching the Cas Editor

To open aCAS in the Cas Editor it needs a compatible type system and styling information which
specify how to display the types. The styling information is created automatically by the Cas
Editor; but the type system file must be provided by the user.

A CASinthe xmi or xcas format can smply be opened by clicking on it, like atext file is opened
with the Eclipse text editor.

7.2.1. Specifying atype system
The Cas Editor expects atype system file at the root of the project named TypeSystem.xml. If a
type system cannot be found, this message is shown:
Q- | -]85 o
| demoz.xmi 2

Cannot find type system!
Please place a valid type system in this path:
fUsers [joern/dev/uima/runtime-EclipseApplication flava/ TypeSystem.xml

f_ Choose Type System ... _\/

Cas Editor User's Guide 65

Annotation editor

If the type system file does not exist in this location you can point the Cas Editor to a specific
type system file. Y ou can aso change the default type system location in the properties page of
the Eclipse project. To do that right click the project, select Properties and go to the UIMA Type
System tab, and specify the default location for the type system file.

After the Cas Editor is opened switch to the Cas Editor Perspective to see al the Cas Editor related
views.

7.3. Annotation editor

The annotation editor shows the text with annotations and provides different views to show aspects
of the CAS.

7.3.1.

Editor

After the editor is open it shows the default sofa of the CAS. (Displaying another sofais right now
not possible.) The editor has an associated, changeable CAS Type. Thistypeis called the editor
"mode". By default the editor only shows annotation of thistype. Actions and views are sensitive to
this mode. The next screen shows the display, where the mode is set to "Person™:

| demo.xmi 52

In a speech in Cleveland on Wednesday, Mr. Obama will also make a case for the
package of roughly $18@ billion in expanded business tax cuts and infrastructure
spending disclosed by the White House in bits and pieces over the past few days.

To change the mode for the editor, use the "Mode" menu in the editor context menu. To open the
context menu right click somewhere on the text.

PR IRA e TR AR -

Annotate {r+
Quick Annotate 2
Delete Annotation
Annotation

Show Annotations [2 DocumentAnnotation
- Organization

f3 <4 [Edit View i3
Feature Value

The current mode is displayed in the status line at the bottom and in the Style View.

It's possible to work with more than one annotation type at atime; the mode just selects the default
annotation type which can be marked with the fewest keystrokes. To show annotations of other
types, use the "Show" menu in the context menu.

66

Cas Editor User's Guide UIMA Version 3.1.0

Editor

TR TR R LWL PR

Quick Annotate -
Delete Annotation 3
Mode (2

Show Annotations [2 Annotation

DocumentAnnotation
+ Organization
= v Person

B 4 [l Edit view =

Feature Value @ :

Alternatively, you may select the annotation types to be shown in the Style View.

@ Annotation 5tyles %

' Type Style |
"] DocumentAnnotation BRACKET

¥ Organization BACKGROUND

=] Person BACKGROUND

¥ Annotation TOKEN

The editor will show the additional selected types.
[] demo.xmi 52

In a speech in Cleveland on Wednesday, Mr. Obama will also make a case for the
package of roughly $18@ billion in expanded business tax cuts and infrastructure
spending disclosed by the White House in bits and pieces over the past few dayi

The annotation renderer and rendering layer can be changed in the Properties dialog. After the
change all editors which share the same type system will be updated.

The editor automatically selects annotations of the editor mode type that are near the cursor. This

selection is then synchronized or displayed in other views.

To create an annotation manually using the editor, mark a piece of text and then press the enter

key. This creates an annotation of the type of the editor mode, having bounds corresponding to the

selection. Y ou can also use the "Quick Annotate" action from the context menu.

It is aso possible to choose the annotation type; press shift + enter (smart insert) or click on
"Annotate”" in the context menu for this. A dialog will ask for the annotation type to create; either

select the desired type or use the associated key shortcut. In the screen shot below, pressing the "p"

key will create a Person annotation for "Obama.

UIMA Version 3.1.0 Cas Editor User's Guide

67

Configure annotation styling

d on Wednesday, Mr. Obama will also make a case for the
billion in exprndad husinace dav rcoke and infrastructure
he White House v past few days.

[d] DocumentAnnotation
[o] Organization
[p] Person

To delete an annotation, select it and press the delete key. Only annotations of the editor mode can
be deleted with this method. To delete non-editor mode annotations use the Outline View.

For annotation projects you can change the font size in the editor. The default font sizeis 13. To
change this open the Eclipse preference dialog, go to "UIMA Annotation Editor".

7.3.2. Configure annotation styling

The Cas Editor can visualize the annotations in multiple highlighting colors and with different
annotation drawing styles. The annotation styling is defined per type system. When its changed, the
appearance changes in all opened editors sharing a type system.

The styling isinitialized with a unique color for every annotation type and every annotation
is drawn with Squiggles annotation style. Y ou may adjust the annotation styles and coloring

depending on the project needs.

@ Annotation 5tyles “1‘%
' Type Style '

| DocumentAnnotation BRACKET

¥ Organization BACKGROUND

v S

[=] Annotation SQUICGLES

The Cas Editor offers a property page to edit the styling. To open this property page click on the
"Properties" button in the Styles view.

The property page can be seen below. By clicking on one of the annotation types, the color,
drawing style and drawing layer can be edited on the right side.

68 Cas Editor User's Guide UIMA Version 3.1.0

Configure annotation styling

Preferences

Styles Styles

Annotation types:

Type Layer
uima.tcas.DocumentAnnotation]
uima.sample.Organization
uima.sample.Person
uima.tcas.Annotation

Lo Qe o |

style: | BACKGROUND =]
ra Y
Color: (1)

"y
s

Move layer up

Maowve layer down

(" Restore Defaults

:: :i Apply ::

"\ =
Cancel] L OK

The annotations can be visualized with one the following annotation stlyes:

Table 7.1. Syle Table

Style Sample

Description

BACKGROUND Mr. Obama

The background isdrawn in
the annotation color.

TEXT_COLOR Mr.

Thetext isdrawn in the
annotation color.

TOKEN Mr. Obama

The token type assumes that
token annotation are aways
separated by awhitespace.
Only if they are not separated
by awhitespace avertical line
is drawn to display the two
token annotations. The image
on the left actually contains
three annotations, one for
"Mr","." and "Obama".

SQUIGGLES Mr. Obama

Squiggles are drawen
under the annotation in the
annotation color.

BOX Mr. Dboma

A box in the annotation
color is drawn around the
annotation.

UNDERLINE Mr. Obama

A linein the annotation
color is drawen below the
annotation.

UIMA Version 3.1.0 Cas Editor User's Guide

69

CAS view support

Style Sample Description

BRACKET Mr. Obama An opening bracket is drawn
around the first character of
the annotation and a closing
bracket is drawn around

the last character of the
annotation.

The Cas Editor can draw the annotations in different layers. If the spans of two annotations overlap
the annotation which isin ahigher layer is drawn over annotations in alower layer. Depending on
the drawing style it is possible to see both annotations. The drawing order is defined by the layer
number, layer O isdrawn first, then layer 1 and so on. If annotationsin the same layer overlap its
not defined which annotation type is drawn first.

7.3.3. CAS view support

The Annotation Editor can only display text Sofa CAS views. Displaying CAS views with Sofas
of different typesis not possible and will show an editor page to switch back to another CAS view.
The Edit and Feature Structure Browser views are still available and might be used to edit Feature
Structures which belong to the CAS view.

To switch to another CAS view, right click in the editor to open the context menu and choose "CAS
Views' and the view the editor should switch to.

7.3.4. Outline view

The outline view gives an overview of the annoations which are shown in the editor. The
annotation are grouped by type. There are actions to increase or decrease the bounds of the selected
annotation. Thereis also an action to merge selected annotations. The outline has second view
mode where only annotations of the current editor mode are shown.

70 Cas Editor User's Guide UIMA Version 3.1.0

Edit Views

o= outline - ([l FeatureStructure View
(=== — T — 1 ®
Text
=~ Person
KAREM
JESPER
Ole Due Mielsen
~ Date
1522
1922
1922
1970
- Token
vaffelisen
fra

Helsingar

Cammmmmm
The style can be switched in the view menu, to a style where it only shows the annotations which
belong to the current editor mode.

7.3.5. Edit Views

The Edit Views show details about the currently selected annotations or feature structures. It is
possible to change primitive valuesin this view. Referenced feature structures can be created and
deleted, including arrays. To link afeature structure with other feature structures, it can be pinned
to the edit view. This meansthat it does not change if the selection changes.

(4 Edit View| &
Feature Value
p sofa [Sofa]
begin 739
end 749
day null
month null
year null

UIMA Version 3.1.0 Cas Editor User's Guide 71

FeatureStructure View

7.3.6. FeatureStructure View

The FeatureStructure View lists al feature structures of a specified type. The typeis selected in the
type combobox.

It's possible to create and delete feature structures of every type.

QOutline ature! ture Error Log

Create ¥

Type: com.calcucare.nlp.Token ':]

Token (id=25) m
Token (id=35)
Token (id=45)
Token {id=55)
Token (id=65)
Token (id=75)
Token (id=85)
Token {id=95)
Token (id=105)
Token {id=115)
Token (id=125)
Token (id=135)
Token (id=145)
Token (id=155)
Token {id=165)
Token (id=175)
Token (id=185)
Token (id=195)
Token (id=205)
Token {id=215)
Token (id=225)

7.4. Implementing a custom Cas Editor View

Custom Cas Editor views can be added, to rapidly create, access and/or change Feature Structures
in the CAS. While the Annotation Editor and its views offer support for general viewing and
editing, accessing and editing thingsin the CAS can be streamlined using a custom Cas Editor.

A custom Cas Editor view can be programmed to use a particular type system and optimized to
quickly change or show something.

Annotation projects often need to track the annotation status of a CAS where a user needs to mark
which parts have been annotated or corrected. To do this with the Cas Editor a user would need

to use the Feature Structure Browser view to select the Feature Structure and then edit it inside

the Edit view. A custom Cas Editor view could directly select and show the Feature Structure and
offer atailored user interface to change the annotation status. Some features such as the name of the
annotator could even be automatically filled in.

72

Cas Editor User's Guide UIMA Version 3.1.0

Annotation Status View Sample

The creation of Feature Structures which are linked to existing annotations or Feature Structuresis
usualy difficult with the standard views. A custom view which can make assumptions about the
type system is usually needed to do this efficiently.

7.4.1. Annotation Status View Sample

The Cas Editor provides the CasEditorView class as a base class for views which need to access
the CAS which is opened in the current editor. It shows a"view not available" message when
the current editor does not show a CAS, no editor is opened at al or the current CASview is
incompatible with the view.

The following snippet shows how it is usually implemented:

public class AnnotationStatusView extends CasEditorView {

public AnnotationStatusView) {
super (" The Annotation Status Viewis currently not available.");
}

@verride
prot ect ed | PageBookVi ewPage doCr eat ePage(| CasEditor editor) ({
| CasDocunment docunent = editor.getDocunment();

if (document != null) {

return new Annot ati onSt at usVi ewPage(editor);
}
return null;

}
}

The doCreatePage method is called to create the actual view page. If the document is null the editor
failed to load a document and is showing an error message. In the case the document is not null but
the CAS view isincompatible the method should return null to indicate that it has nothing to show.

In this case the "not available" message is displayed.

The next step is to implement the AnnotationStatusViewPage. That is the page which getsthe CAS
as input and need to provide the user with a ui to change the Annotation Status Feature Structure.

public class AnnotationStatusVi ewPage extends Page {
private | CasEditor editor;

Annot ati onSt at usVi ewPage(| CasEdi tor editor) {
this.editor = editor;
}

public void createControl (Conposite parent) {

/! create ui elenents here

| CasDocunent docunent = editor.getDocurment();

UIMA Version 3.1.0 Cas Editor User's Guide 73

Annotation Status View Sample

CAS cas = docunent. get CAS();

// Retrieve Annotation Status FS from CAS
// and initalize the ui elenents with it

Feat ureStructre statusFsS;

/1 Add event listeners to the ui el enent
/1 to save an update to the CAS
/1 and to advertise a change

/1 Send update event
docunent . updat e(st at usFS) ;

The above code sketches out how atypical view page isimplemented. The CAS can be directly
used to access any Feature Structures or annotations stored in it. When something is modified
added/removed/changed that must be advertised via the |CasDocument object. It has multiple
notification methods which send an event so that other views can be updated. The view itself can
also register alistener to receive CAS change events.

74

Cas Editor User's Guide UIMA Version 3.1.0

Chapter 8. JCasGen User's Guide

JCasGen reads a descriptor for an application (either an Analysis Engine Descriptor, or a Type
System Descriptor), creates the merged type system specification by merging al the type system
information from all the components referred to in the descriptor, and then uses this merged type
system to create Java source files for classes that enable JCas access to the CAS. Java classes are
not produced for the built-in types, since these classes are already provided by the UIMA SDK. (An
exception is the built-in type ui ma. t cas. Docunent Annot at i on, see the warning below.)

Warning: If the components comprising the input to the type merging process have
different definitions for the same type name, JCasGen will show awarning, and in some
environments may offer to abort the operation. If you continue past this warning, JCasGen
will produce correct Java source files representing the merged types (that is, the type
definition containing all of the features defined on that type by al of the components). It
is recommended that you do not use this capability (of having two different definitions for
the same type name, with different feature sets) since it can make it difficult to combine/
package your annotator with others. See UIMA References Section 5.5, “Merging Types’
for more information.

JCasGen can be run in many ways. For Eclipse users using the Component Descriptor Editor,
there's a button on the Type System Description page to run it on that type system. There'salso a
jcasgen-maven-plugin to use in maven build scripts. There's a menu-driven GUI tool for it. And,
there are command line scripts you can useto invokeit.

There are several versions of JCasGen. The basic version reads an XML descriptor which contains
atype system descriptor, and generates the corresponding Java Class Models for those types.
Variants exist for the Eclipse environment that allow merging the newly generated Java source
code with previously augmented versions; see UIMA References Section 5.4, “ Augmenting the
generated Java Code” for a discussion of how the Java Class Models can be augmented by adding
additional methods and fields.

Input to JCasGen needs to be mostly self-contained. In particular, any types that are defined

to depend on user-defined supertypes must have that supertype defined, if the supertypeis

ui ma. t cas. Annot ati on or asubtype of it. Any features referencing ranges which are subtypes
of uima.cas.String must have those subtypes included. If thisis not followed, awarning messageis
given stating that the resulting generation may be inaccurate.

JCasGen istypicaly invoked automatically when using the Component Descriptor Editor (see
Section 1.8, “Type System Page”), but can also be run using a shell script. These scripts can

take 0, 1, or 2 arguments. The first argument is the location of the file containing the input XML
descriptor. The second argument specifies where the generated Java source code should go. If it
isn't given, JCasGen generates its output into a subfolder called JCas (or sometimes JCasNew — see
below), of the first argument's path.

Thefirst argument, the input file, can be written asj ar : <ur | >! {entry}, for example:
jar:http://ww.foo.confbar/baz.jar!/COM foo/ quux. cl ass

If no arguments are given to JCasGen, then it launches a GUI to interact with the user and ask for
the same input. The GUI will remember the arguments you previously used. Here's what it looks
like:

JCasGen User's Guide 75

Running stand-alone without Eclipse

& JCasGen E]@

File Helg

ri:“l, Unstructured Information Management Architecture
oL =

. An Apache meubator Praject.

‘welcome to the JCazGen tool. You can drag corners to resize.

C:/uima/examples/descriptors/analysis_engine/PersonTitlelnnotator. xml

Inpuit File:
Ftemp
COutput Directory:
Status
S

When running with automatic merging of the generated Java source with previously augmented
versions, the output location is where the merge function obtains the source for the merge
operation.

Asiscustomary for Java, the generated class source files are placed in the appropriate subdirectory
structure according to Java conventions that correspond to the package (name space) name.

The Java classes must be compiled and the resulting class filesincluded in the class path of your
application; you make these classes available for other annotator writers using your types, perhaps
packaged as an xxx.jar file. If the xxx.jar file is made to contain only the Java Class Models for the
CAS types, it can be reused by any users of these types.

8.1. Running stand-alone without Eclipse

There is no capability to automatically merge the generated Java source with previous versions,
unless running with Eclipse. If run without Eclipse, no automatic merging of the generated
Java source is done with any previous versions. In this case, the output is put in afolder called
“JCasNew” unless overridden by specifying a second argument.

The distribution includes a shell script/bat file to run the stand-alone version, called jcasgen.

8.2. Running stand-alone with Eclipse

If you have Eclipse and EMF (EMF = Eclipse Modeling Framework; both of these are available
from http://www.eclipse.org) installed (version 3 or later) JCasGen can merge the Java code it
generates with previous versions, picking up changes you might have inserted by hand. The output
(and source of the merge input) isin afolder “JCas’ under the same path as the input XML file,
unless overridden by specifying a second argument.

You must install the UIMA plug-insinto Eclipse to enable this function.

The distribution includes a shell script/bat file to run the stand-alone with Eclipse version, called
jcasgen_merge. Thisworks by starting Eclipsein “headless” mode (no GUI) and invoking JCasGen
within Eclipse. Y ou will need to set the ECLIPSE_HOME environment variable or modify the

76

JCasGen User's Guide UIMA Version 3.1.0

http://www.eclipse.org

Running within Eclipse

jcasgen_merge shell script to specify where to find Eclipse. The version of Eclipse needed is 3 or
higher, with the EMF plug-in and the UIMA runtime plug-in installed. A temporary workspaceis
used; the name/location of thisis customizable in the shell script.

Log and error messages are written to the UIMA log. Thisfileis called uima.log, and islocated in
the default working directory, which if not overridden, is the startup directory of Eclipse.

8.3. Running within Eclipse

There are two ways to run JCasGen within Eclipse. The first way isto configure an Eclipse external
tools launcher, and use it to run the stand-alone shell scripts, with the arguments filled in. Here'sa
picture of atypical launcher configuration screen (you get here by navigating from the top menu:
Run — External Tools—> External tools...).

"B Extemal Tools =]

X

Create, manage, and run configurations

Configuration pame. 1run JCasGen

El Main]'@? Refresh] %¥ Common]
- & Pro

R I T

Location: Browse Workspace..

o

|C Mwima_1.0.0%bin%jcasgen_merge bat
Browse File System...

i e Browse Worispace...

|C Ma'\Eclipseworkspacetest
Browse File System. ..

Arguments:

c\path4o-input-descriptormy{Types xml & \temp Yarables. ..

Mote: Enclose an argument containing spaces using double-quates).
Mot applicable for varables.

¥ Bun tool in background

New Apply Revert

Run Close

The second way (which isthe normal way it's done) to run within Eclipseis to use the Component
Descriptor Editor (CDE) (see Chapter 1, Component Descriptor Editor User's Guide). Thistool can

UIMA Version 3.1.0 JCasGen User's Guide 77

Using the jcasgen-maven-plugin

be configured to automatically launch JCasGen whenever the type system descriptor is modified. In
this release, this operation completely regenerates the files, even if just a small thing changed. For
very large type systems, you probably don't want to enable this al the time. The configurator tool
has an option to enable/disable this function.

8.4. Using the jcasgen-maven-plugin

For Maven builds, you can use the jcasgen-maven-plugin to take one or more top level descriptors
(Type System or Analysis Engine descriptors), merge them together in the standard way UIMA
merges type definitions, and produce the corresponding JCas source classes. These, by default, are
generated to the standard spot for Maven builds for generated files.

Y ou can use ant-like include / exclude patterns to specify the top level descriptor files. If you set
<limitToProject> to true, then after a complete UIMA type system merge is done with al of the
types, including those that are imported, only those types which are defined within this Maven
project (that is, in some subdirectory of the project) will be generated.

To use the jcasgen-maven-plugin, specify it in the POM asfollows:

<pl ugi n>
<gr oupl d>or g. apache. ui ma</ gr oupl d>
<artifactld>j casgen- maven- pl ugi n</arti factld>
<versi on>2. 4. 1</version> <!l-- change this to the |atest version -->
<execut i ons>
<executi on>
<goal s><goal >gener at e</ goal ></goal s> <!-- this is the only goal -->
<l-- runs in phase process-resources by default -->
<confi guration>

<!-- REQUI RED -->
<t ypeSyst enl ncl udes>
<I-- one or nore ant-like file patterns
identifying top | evel descriptors -->
<t ypeSyst em ncl ude>src/ mai n/ r esour ces/ MyTs. xm
</typeSyst enl ncl ude>
</typeSyst em ncl udes>

<l-- OPTIONAL -->
<I-- a sequence of ant-like file patterns
to exclude fromthe above include list -->
<t ypeSyst enExcl udes>
</ typeSyst enExcl udes>

<I-- OPTIONAL -->

<!-- where the generated files go -->
<l-- default value
${proj ect. build.directory}/generated-sources/jcasgen" -->

<out put Di rect ory>
</ out put Di r ect ory>

<!l-- true or false, default = false -->

<l-- if true, then although the conplete nmerged type system
will be created internally, only those types whose
definition is contained within this maven project will be
generated. The others will be presuned to be
avail abl e via other projects. -->

<l-- OPTIONAL -->

<limtToProject>fal se</limitToProject>

</ confi guration>

78 JCasGen User's Guide UIMA Version 3.1.0

Using the jcasgen-maven-plugin

</ executi on>
</ executi ons>
</ pl ugi n>

UIMA Version 3.1.0

JCasGen User's Guide

79

Chapter 9. PEAR Packager User's Guide

A PEAR (Processing Engine ARchive) fileis a standard package for UIMA (Unstructured
Information Management Architecture) components. The PEAR package can be used for
distribution and reuse by other components or applications. It also allows applications and tools
to manage UIMA components automatically for verification, deployment, invocation, testing,

etc. Please refer to UIMA References Chapter 6, PEAR Reference for more information about the
internal structure of a PEAR file.

This chapter describes how to use the PEAR Eclipse plugin or the PEAR command line packager to
create PEAR filesfor standard UIMA components.

9.1. Using the PEAR Eclipse Plugin

The PEAR Eclipse plugin is automatically installed if you followed the directionsin UIMA
Overview & SDK Setup Chapter 3, Setting up the Eclipse IDE to work with UIMA. The use of the
plugin involves the following two steps:

» Add the UIMA nature to your project

» Create a PEAR file using the PEAR generation wizard

9.1.1. Add UIMA Nature to your project

First, create a project for your UIMA component:

 Create a Java project, which would contain al the files and folders needed for your UIMA
component.

» Create asource folder called “src” in your project, and make it the only source folder, by
clicking on *Properties’ in your project's context menu (right-click), then select “ Java Build
Path”, then add the “src” folder to the source folderslist, and remove any other folder from
thelist.

» Specify an output folder for your project called bin, by clicking on “Properties’ in
your project's context menu (right-click), then select “ Java Build Path”, and specify
“your_project_name/bin” as the default output folder.

Then, add the UIMA nature to your project by clicking on “Add UIMA Nature” in the context
menu (right-click) of your project. Click “Yes’ on the“Adding UIMA custom Nature” dialog box.
Click “OK” on the confirmation dialog box.

PEAR Packager User's Guide 81

Add UIMA Nature to your project

Java - Eclipse Platform

File Edit Source Refactor Navigate Search Project Run Window Heip
Cit W0 -Q - BHERG~- ™ | &'ava ot
o B e Ui - «“1=Plug-n Devel...
o= Outine 3 =
i = | An outhine is not available,
o o ;
Go Into
Open in New Window
Open Type Heerarchy F4
|{E Copy Ctrl+C
& lonsole 5 B2
K Delete Delete
Source Alt4chift+5 »
Refactor Alt+Shift+T P
gy Import...
L Export...
= Refresh F5
cormn.ibm, uima, My AnalysisEngine Close Project
¥ add UIMA Nature
Run 4

Adding the UIMA nature to your project creates the PEAR structure in your project. The PEAR
structure is a structured tree of folders and files, including the following elements:

* Required Elements:

» The metadata folder which contains the PEAR installation descriptor and properties
files.

¢ Theinstallation descriptor (metadata/install.xml)
» Optional Elements:

» The desc folder to contain descriptor files of analysis engines, component analysis
engines (all levels), and other component (Collection Readers, CAS Consumers, etc).

¢ The srcfolder to contain the source code
» Thebin folder to contain executables, scripts, classfiles, dlls, shared libraries, etc.
e Thelib folder to contain jar files.

« Thedoc folder containing documentation materials, preferably accessible through an
index.html.

» The data folder to contain datafiles (e.g. for testing).

» The conf folder to contain configuration files.

82 PEAR Packager User's Guide UIMA Version 3.1.0

Using the PEAR Generation Wizard

* Theresour ces folder to contain other resources and dependencies.
* Other user-defined folders or files are allowed, but should be avoided.

For more information about the PEAR structure, please refer to the “ Processing Engine Archive”
section.

Root

i

desc
SIC

b

5

oc

conf
data

i

resources

Figure 9.1. The Pear Structure

9.1.2. Using the PEAR Generation Wizard

Before using the PEAR Generation Wizard, add all the files needed to run your component
including descriptors, jars, external libraries, resources, and component analysis engines (in the
case of an aggregate analysis engine), etc. Do not add Jars for the UIMA framework, however.
Doing so will cause class loading problems at run time.

If you're using a Java | DE like Eclipse, instead of using the output folder (usualy bi n asthe source
of your classes, it's recommended that you generate a Jar file containing these classes.

Then, click on “ Generate PEAR file” from the context menu (right-click) of your project, to open
the PEAR Generation wizard, and follow the instructions on the wizard to generate the PEAR file.

9.1.2.1. The Component Information page

Thefirst page of the PEAR generation wizard is the component information page. Specify

in this page a component ID for your PEAR and select the main Analysis Engine descriptor.

The descriptor must be specified using a pathname relative to the project's root (e.g. “desc/
MyAE.xml"). The component id is a string that uniquely identifies the component. It should use the
JAV A naming convention (e.g. org.apache.uima.mycomponent).

UIMA Version 3.1.0 PEAR Packager User's Guide 83

Using the PEAR Generation Wizard

Optionally, you can include specific Collection Iterator, CAS Initializer (deprecated as of Version
2.1), or CAS Consumers. In this case, specify the corresponding descriptors in this page.

 PEAR Generation Wizard @

UIMA - Installation Descriptor - Component Information

Enter information about your UIMA component. The required fields are indicated with a (¥).
The descriptor must be specified using paths relative to the project’s root (e.g. "desc/MyTAE. xml").

w

Component Information
Component ID*®:] com.ibm.uima.MyAnalysisEngine
Component Descriptor®; | desc\MyAnnotatorDescoriptor. xmi Browse...

I~ Set optional descriptors (Optional)

Collection Iterator Descriptor: |

CAS Initiaizer Descriptor: |

[

CAS Consumer Descriptor: [

I Next > | Cancel

Figure 9.2. The Component Information Page

9.1.2.2. The Installation Environment page

The installation environment page is used to specify the following:

 Preferred operating system

* Required JDK version, if applicable.

» Required Environment variable settings. Thisis where you specify special CLASSPATH
paths. Y ou do not need to specify this for any Jar that is listed in the your eclipse project
classpath settings; those are automatically put into the generated CLASSPATH. Nor should
you include paths to the UIMA Framework itself, here. Doing so may cause class loading
problems.

CLASSPATH segments are written here using a semicolon ;" as the separator; during
PEAR installation, these will be adjusted to be the correct character for the target Operating
System.

In order to specify the UIMA datapath for your component you have to create an
environment variable with the property name ui na. dat apat h. The value of this property
must contain the UIMA datapath settings.

Path names should be specified using macros (see below), instead of hard-coded absolute paths
that might work locally, but probably won't if the PEAR is deployed in a different machine and
environment.

Macros are variables such as $main_root, used to represent a string such as the full path of acertain
directory.

PEAR Packager User's Guide UIMA Version 3.1.0

Using the PEAR Generation Wizard

These macros should be defined in the PEAR.properties file using the local values. The tools and
applications that use and deploy PEAR files should replace these macros (in the filesincluded in
the conf and desc folders) with the corresponding values in the local environment as part of the
deployment process.

Currently, there are two types of macros:

» $main_root, which represents the local absolute path of the main component root directory
after deployment.

» $component_id$root, which represents the local absolute path to the root directory of
the component which has component_id as component ID. This component could be, for
instance, a delegate component.

= PEAR Generation Wizard

UTHA - Installation Descriptor - Installation Environment

Set the installation emvironment options and the system properties {e.9. classpath) for your component.
Note: ClassPath entries must start with Sman_root/

I Setinstaliation ervironment optons {(Optonal)

Operatng System; f _| JOF, Viersan:

™ Set aystem properbes (Opbonal)

[Property Name [Property vaie
CLASSPATH Smain_root/bin; Smain_rootfibfcasTutorial. far;...
< >

< Badk Mext > Cancel]

Figure 9.3. The Installation Environment Page

9.1.2.3. The PEAR file content page

The last page of the wizard isthe “PEAR file Export” page, which alows the user to select the files
toincludein the PEAR file. The metadata folder and all its content is mandatory. Make sure you
include all the files needed to run your component including descriptors, jars, external libraries,
resources, and component analysis engines (in the case of an aggregate analysis engine), etc. It's
recommended to generate ajar file from your code as an aternative to building the project and
making sure the output folder (bin) contains the required classfiles.

Eclipse compiles your class files into some output directory, often named "bin" when you take the
usua defaultsin Eclipse. The recommended practice isto take all these files and put them into a

Jar file, perhaps using the Eclipse Export wizard. Y ou would place that Jar fileinto the PEAR i b
directory.

Note: If you are relying on the class files generated in the output folder (usually called
bin) to run your code, then make sure the project is built properly, and all the required

UIMA Version 3.1.0 PEAR Packager User's Guide 85

Using the PEAR command line packager

classfiles are generated without errors, and then put the output folder (e.g. $main_root/bin)
in the classpath using the option to set environment variables, by setting the CLASSPATH
variable to include this folder (see the “Installation Environment” page. Beware that

using a Java output folder named "bin" in this case is a poor practice, because the PEAR
installation tools will presume this folder contains binary executable files, and will adds
thisfolder to the PATH environment variable.

= PEAR Generation Wizard

PEAR file
Export resources to a Pear file on the local fle system, %

- HT—‘J com.ibm.uima.MyAnalysisEngine

Fi= bin
H& conf
Fl& data
Fl& desc
| [

G [
FlGe metadata
[Fl& resources
F& =c

Select Types... | sdectAl | Dessectmn |

To pear file: i::'my;fﬁ;m.m.m.m-,-mmﬁm| 3 Browss, ..

Oipbions:
[¥ Compress the contents of the fie

<Back | |Frn‘si1|Canod

Figure 9.4. The PEAR File Export Page

9.2. Using the PEAR command line packager

The PEAR command line packager takes some PEAR package parameter settings on the command
line to create an UIMA PEAR file.

To run the PEAR command line packager you can use the provided runPearPackager (.bat for
Windows, and .sh for Unix) scripts. The packager can be used in three different modes.

* Mode 1: creates a complete PEAR package with the provided information (default mode)

runPear Packager -conpl D <conponent | D>
- mai nConpDesc <nmai nConponent Desc> [-cl asspat h <cl asspat h>]
[-dat apat h <dat apat h>] - nai nConpDi r <mai nConponent Di r >
-targetDir <targetDir> [-envVars <propertiesFil ePat h>]

The created PEAR file has the file name <componentl D>.pear and is located in the
<targetDir>.

* Mode 2: creates a PEAR installation descriptor without packaging the PEAR file

86 PEAR Packager User's Guide UIMA Version 3.1.0

Using the PEAR command line packager

runPear Packager -create -conplD <conponent| D>
- mai nConpDesc <mmi nConponent Desc> [- cl asspat h <cl asspat h>]
[- dat apat h <dat apat h>] - nai nConpDi r <mai nConponent Di r >
[-envVars <propertiesFil ePat h>]

The PEAR installation descriptor is created in the <mainComponentDir>/metadata directory.

» Mode 3: creates a PEAR package with an existing PEAR installation descriptor

runPear Packager -package -conpl D <conponent | D>
-mai nConpDi r <mai nConponentDir> -targetDir <targetDir>

The created PEAR file has the file name <componentl D>.pear and is located in the
<targetDir>.

The modes 2 and 3 should be used when you want to manipulate the PEAR installation descriptor
before packaging the PEAR file.

Some more details about the PearPackager parametersis provided in the list below:
» <conponent | D>: PEAR package component ID.
* <mai nConponent Desc>: Main component descriptor of the PEAR package.

» <cl asspat h>: PEAR classpath settings. Use $main_root macros to specify path entries.
Use; to separate the entries.

* <dat apat h>: PEAR datapath settings. Use $main_root macros to specify path entries. Use
; to separate the path entries.

* <mai nConponent Di r >: Main component directory that contains the PEAR package
content.

» <targetDi r>: Target directory where the created PEAR file iswritten to.

e <propertiesFil ePat h>: Path nameto a propertiesfile that contains environment
variables that must be set to run the PEAR content.

UIMA Version 3.1.0 PEAR Packager User's Guide 87

Chapter 10. The PEAR Packaging Maven
Plugin

UIMA includes a Maven plugin that supports creating PEAR packages using Maven. When
configured for a project, it assumes that the project has the PEAR layout, and will copy the
standard directories that are part of a PEAR structure under the project root into the PEAR,
excluding files that start with aperiod ("."). It also will put the Jar that is built for the project into
thelib/ directory and include it first on the generated classpath.

The classpath that is generated for thisincludes the artifact's Jar first, any user specified entries
second (in the order they are specified), and finally, entries for all Jars found in thelib/ directory (in
some arbitrary order).

10.1.

Specifying the PEAR Packaging Maven Plugin

To use the PEAR Packaging Plugin within a Maven build, the plugin must be added to the plugins
section of the Maven POM as shown below:

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. ui ma</ gr oupl d>
<artifact| d>Pear Packagi ngMavenPl ugi n</arti fact| d>

<l-- if versionis onmtted, then -->

<I-- version is inherited fromparent's plugi nManagenent section -->
<l-- otherw se, include a version elenment here -->

<I-- says to | oad Maven extensions

(such as packagi ng and type handlers) fromthis plugin -->
<ext ensi ons>t r ue</ ext ensi ons>
<executi ons>
<execution>
<phase>package</ phase>
<I-- where you specify details of the thing being packaged -->
<confi gurati on>

<cl asspat h>
<I-- PEAR file conponent classpath settings -->
$mai n_root/lib/sanple.jar

</ cl asspat h>

<mai nConponent Desc>
<!-- PEAR file main conponent descriptor -->
desc/ ${artifactld}.xmn

</ mai nConponent Desc>

<comnponent | d>
<!-- PEAR file component ID -->
${artifactld}

</ conponent | d>

<dat apat h>
<I-- PEAR file U MA datapath settings -->
$mai n_r oot/ resources

The PEAR Packaging Maven Plugin 89

Specifying the PEAR Packaging Maven Plugin

</ dat apat h>

</ confi guration>
<goal s>
<goal >package</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

<} pI ugi ns>
</ bui | d>

To configure the plugin with the specific settings of a PEAR package, the <conf i gur ati on>
element section is used. This sections contains all parameters that are used by the PEAR Packaging
Plugin to package the right content and set the specific PEAR package settings. The details about
each parameter and how it is used is shown below:

» <cl asspat h> - This element specifies the classpath settings for the PEAR component. The
Jar artifact that is built during the current Maven build is automatically added to the PEAR
classpath settings and does not have to be added manually. In addition, al Jarsin thelib
directory and its subdirectories will be added to the generated classpath when the PEAR is
installed.

Note: Use $main_root variablesto refer to librariesinside the PEAR package.
For more details about PEAR packaging please refer to the Apache UIMA PEAR
documentation.

» <mai nConponent Desc> - This element specifies the relative path to the main component
descriptor that should be used to run the PEAR content. The path must be relative to the
project root. A good default to useisdesc/ ${artifact!d}. xni.

* <conponent | D> - This element specifies the PEAR package component ID. A good default
touseis${artifactld}.

» <dat apat h> - This element specifies the PEAR package UIMA datapath settings. If no
datapath settings are necessary, this element can be omitted.

Note: Use $main_root variablesto refer libraries inside the PEAR package. For
more details about PEAR packaging please refer to the Apache UIMA PEAR
documentation.

For most Maven projectsit is sufficient to specify the parameters described above. In some
cases, for more complex projects, it may be necessary to specify some additional configuration
parameters. These parameters are listed below with the default values that are used if they are not
added to the configuration section shown above.

» <mai nConponent Di r > - This element specifies the main component directory where the
UIMA natureis applied. By default this parameter points to the project root directory -
${ basedir}.

» <targetDi r> - Thiselement specifies the target directory where the result of the plugin
are written to. By default this parameters points to the default Maven output directory -
${ basedir} /target

90 The PEAR Packaging Maven Plugin UIMA Version 3.1.0

Automatically including dependencies

10.2. Automatically including dependencies

A key concept in PEARs is that they allow specifying other Jarsin the classpath. Y ou can
optionally include these Jars within the PEAR package.

The PEAR Packaging Plugin does not take care of automatically adding these Jars (that the PEAR
might depend on) to the PEAR archive. However, this behavior can be manually added to your
Maven POM. The following two build plugins hook into the build cycle and insure that all runtime
dependencies are included in the PEAR file.

The dependencies will be automatically included in the PEAR file using this procedure; the pear
install process also will automatically adds all filesin the lib directory (and sub directories) to the
classpath.

Themaven- dependency- pl ugi n copies the runtime dependencies of the PEAR into thel i b
folder, which is where the PEAR packaging plugin expects them.

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactl| d>maven- dependency- pl ugi n</artifactl d>
<executi ons>
<I-- Copy the dependencies to the lib folder for the PEAR to copy -->
<execution>
<i d>copy- dependenci es</i d>
<phase>package</ phase>
<goal s>
<goal >copy- dependenci es</ goal >
</ goal s>
<confi gurati on>
<out put Di rect ory>${basedi r}/|i b</ out put Di r ect ory>
<over Wit eSnapshot s>t rue</ over Wi t eSnapshot s>
<i ncl udeScope>r unti ne</i ncl udeScope>
</ confi guration>
</ execut i on>
</ executi ons>
</ pl ugi n>

<}biugins>
</ bui | d>

The second Maven plug-in hooksinto the cl ean phase of the build life-cycle, and deletesthel i b
folder.

Note: With this approach, thel i b folder is automatically created, popul ated, and
removed during the build process. Therefore it should not go into the source control
system and neither should you manually place any jarsin there.

<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-antrun-plugi n</artifactld>

<executi ons>

<l-- Clean the libraries after packaging -->
<execution>

UIMA Version 3.1.0 The PEAR Packaging Maven Plugin 91

Running from the command line

<i d>Cl eanLi b</i d>
<phase>cl ean</ phase>
<confi gurati on>
<t asks>
<del ete quiet="true"
fail OnError="fal se">
<fileset dir="1ib" includes="**/*_jar"/>
</ del et e>
</tasks>
</ confi guration>
<goal s>
<goal >run</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

<}biugins>
</ bui | d>

10.3. Running from the command line

The pear packager can be run as a maven command. To enable this, you have to add the following
to your maven settingsfile:

<settings>

;biuginC?oups>
<pl ugi nG oup>or g. apache. ui ma</ pl ugi nG oup>
</ pl ugi nGr oups>

To invoke the pear packager using maven, use the command:
nmvn ui ma- pear: package <paraneters...>

The settings are the same ones used in the configuration above, specified as -D variables where the
variable name is pear.parameterName. For example:

mv/n ui ma- pear: package - Dpear. mai nConponent Desc=desc/ nydescri pt or. xm
- Dpear . conponent | d=f oo

10.4. Building the PEAR Packaging Plugin From
Source

The plugin code is available in the Apache subversion repository at: http://svn.apache.org/repos/
asf/uima/uimaj/trunk/PearPackagingM avenPlugin. Use the following command line to build it (you
will need the Maven build tool, available from Apache):

#Pear Packagi ngMavenPl ugi n> nvn i nst al

This maven command will build the tool and install it in your local maven repository, making

it available for use by other maven POMs. The plugin version number is displayed at the end of
the Maven build as shown in the example below. For this example, the plugin version number is:
2.3.0-incubating

92 The PEAR Packaging Maven Plugin UIMA Version 3.1.0

http://svn.apache.org/repos/asf/uima/uimaj/trunk/PearPackagingMavenPlugin
http://svn.apache.org/repos/asf/uima/uimaj/trunk/PearPackagingMavenPlugin

Building the PEAR Packaging Plugin From Source

[INFO Installing

/ code/ apache/ Pear Packagi ngMavenP| ugi n/ t ar get /

Pear Packagi ngMavenPl ugi n- 2. 3. 0-i ncubati ng. j ar

to

/ maven-reposi tory/repository/ org/apache/ ui ma/ Pear Packagi ngMavenPl ugi n/
2.3.0-incubating/

Pear Packagi ngMavenPI ugi n- 2. 3. 0-i ncubati ng. j ar

[INFQ [pl ugi n: updat eRegi stry]

R O I L R T T
[INFOQ BU LD SUCCESSFUL

[O R e
[INFQ Total tine: 6 seconds

[INFQ Finished at: Tue Nov 13 15:07:11 CET 2007

[INFO Final Menory: 10M 24M

[IRED] m-mo-—rrmmmecmo-—cmamcmam s cocaccmae —m o e emaE —Eo s —em e e e - o

UIMA Version 3.1.0 The PEAR Packaging Maven Plugin

Chapter 11. PEAR Installer User's Guide

PEAR (Processing Engine ARchive) is anew standard for packaging UIMA compliant
components. This standard defines several service elements that should be included in the archive
package to enable automated installation of the encapsulated UIMA component. The major PEAR
service element isan XML Installation Descriptor that specifies installation platform, component
attributes, custom installation procedures and environment variables.

Theinstallation of a UIMA compliant component includes 2 steps:. (1) installation of the
component code and resourcesin alocal file system, and (2) verification of the serviceability of
the installed component. Installation of the component code and resources involves extracting
component files from the archive (PEAR) package in a designated directory and localizing file
references in component descriptors and other configuration files. Verification of the component
serviceabhility is accomplished with the help of standard UIMA mechanisms for instantiating
analysis engines.

% Local PEAR Installation, Verification and Testing mE =<
T M A iy :
.i-iﬁ". Unstructured Information Management Architecture

m. An Apache Incubator Prajret

PE&R File:

Browise. ..

Inskalation Directors:

Al

There are two versions of the PEAR Installer. Oneis an interactive, GUI-based application which
puts up a panel asking for the parameters of the installation; the other is acommand line interface
version where you pass the parameters needed on the command lineitself. To launch the GUI
version of the PEAR Installer, use the script in the UIMA bin directory: r unPear | nst al | er. bat
orrunPear | nst al | er. sh. Thecommand lineislaunched usingr unPearinstallerdi.cmd
orrunPearinstallerdi.sh.

The PEAR Installer installs UIMA compliant components (analysis engines) from PEAR packages
inalocal file system. Toinstall adesired UIMA component the user needs to select the appropriate

PEAR Installer User's Guide 95

PEAR filein alocal file system and specify the installation directory (optional). If no installation
directory is specified, the PEAR fileisinstalled to the current working directory. By default the
PEAR packages are not installed directly to the specified installation directory. For each PEAR a
subdirectory with the name of the PEAR's ID is created where the PEAR packageisinstalled to.
If the PEAR installation directory already exists, the old content is automatically deleted before
the new content is installed. During the component installation the user can read messages printed
by the installation program in the message area of the application window. If the installation fails,
appropriate error message is printed to help identifying and fixing the problem.

After the desired UIMA component is successfully installed, the PEAR Installer allows testing this
component in the CAS Visual Debugger (CVD) application, which is provided with the UIMA
package. The CVD application will load your UIMA component using its XML descriptor file.

If the component is loaded successfully, you'll be able to run it either with sample documents
provided in the <Ul MA_HOVE>/ exanpl es/ dat a directory, or with any other sample documents.
See Chapter 5, CAS Visual Debugger for more information about the CV D application. Running
your component in the CVD application helps to make sure the component will runin other UIMA
applications. If the CVD application failsto load or run your component, or throws an exception,
you can find more information about the prablem in the uima.log file in the current working
directory. Thelog file can be viewed with the CVD.

PEAR Installer creates afile named set env. t xt inthe <conponent _r oot >/ net adat a
directory. Thisfile contains environment variables required to run your component in any UIMA
application. It also creates a PEAR descriptor (see also UIMA References Section 6.3, “PEAR
package descriptor”) file named <conponent | D>_pear . xnl inthe <conponent _r oot >
directory that can be used to directly run the installed pear file in your application.

The metadata/setenv.txt is not read by the UIMA framework anywhere. It's there for use by non-
UIMA application code if that code wantsto set environment variables. The metadata/setenv.txt is
just a"convenience” file duplicating what's in the xml.

The setenv.txt file has 2 specia variables. the CLASSPATH and the PATH. The CLASSPATH is
computed from any supplied CLASSPATH environment variable, plus the jars that are configured
in the PEAR structure, including subcomponents. The PATH is similarly computed, using any
supplied PATH environment variable plusit includes the "bin" subdirectory of the PEAR structure,
if it exists.

The command line version of the PEAR installer has one required argument: the path to the PEAR
file being installed. A second argument can specify the installation directory (default is the current
working directory). An optional argument, one of "-c" or "-check" or "-verify", causes verification
to be done after installation, as described above.

96

PEAR Installer User's Guide UIMA Version 3.1.0

Chapter 12. PEAR Merger User's Guide

The PEAR Merger utility takes two or more PEAR files and merges their contents, creating

anew PEAR which has, in turn, a new Aggregate analysis engine whose delegates are the
components from the original files being merged. It does this by (1) copying the contents of the
input components into the output component, placing each component into a separate subdirectory,
(2) generating a UIMA descriptor for the output Aggregate analysis engine and (3) creating an
output PEAR file that encapsulates the output Aggregate.

The merge logic is quite simple, and is intended to work for simple cases. More complex merging
needs to be done by hand. Please see the Restrictions and Limitations section, below.

To run the PearMerger command line utility you can use the runPearMerger scripts (.bat for
Windows, and .sh for Unix). The usage of the tooling is shown below:

runPear Merger 1st_input_pear _file ... nth_input_pear_file
-n out put _anal ysi s_engi ne_nane [-f output_pear file]

Thefirst group of parameters are the input PEAR files. No duplicates are allowed here.
The - n parameter is the name of the generated Aggregate Analysis Engine. The optional
- f parameter specifies the name of the output file. If it is omitted, the output is written to
out put _anal ysi s_engi ne_nane. pear inthe current working directory.

During the running of this tool, work files are written to atemporary directory created in the user's
home directory.

12.1.

Details of the merging process

The PEARSs are merged using the following steps:
1. A temporary working directory, is created for the output aggregate component.

2. Each input PEAR fileis extracted into a separate 'input_component_name' folder under the
working directory.

3. The extracted files are processed to adjust the '$main_root' macros. This operation differs
from the PEAR installation operation, because it does not replace the macros with absolute
paths.

4. The output PEAR directory structure, ‘metadata and 'desc’ folders under the working
directory, are created.

5. The UIMA AE descriptor for the output aggregate component is built in the 'desc' folder.
This aggregate descriptor refers to the input delegate components, specifying 'fixed flow'
based on the original order of the input components in the command line. The aggregate
descriptor's 'capabilities and 'operational properties sections are built based on the input
components' specifications.

6. A new PEAR installation descriptor is created in the 'metadata folder, referencing the new
output aggregate descriptor built in the previous step.

7. The content of the temporary output working directory is zipped to created the output
PEAR, and then the temporary working directory is deleted.

PEAR Merger User's Guide 97

Testing and Modifying the resulting PEAR

The PEAR merger utility logs al the operations both to standard console output and to alog file,
pm.log, which is created in the current working directory.

12.2.

Testing and Modifying the resulting PEAR

The output PEAR file can be installed and tested using the PEAR Installer. The output aggregate
component can also be tested by using the CVD or DocAnalyzer tools.

The PEAR Installer creates Eclipse project files (.classpath and .project) in the root directory of
theinstaller PEAR, so the installed component can be imported into the Eclipse IDE as an external
project. Once the component isin the Eclipse IDE, devel opers may use the Component Descriptor
Editor and the PEAR Packager to modify the output aggregate descriptor and re-package the
component.

12.3.

Restrictions and Limitations

The PEAR Merger utility only does basic merging operations, and is limited as follows. Y ou can
overcome these by editing the resulting PEAR file or the resulting Aggregate Descriptor.

1. The Merge operation specifies Fixed Flow sequencing for the Aggregate.

2. The merged aggregate does not define any parameters, so the delegate parameters cannot be
overridden.

3. No External Resource definitions are generated for the aggregate.
4. No Sofa Mappings are generated for the aggregate.

5. Name collisions are not checked for. Possible name collisions could occur in the fully-
qualified class names of the implementing Java classes, the names of JAR files, the names
of descriptor files, and the names of resource bindings or resource file paths.

6. Theinput and output capabilities are generated based on merging the capabilities from the
components (removing duplicates). Capability sets are ignored - only thefirst of the set is
used in this process, and only one set is created for the generated Aggregate. Thereis no
support for merging Sofa specifications.

7. No Indexes or Type Priorities are created for the generated Aggregate. No checking is done
to seeif the Indexes or Type Priorities of the components conflict or are inconsistent.

8. You can only merge Analysis Engines and CAS Consumers.

9. Although PEAR file installation descriptors that are being merged can have specific XML
elements describing Collection Reader and CAS Consumer descriptors, these elements
areignored during the merge, in the sense that the installation descriptor that is created
by the merge does not set these elements. The merge process does not use these elements,
the output PEAR's new aggregate only references the merged components main PEAR
descriptor element, asidentified by the PEAR element:

<SUBM TTED_COVPONENT>
<DESC>t he_conponent . xm </ DESC>. . .
</ SUBM TTED_COMPONENT>

98

PEAR Merger User's Guide UIMA Version 3.1.0

	UIMA Tools Guide and Reference
	Table of Contents
	Chapter 1. Component Descriptor Editor User's Guide
	1.1. Launching the Component Descriptor Editor
	1.2. Creating a New AE Descriptor
	1.3. Pages within the Editor
	1.3.1. Adjusting the display of pages

	1.4. Overview Page
	1.4.1. Implementation Details
	1.4.2. Runtime Information
	1.4.3. Overall Identification Information

	1.5. Aggregate Page
	1.5.1. Adding components more than once
	1.5.2. Adding or Removing components in a flow
	1.5.3. Adding remote Analysis Engines
	1.5.4. Connecting to Remote Services
	1.5.5. Finding Analysis Engines by searching
	1.5.6. Component Engine Flow

	1.6. Parameters Definition Page
	1.6.1. Using groups
	1.6.2. Adding or Editing a Parameter
	1.6.3. Parameter declarations for Aggregates

	1.7. Parameter Settings Page
	1.8. Type System Page
	1.8.1. Exporting

	1.9. Capabilities Page
	1.9.1. Sofa (and view) name mappings

	1.10. Indexes Page
	1.11. Resources Page
	1.11.1. Binding
	1.11.2. Resources with Aggregates
	1.11.3. Imports and Exports

	1.12. Source Page
	1.12.1. Source formatting – indentation

	1.13. Creating a Self-Contained Type System
	1.14. Creating Other Descriptor Components

	Chapter 2. Collection Processing Engine Configurator User's Guide
	2.1. Limitations of the CPE Configurator
	2.2. Starting the CPE Configurator
	2.3. Selecting Component Descriptors
	2.4. Running a Collection Processing Engine
	2.5. The File Menu
	2.6. The Help Menu

	Chapter 3. Document Analyzer User's Guide
	3.1. Starting the Document Analyzer
	3.2. Running an AE
	3.3. Viewing the Analysis Results
	3.4. Configuring the Annotation Viewer
	3.5. Interactive Mode
	3.6. View Mode

	Chapter 4. Annotation Viewer
	Chapter 5. CAS Visual Debugger
	5.1. Introduction
	5.1.1. Running CVD
	5.1.2. Command line parameters

	5.2. Error Handling
	5.3. Preferences File
	5.4. The Menus
	5.4.1. The File Menu
	5.4.2. The Edit Menu
	5.4.3. The Run Menu
	5.4.4. The tools menu
	5.4.4.1. View Type System
	5.4.4.2. Show Selected Annotations

	5.5. The Main Display Area
	5.5.1. The Status Bar
	5.5.2. Keyboard Navigation and Shortcuts

	Chapter 6. Eclipse Analysis Engine Launcher's Guide
	6.1. Creating an Analysis Engine launch configuration
	6.2. Launching an Analysis Engine

	Chapter 7. Cas Editor User's Guide
	7.1. Introduction
	7.2. Launching the Cas Editor
	7.2.1. Specifying a type system

	7.3. Annotation editor
	7.3.1. Editor
	7.3.2. Configure annotation styling
	7.3.3. CAS view support
	7.3.4. Outline view
	7.3.5. Edit Views
	7.3.6. FeatureStructure View

	7.4. Implementing a custom Cas Editor View
	7.4.1. Annotation Status View Sample

	Chapter 8. JCasGen User's Guide
	8.1. Running stand-alone without Eclipse
	8.2. Running stand-alone with Eclipse
	8.3. Running within Eclipse
	8.4. Using the jcasgen-maven-plugin

	Chapter 9. PEAR Packager User's Guide
	9.1. Using the PEAR Eclipse Plugin
	9.1.1. Add UIMA Nature to your project
	9.1.2. Using the PEAR Generation Wizard
	9.1.2.1. The Component Information page
	9.1.2.2. The Installation Environment page
	9.1.2.3. The PEAR file content page

	9.2. Using the PEAR command line packager

	Chapter 10. The PEAR Packaging Maven Plugin
	10.1. Specifying the PEAR Packaging Maven Plugin
	10.2. Automatically including dependencies
	10.3. Running from the command line
	10.4. Building the PEAR Packaging Plugin From Source

	Chapter 11. PEAR Installer User's Guide
	Chapter 12. PEAR Merger User's Guide
	12.1. Details of the merging process
	12.2. Testing and Modifying the resulting PEAR
	12.3. Restrictions and Limitations

