UIMA References

Written and maintained by the Apache
UIMA™ Development Community

Version 3.1.0

Copyright © 2006, 2019 The A pache Software Foundation
Copyright © 2004, 2006 | nternational Business Machines Corporation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date August, 2019

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

T - 7o (oo TR 1
1.1. Using named Eclipse User LiDrari€Scovvvveiiiiiii e e e e e 2
2. Component DesCriptor REFEIENCEeiiiiiiiiiiiiiiiieee ettt 3
P28 I [- 1o o PSSP PPPPPTTR 3
A 11106 = PP 4
2.3. TYPE SyStEM DESCIIPLOIS ..oevvvviiiiieeeeeeeeii e e et e e e e e e et e e e e e e e aa e e eees 5
A T R 11 oo £ PSPPSR UPPPPNN 5
2.3 2. TYPBS ettt e 6
2.3.3. FEAIUIES ...ttt ettt e e e e r e 6
P T 0 IS W o)1 o= 7

2.4. AnalysiS ENGINE DESCIIPLOIS ...vvueuiieeeieeeiitiee e e et e et e e e e e e e e 8
2.4.1. Primitive Analysis ENging DeSCIHPLOrScooeeevveeviiiieie e eeeeeeiee e e 8
2.4.2. Aggregate Analysis Engine DesCriptorsoooeeeeeeeieeiieieeeeeeeeeeeeeeee 18
2.4.3. Configuration Pal@mMELEN'Suuvreeiiieeiiiiieieeieeeeeeeeeeee ettt 22

2.5. FIOW CONtroller DESCIIPLOISuuiieiiieeeiiiiei e e e ee e e e e e e e et e e e e e e e e e e e e e 30
2.6. Collection Processing Component DesCriptorscoooeeeieiiieieiiieieeeeeee e 31
2.6.1. Collection Reader DESCIPIONSccuvvuvniiieeeieeeeiiiies et eeeaee s 31
2.6.2. CAS Initializer Descriptors (deprecated)ccovvvevveiiiieeeiiieiiiiee e e e 32
2.6.3. CAS CONSUMES DESCIIPLOIS ..oevvvviiieieeeeeeeiiiii s e s e e e e eee s e e e e e e 34

2.7. Service Client DESCIPLOIScciiiiiiiriiie e e e et ettt e e e e e ettt e e e e e e eetbbb e e e e e aaeeannnes 35
2.8. CUStOM RESOUICE SPECITIENS ..ovvevieiiiiie e e e et e e e et s e e e e e e eeaea e e e e e eeeeaennes 36
3. CPE DeSCriptor REFEIENCEcieiieieiiiie e e e e e e e e e 37
I B O o @ Y= o= PP 37
B2 NOLBLION ... 38
G0 TR 11100 PR SPPTN 39
3.4. CPE DESCIPLON OVEIVIEWvvevuiiiiieiiriiiieiiieiuiaiateeatetatetaeeeeeeeeesenenenensnssenenenenennnens 39
3.5. COllECtioN REAAENuuuiiiie et e e e e e e eeeeaenns 40
3.5.1. Error handling for Collection ReAdErScooeevvvveiiiiiiiiee e ee e 41

3.6. CAS PrOCESSOIScieiiiuiuiaeeeeeeeettti e e e e e e e e eeat b a e e e e e e eeetebba e e e aeaeeessbana e s eeaaeeennnans 41
3.6.1. Specifying an Individual CAS PrOCESSONcoeeeviieiiiiiiinieeeeeeeeiiiiine e eeeeeeens 42

3.7. CPE Operational ParametersSuuuuiiiieeeiieiiiiiaieseeereseeaiiinsseeeeeeeenteennaeneeeaeenes 49
3.8. Resource Manager Configurationueeiieeeiiieeeiiiii e e e e e s 53
3.9. EXaMpPle CPE DESCIILON ...cuvvtiiieieeiieieiiiie ettt e e e eeabaa e 54
4. CAS REFEIENCE ... 55
N Y=o (o[0T PPPPPPPPPPPI 55
A OF N S @Y= = PPN 55
A T I 0 T= N Y] o SIS = 1 55
4.2.2. Creating/Accessing/Changing dataeeiviiiiiieeeiiiii e 56
4.2.3. Creating and USING INAEXESuuuui e 56

A.3. BUIT-IN CAS TYPES cieeieiiiiiii ettt e e e e et ee ettt s s e e e e e e et s e s e e e aeeeeabeb e eeeeaeeeees 58
4.4, AcCesSING the tYPE SYSEM .eevviiiii e e e 60
4.4.1. TypeSystemPrinter €Xample e 61
4.4.2. Using CAS APIS: FEatUre SITUCIUIESuiiieeiieeeeiiiiiee e et eeee e 62

4.5. Creating feature SITUCIUIEScovveiiiiics et e e e et e e e e e eeeee 64
4.5.1. Updating indexed feature StrUCLUIESoeiiieeiieeiiiie e e e e 65

4.6. Accessing of MOdifyinNg FEALUIESoviii it 66
A.7. INAEXES AN [TEIEIOIS ... 67
A.7.1 BUIE-IN TNAEXES ..o 67
4.7.2. Adding Feature Structuresto the Indexes ..., 68
4.7.3. Iterators over UIMA TNAEXESuuuuuiiiiiiiiiiiiiiiii e 68
4.7.4. Special iterators for AnNNOtation tYPESccevvvveiiii i 68

UIMA References iii

UIMA References

4.7.5. Constraints and Filtered iteratorscovvvviiiiiiiiiiiiiiiiieeeee 69

4.8. CAS API'S JAVAHOCSceveieiiiiiiiiiiitiiiiieeeee ettt ettt ee et eeeeaeeeeeaeeeeenees 70
4.8.1. APISinthe CAS Packageooooeeeeei e 70

e T N7 1T/ = o o RPN 71
4.10. Limited multi-thread access to read-only CASSccovvvviiiiiiiieeeieeeeeceee e e, 72
5. JCaS REFEIENCEooeiiiiiiiii it 73
5.1, NAIME SPBCES ..euieiiii ettt et e et e e et e e e e e e aa e eaaan 73
5.2. Use Of XML DESCIIPLON ...eevvviiiiiee i e s e e e e e e e s e e e e e e e enana s 74
5.3. Mapping built-in CAS types t0 JAVA LYPESuuuuurrrrririiiiiiiiiiiiiiieiiieitieieiiieeeieeaeeenens 74
5.4. Augmenting the generated Java COOEcoeveieiiieiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee 74
5.4.1. Keeping hand-coded augmentations when regeneratingccceeevvveeennnns 75
5.4.2. Additional CONSLIUCIOISuvuvureiiiiiiiiiiiiiiiiiiiiiiiibibibebabaeebaeaeebeeeeneneeenenenenees 75
5.4.3. Modifying generated itemMSoovuuiiiiiiie e 76

L /1= o T g o T I8/ == 76
5.5.1. Aggregate AEs and CPES as SOUrces Of tyPeScvvveeiieeiivieiiiiiiiin e eeeeeeinns 76
5.5.2. JCasGen support for type Mergingccvevvvviiiiiiiieiiiiieieeeeeeeeeeeeee e 77
5.5.3. Type Merging impacts on ComMposalilityccovveeviiiiiiinieiiiiecnee e, 77
5.5.4. Adding Features to DocumentAnnotationccevvveevvieeiiiiiiiie e, 7

5.6. Using JCas Within an ANNOLALOrcooiiiiiiiieeeeeeee e, 78
5.6.1. Creating NeW iNSLANCESuuuuiieeeiiieeeiiiin e e e e et eeeiitis e s e e e eeeeaernr e eeeeaeenaees 78
5.6.2. GEErsS aNd SELEEISuuiuiiiiiiiiiiiiitititiiii bbb 79
5.6.3. Obtaining references to INAeXeSooooeveiiiiiii i, 79
5.6.4. Updating INAEXEScooiiiiiiieieeeee e 80
5.6.5. USING HEFBIOIS .uvvuniieieiieeitiie s e e e et e et e s e e e e e e et e e s e e e e eeeannnes 80
5.6.6. Class Loaders in UIMA ... ettt ae e eeeees 81
5.6.7. Issues accessing JCas objects outside of UIMA Engine Components.............. 81

5.7. Setting up Classpath fOr JCaSuuuiiiieeiieiieiiie e e e 82
5.8. PEAR ISOIBHION ...ttt 82
6. PEAR REFEIENCE ...cieiiiiiie ettt e e e ettt e e e e e e e e ettt e e e eaaeaees 83
6.1. Packaging @ UIMA COMPONENTooeeiiiiiiiie e iieeeiiiiae e e e e e e e e e e e eeanea e e e e e e 83
6.1.1. Creating the PEAR SITUCLUIEuvvuiiiiieecieee et 83
6.1.2. Populating the PEAR SLFUCIUIEcooeiiieiieeeeeeeeeeeeeee e 84
6.1.3. Creating the installation deSCriptorovviieiiiiiiiiiiee e 85
6.1.4. Installation Descriptor: teMPlateccvvvviiiiieeieeeee e e 85
6.1.5. Packaging the PEAR structure into onefile ..., 91

6.2. Installing & PEAR PACKAJEuvveiriiiiiiiiiiiiiiiiiiiiiei it 92
6.2.1. Installing a PEAR file using the PEAR APISccoiiiiiiiiiiiiie e, 92

6.3. PEAR PaCKagE GESCIIPLON ... 93
7. XMI CAS Serialization REFEIENCEccoiiiiiiiiiiie ettt aaeeeees 95
T L XM T8O ettt e e 95
7.2. FEAUIE SITUCKUIES ...ttt e e e e e e e e e e e rnraa e e e e 95
7.3. Primitive FEAIUIES ..o 96
7.4, REFEIENCE FOAIUINESuuuitiiiiiiiiiiitititit bbb 96
7.5. Array and LiSt FEALUIESoii e e e e e e n e e e eaees 97
7.5.1. Arrays and Lists as Multi-Valued Properties...........cccccccueuieimiiiniiiiiiininnnens 97
7.5.2. Arrays and Lists as First-Class ODJECESvvveviieeiiiiiiiee e 98
7.5.3. NUll Array/List EIEMENtSccooviieiiiiiei et e e 99

7.6. Subjects of Analysis (Sofas) and VIEWSuuuieiiiiiiiiiiiiiiiiiiiiiiiiieieeeeieees 99
7.7. Linking XMI docs to ECOre TYPE SYSLEIMoevviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 99
7.8. DeElta CAS XMI FOIMALccoeiiieieeeeee e 100
8. COMPIESSEU BINArY CASES ...uuuuuuueueiiuetiuettteteteteututueetaeteeereseeeeereeeseeesseeeeaeseeeeeeeessenenenees 101
8.1. Binary CAS COMPIreSSION OVEIVIEWuuvuuiieeieieiiiiiiae e eeeeeeiiiii s e eeeaeeesnnnnnnnaeeaaas 101
8.2. Using Compressed BiNary CASESiiiieiiieeeiiieiie e e ee ettt s s s e e e eeeeattnan e e e e aeeeannns 101

UIMA References UIMA Version 3.1.0

UIMA References

8.3. Simple Delta CAS SerialiZationuuiiiieeiiieeiiiies e 102

8.4. Use Case COOKDOOKcooiiiiiiiiie i 102

O. JSON SUPOIT ...ttt ettt e ettt ettt e ettt e et e e e et e e e et e e e et et e e e ebn e e e era s 105
9.1. JSON serialization SUPPOIt OVEIVIEWcceeeviiiiiieeeeeieeiiiiis e s e e e e e eeeiein e e e e eeeeeeees 105

9.2. JISON CAS Sefi@lizZationcccoiiiiiiiiiiii 105
921 The Big PICtUrE ..o 106

0.2.2. The _CONEXE SECLIONcovviieiiiii e e e 106

9.2.3. Seridizing Feature StrUCIUIEScoevvvviiiieeeeieeeiiiee e e e e e e e e e e e e eenees 108

9.3. Organizing the FEAtUre SIIUCIUIESuueiiiieiiiiieieiieeeeeieeeeeeeeeeeeeeeeeee e eeeeeeeeeeees 110

9.4. Additional JSON CAS Seriaization featUreSceuuvuuiiiieeieiieeiieee e 111

0. 4.1, DEITA CAS ..ottt 111

9.5. Using JSON CAS Serializationcoevvuiiiiiiii e 111

9.6. JSON serialization for UIMA desCriplorsooveeviiiiniieeeeieeeiiieen e 112

OIS (1 o J=TaTo I @0 1 To 0= 1 oo 115
10.1. UIMA JVM Configuration Propertiescceevvvveuiiiiiiie i 115
10.2. Configuring iNAEX PrOtECHIONeueeeeeeeeeeeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeees 115
10.3. Properties Tale ...ooeeeeieei e eeae 115

12, UIMA RESDUITESoieeiiriiiieeeeteeessiii s s e eaaeeesstsna s s e eaaeeeesssnaaaeeeeeesssnnn s aaaeeeeennnnnnnses 119
11.1. What iS @ UIMA RESOUICE?cceeeiiiiiiiiiiiiiee ettt 119
11.1.1. Resource Inner Implementationsoovveeeieeeeriiiinne e ee e e eeeeeees 119

11.2. Sharing RESOUICESuuiieeiieeeeiiiie e e e e e e ettt s e e e e e e ettt s e e e e e e e e aaaa e e e e e e e eeannnnnnas 120
11.3. External Resources support for multiple Parameterized Instances 121

UIMA Version 3.1.0 UIMA References Y

Chapter 1. Javadocs

The details of all the public APIsfor UIMA are contained in the APl Javadocs. These are located in
the docs/api directory; the top level to open in your browser is called api/index.html.

Eclipse supports the ability to attach the Javadocs to your project. The Javadoc should already
be attached to the ui maj - exanpl es project, if you followed the setup instructionsin UIMA
Overview & SDK Setup Section 3.2, “ Setting up Eclipse to view Example Code”. To attach
Javadocs to your own Eclipse project, use the following instructions.

Note: Asan alternative, you can add the UIMA source to the UIMA binary distribution;
if you do this you not only will have the Javadocs automatically available (you can skip
the following setup), you will have the ability to step through the UIMA framework code
while debugging. To add the source, follow the instructions as described in the setup
chapter: UIMA Overview & SDK Setup Section 3.3, “Adding the UIMA source code to
thejar files’.

To add the Javadocs, open a project which isreferring to the UIMA APIsin its class path, and open
the project properties. Then pick Java Build Path. Pick the "Libraries® tab and select one of the
UIMA library entries (if you don't have, for instance, uima-corejar in thislist, it's unlikely your
code will compile). Each library entry hasasmall ">" sign onitsleft - click that to expand the view
to see the Javadoc location. If you highlight that and press edit - you can add a reference to the
Javadocs, in the following dial og:

-

(¥ Javadoc URL (2.g. ‘http:ffwww. sample-url.org/docy” or 'file: fo: myworkspace myproject/doc)

Javadoc location path: | Browse...
Validate...

™ Javadoc in archive

L

Ok | Cancel |

Once you do this, Eclipse can show you Javadocs for UIMA APIs as you work. To see the Javadoc
for aUIMA API, you can hover over the API class or method, or select it and press shift-F2, or use

the menu Navigate — Open External Javadoc, or open the Javadoc view (Window — Show View
- Other - Java - Javadoc).

In asimilar manner, you can attach the source for the UIMA framework, if you download the
source distribution. The source corresponding to particular releases is available from the Apache
UIMA web site (http://uima.apache.org) on the downloads page.

Javadocs 1

api/index.html
http://uima.apache.org

Using named Eclipse User Libraries

1.1. Using named Eclipse User Libraries

Y ou can also create a named "user library" in Eclipse containing the UIMA Jars, and attach the
Javadocs (or optionally, the sources); this named library is saved in the Eclipse workspace. Once
created, it can be added to the classpath of newly created Eclipse projects.

Use the menu option Project — Properties — Java Build Path, and then pick the Libraries tab, and
click the Add Library button. Then select User Libraries, click "Next", and pick the library you
created for the UIMA Jars.

To create this library in the workspace, use the same menu picks as above, but after you select

the User Libraries and click "Next", you can click the "New Library..." button to define your new
library. You use the "Add Jars" button and multi-select al the Jarsin the lib directory of the UIMA
binary distribution. Then you add the Javadoc attachment for each Jar. The path to useisfile/ --
insert the path to your install of UIMA -- /docs/api. After you do thisfor the first Jar, you can copy
this string to the clipboard and paste it into the rest of the Jars.

2 Javadocs UIMA Version 3.1.0

Chapter 2. Component Descriptor Reference

This chapter is the reference guide for the UIMA SDK's Component Descriptor XML schema. A
Component Descriptor (also sometimes called a Resource Specifier in the code) isan XML file
that either (a) completely describes a component, including all information needed to construct
the component and interact with it, or (b) specifies how to connect to and interact with an existing
component that has been published as a remote service. Component (also called Resource) is
ageneral term for modules produced by UIMA devel opers and used by UIMA applications.

The types of Components are: Analysis Engines, Collection Readers, CAS Initia izers', CAS
Consumers, and Collection Processing Engines. However, Collection Processing Engine
Descriptors are significantly different in format and are covered in a separate chapter, Chapter 3,
Collection Processing Engine Descriptor Reference.

Section 2.1, “Notation” [3] describes the notation used in this chapter.

Section 2.2, “Imports’ [4] describesthe UIMA SDK'simport syntax, used to allow XML
descriptorsto import information from other XML files, to allow sharing of information between
several XML descriptors.

Section 2.4, “ Analysis Engine Descriptors’ [8] describes the XML format for Analysis
Engine Descriptors. These are descriptors that completely describe Analysis Engines, including all
information needed to construct and interact with them.

Section 2.6, “ Collection Processing Component Descriptors’ [31] describes the XML format
for Collection Processing Component Descriptors. Thisincludes Collection Iterator, CAS
Initializer, and CAS Consumer Descriptors.

Section 2.7, “ Service Client Descriptors’ [35] describes the XML format for Service Client
Descriptors, which specify how to connect to and interact with resources deployed as remote
services.

Section 2.8, “ Custom Resource Specifiers’ [36] describesthe XML format for Custom
Resource Specifiers, which alow you to plug in your own Javaclass asa UIMA Resource.

2.1. Notation

This chapter uses an informal notation to specify the syntax of Component Descriptors.
The formal syntax is defined by an XML schema definition, which is contained in the file
resour ceSpeci fi er Schema. xsd, located inthe ui ma- core. j ar file.

The notation used in this chapter is:

* Andlipsis(...) inside an element body indicates that the substructure of that element has
been omitted (to be described in another section of this chapter). An example of this would
be:

<anal ysi sEngi neMet aDat a>

</ anal ysi sengi neMet aDat a>

An dlipsisimmediately after an element indicates that the element type may be may be
repeated arbitrarily many times. For example:

This component is deprecated and should not be use in new development.

Component Descriptor Reference

Imports

<par anet er >[St ri ng] </ par anet er >
<par anet er >[St ri ng] </ par anet er >

indicates that there may be arbitrarily many parameter elementsin this context.

» Bracketed expressions (e.g. [St ri ng]) indicate the type of value that may be used at that
location.

* A vertica bar, asint rue| f al se, indicates alternatives. This can be applied to literal
values, bracketed type names, and elements.

» Which elements are optional and which are required is specified in prose, not in the syntax
definition.

2.2. Imports

The UIMA SDK defines a particular syntax for XML descriptors to import information from other
XML files. When one of the following appearsin an XML descriptor:

<inport location="[URL]" /> or
<i nport nane="[Nane]" />

it indicates that information from a separate XML fileis being imported. Note that imports are
allowed only in certain places in the descriptor. In the remainder of this chapter, it will be indicated
at which points imports are allowed.

If an import specifiesal ocat i on attribute, the value of that attribute specifies the URL at which
the XML file to import will be found. This can be arelative URL, which will be resolved relative to
the descriptor containing thei npor t element, or an absolute URL. Relative URL s can be written
without a protocol/scheme (e.g., “file:”), and without a host machine name. In this case the relative
URL might look something like or g/ apache/ nypr oj / MyTypeSyst em xni .

An absolute URL iswritten with one of the following prefixes, followed by a path such asor g/
apache/ nyproj / MyTypeSystem xm :

* file/ — hasno network address

* file//l — hasan empty network address
« file://some.network.address/

For more information about URLs, please read the javadoc information for the Java class“URL”.

If an import specifies anane attribute, the value of that attribute should take the form of a Java
style dotted name (e.g. or g. apache. nyproj . MyTypeSyst em). An .xml file with this name
will be searched for in the classpath or datapath (described below). Asin Java, the dotsin the
name will be converted to file path separators. So an import specifying the example namein this
paragraph will result in asearch for or g/ apache/ nypr oj / MyTypeSyst em xni in the classpath
or datapath.

The datapath works similarly to the classpath but can be set programmatically through the resource
manager API. Application devel opers can specify a datapath during initialization, using the
following code:

4 Component Descriptor Reference UIMA Version 3.1.0

Type System Descriptors

Resour ceManager resMgr = U MAFr amewor k. newDef aul t Resour ceManager () ;
resMyr . set Dat aPat h(your Pat hSt ri ng) ;
Anal ysi sEngi ne ae =

U MAFr anewor k. pr oduceAnal ysi sengi ne(desc, resMgr, null);

The default datapath for the entire VM can be set viathe ui nma. dat apat h Java system property,
but this feature should only be used for standal one applications that don't need to run in the same
JVM as other code that may need a different datapath.

The value of a name or location attribute may be parameterized with references to external override
variablesusing the ${ vari abl e- nane} syntax.

<i mport | ocation="Annotator${w t h} Ext ernal Overrides.xm" />

If avariable is undefined the value is left unmodified and a warning message identifies the missing
variable.

Previous versions of UIMA also supported XInclude. That support didn't work in many situations,
and it is no longer supported. To include other files, please use <import>.

2.3. Type System Descriptors

A Type System Descriptor is used to define the types and features that can be represented in the
CAS. A Type System Descriptor can be imported into an Analysis Engine or Collection Processing
Component Descriptor.

The basic structure of a Type System Descriptor is as follows:

<t ypeSyst emDescri ption xm ns="http://ui ma. apache. or g/ resour ceSpeci fier">
<name> [String] </nane>
<description>[String] </ description>
<version>[String] </ versi on>
<vendor >[Stri ng] </ vendor >

<i nports>
<inmport ...>

</inports>

<types>
<t ypeDescri pti on>

</typeDescri ption>

</types>

</typeSyst enDescri pti on>

All of the subelements are optional.

2.3.1. Imports

Thei npor t s section allows this descriptor to import types from other type system descriptors.
Theimport syntax is described in Section 2.2, “Imports’ [4]. A type system may import

UIMA Version 3.1.0 Component Descriptor Reference 5

Types

any number of other type systems and then define additional types which refer to imported types.
Circular imports are allowed.

2.3.2. Types

Thet ypes element contains zero or moret ypeDescr i pt i on elements. Eacht ypeDescri pti on
has the form:

<t ypeDescri pti on>
<name>[TypeNane] </ nane>
<description>[String] </ descri ption>
<supert ypeNane>[TypeNane] </ super t ypeNanme>
<f eat ures>

</ feat ures>
</typeDescri ption>

The name element contains the name of the type. A [TypeNane] is adot-separated list of names,
where each name consists of aletter followed by any number of letters, digits, or underscores.
TypeNanes are case sensitive. Letter and digit are as defined by Java; therefore, any Unicode
letter or digit may be used (subject to the character encoding defined by the descriptor file's
XML header). The name following the final dot is considered to be the “ short name” of the type;
the preceding portion is the namespace (anal ogous to the package.class syntax used in Java).
Namespaces beginning with uima are reserved and should not be used. Examples of valid type
names are:

* test.TokenAnnotation

» org.myorg.TokenAnnotation

e com.my_company.proj123.TokenAnnotation

These would all be considered distinct types since they have different namespaces. Best practice
here isto follow the normal Java naming conventions of having namespaces be all lowercase,

with the short type names having an initial capital, but this is not mandated, so ABC. nivt yPE isan
allowed type name. While type names without namespaces (e.g. TokenAnnot at i on alone) are
allowed, but discouraged because naming conflicts can then result when combining annotators that
use different type systems.

Thedescri pti on element contains atextual description of the type. The super t ypeNane
element contains the name of the type from which it inherits (this can be set to the name of
another user-defined type, or it may be set to any built-in type which may be subclassed, such as
ui ma. t cas. Annot at i on for a new annotation type or ui ma. cas. TOP for anew type that is not
an annotation). All three of these elements are required.

2.3.3. Features

Thef eat ur es element of at ypeDescri pti on isrequired only if the type we are specifying
introduces new features. If thef eat ur es element is present, it contains zero or more
f eat ur eDescri pti on elements, each of which has the form:

<f eat ureDescri pti on>

<nanme>[Nane] </ nane>

<description>[String] </ description>

<r angeTypeNane>[Nane] </ r angeTypeNane>

<el enent Type>[Nane] </ el enent Type>

<mul ti pl eRef erencesAl | owed>t rue| f al se</ mul ti pl eRef er encesAl | owed>
</ featureDescription>

6 Component Descriptor Reference UIMA Version 3.1.0

String Subtypes

A feature's name follows the same rules as a type short name — aletter followed by any number of
letters, digits, or underscores. Feature names are case sensitive.

Thefeature'sr angeTypeNane specifies the type of value that the feature can take. This may be the
name of any type defined in your type system, or one of the predefined types. All of the predefined
types have names that are prefixed with ui ma. cas or ui ma. t cas, for example:

ui ma. cas. TOP
ma. cas. String
ui ma. cas. Long
ui ma. cas. FSArr ay
ui ma. cas. StringLi st
ui ma. t cas. Annot ati on.

For acomplete list of predefined types, see the CAS APl documentation.

Theel enent Type of afeatureis optional, and applies only when ther angeTypeNane is

ui ma. cas. FSArray or ui ma. cas. FSLi st Theel ement Type specifies what type of value
can be assigned as an element of the array or list. This must be the name of a non-primitive type.
If omitted, it defaultsto ui ma. cas. TOP, meaning that any FeatureStructure can be assigned as
an element the array or list. Note: depending on the CAS Interface that you use in your code, this
constraint may or may not be enforced. Note: At run time, the elementType is available from a
runtime Feature object (using the a_f eat ur e_obj ect . get Range() . get Conponent Type()
method) only when specified for the ui ma. cas. FSAr r ay ranges; it isn't available for

ui ma. cas. FSLi st ranges.

Thenul ti pl eRef er encesAl | owed feature is optional, and applies only when the
rangeTypeNane isan array or list type (it appliesto arrays and lists of primitive aswell as
non-primitive types). Setting this to false (the default) indicates that this feature has exclusive
ownership of the array or list, so changesto the array or list are localized. Setting thisto true
indicates that the array or list may be shared, so changesto it may affect other objectsin the CAS.
Note: there is currently no guarantee that the framework will enforce this restriction. However, this
setting may affect how the CASis serialized.

2.3.4.

String Subtypes

There isone other specia type that you can declare —a subset of the String type that specifies a
restricted set of allowed values. Thisis useful for features that can have only certain String values,
such as parts of speech. Hereis an example of how to declare such atype:

<t ypeDescri pti on>
<nanme>Par t OF Speech</ nanme>
<description>A part of speech. </description>
<supert ypeNanme>ui ma. cas. Stri ng</ supert ypeNane>
<al | owedVal ues>
<val ue>
<string>NN</string>
<descri pti on>Noun, singul ar or nass.</description>
</ val ue>
<val ue>
<string>NNS</string>
<descri pti on>Noun, plural.</description>
</ val ue>
<val ue>
<string>VB</string>
<descri pti on>Verb, base form </description>
</ val ue>

UIMA Version 3.1.0 Component Descriptor Reference 7

Analysis Engine Descriptors

</ al | onedVal ues>
</typeDescri ption>

2.4. Analysis Engine Descriptors

Analysis Engine (AE) descriptors completely describe Analysis Engines. There are two basic types
of Analysis Engines— Primitive and Aggregate. A Primitive Analysis Engine is a container for
asingle annotator, where as an Aggregate Analysis Engine is composed of a collection of other
Analysis Engines. (For more information on this and other terminology, see UIMA Overview &
SDK Setup Chapter 2, UIMA Conceptual Overview).

Both Primitive and Aggregate Analysis Engines have descriptors, and the two types of descriptors
have some similarities and some differences. Section 2.4.1, “Primitive Analysis Engine
Descriptors’ [8] discusses Primitive Analysis Engine descriptors. Section 2.4.2, “ Aggregate
Analysis Engine Descriptors’ [18] then describes how Aggregate Analysis Engine descriptors

are different.

2.4.1. Primitive Analysis Engine Descriptors

2.4.1.1. Basic Structure

<?xm version="1.0" encodi ng="UTF-8" ?>
<anal ysi sEngi neDescri ption
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">
<f ramewor kI npl ement at i on>or g. apache. ui ma. j ava</ f r amewor kI npl ement at i on>

<primtive>true</primtive>
<annot at or | npl enent ati onNarme> [String] </annotatorl npl enent ati onNane>

<anal ysi sengi neMet aDat a>

</ .a.n.al ysi sEngi neMet aDat a>

<ext er nal Resour ceDependenci es>
</ ext er nal Resour ceDependenci es>
<r esour ceManager Confi gur ati on>
</ r é.sour ceManager Conf i gur ati on>

</ anal ysi sEngi neDescri pti on>

The document begins with a standard XML header. The recommended root tag is
<anal ysi sEngi neDescri pti on>, although <t aeDescri pti on>isalso alowed for backwards
compatibility.

Within the root element we declare that we are using the XML namespaceht t p: / /
ui ma. apache. or g/ resour ceSpeci fi er. Itisrequired that this namespace be used; otherwise,
the descriptor will not be able to be validated for errors.

Thefirst subelement, <f r amewor kI npl enent at i on>, currently must have the value
or g. apache. ui ma. j ava, or or g. apache. ui ma. cpp. In future versions, there may be other
framework implementations, or perhaps implementations produced by other vendors.

8 Component Descriptor Reference UIMA Version 3.1.0

Primitive Analysis Engine Descriptors

The second subelement, <pri ni ti ve>, containsthe Boolean valuet r ue, indicating that this
XML document describes a Primitive Analysis Engine.

The next subelement, <annot at or | npl enent at i onName> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class name for
Javaimplementations, or the name of a .dll or .so file for C++ implementations.

The <anal ysi sEngi neMet aDat a> object contains descriptive information about the analysis
engine and what it does. It is described in Section 2.4.1.2, “Analysis Engine MetaData” [9].

The <ext er nal Resour ceDependenci es> and <r esour ceManager Conf i gur at i on>
elements declare the external resource files that the analysis engine relies upon. They are
optional and are described in Section 2.4.1.8, “External Resource Dependencies’ [16] and
Section 2.4.1.9, “Resource Manager Configuration” [16].

2.4.1.2. Analysis Engine MetaData

<anal ysi sEngi neMet aDat a>
<name> [String] </nane>
<description>[String] </ description>
<version>[String] </ versi on>
<vendor >[St ri ng] </ vendor >
<configurati onParameters> ... </configurationParaneters>
<confi gurati onPar anet er Setti ngs>
</ confi gurati onPar anet er Setti ngs>
<typeSystenmDescription> ... </typeSystenmDescription>
<typePriorities> ... </typePriorities>
<fslndexCol | ection> ... </fslndexColl ection>
<capabilities> ... </capabilities>

<oper ati onal Properties> ... </operational Properties>

</ anal ysi sEngi neMet aDat a>

Theanal ysi sEngi neMet aDat a element contains four ssimple string fields— nane,

descri ption, versi on, and vendor . Only the nane field isrequired, but providing values for
the other fields is recommended. The nane field isjust a descriptive name meant to be read by
users; it does not need to be unique across all Analysis Engines.

Configuration parameters are described in Section 2.4.3, “ Configuration Parameters’ [22].
The other sub-elements—t ypeSyst enDescri ption,typePriorities,fslndexes,

capabi l i ti es andoper ati onal Properti es are described in the following sections. The only
one of thesethat isrequired iscapabi | i ti es; the others are optional.

2.4.1.3. Type System Definition

<t ypeSyst enDescri pti on>

<name> [String] </nane>

UIMA Version 3.1.0 Component Descriptor Reference 9

Primitive Analysis Engine Descriptors

<descri ption>[String] </ descri ption>
<version>[String] </ ver si on>
<vendor >[Stri ng] </ vendor >

<i nport s>
<inmport ...>

</inports>

<types>
<t ypeDescri pti on>

</iybeDescription>

</types>

</ typeSyst enDescri pti on>

A typeSyst emDescri pti on element defines atype system for an Analysis Engine. The syntax
for the element is described in Section 2.3, “Type System Descriptors’ [5].

The recommended usageistoi nport an external type system, using the import syntax described
in Section 2.2, “Imports’ [4] of this chapter. For example:

<t ypeSyst enDescri pti on>
<i nport s>
<inport | ocation="M/SharedTypeSystem xnl ">
</inports>
</ typeSyst enDescri pti on>

This allows several AEsto share a single type system definition. Thefile
MyShar edTypeSyst em xnml would then contain the full type system information, including the
name, descri pti on,vendor, versi on,andt ypes.

2.4.1.4. Type Priority Definition

<typePriorities>
<name> [String] </nane>
<description>[String] </ description>
<version>[String] </ ver si on>
<vendor >[St ri ng] </ vendor >

<i nport s>
<inmport ...>

</iﬁﬁorts>
<priorityLists>
<priorityList>
<t ype>[TypeNane] </t ype>
<t ype>[TypeNane] </t ype>

</priorityList>

</priorityLists>

Component Descriptor Reference UIMA Version 3.1.0

Primitive Analysis Engine Descriptors

</[typePriorities>

The<typePriorities>element contains zero or more<pri ori t yLi st > elements; each
<priorityList> containszero or moretypes. Like atype system, atype priorities definition may
also declare a name, description, version, and vendor, and may import other type priorities. See
Section 2.2, “Imports’ [4] for the import syntax.

Type priority is used when iterating over feature structuresin the CAS. For example, if the CAS
contains a Sent ence annotation and a Par agr aph annotation with the same span of text (i.e. a
one-sentence paragraph), which annotation should be returned first by an iterator? Probably the
Paragraph, since it is conceptually “bigger,” but the framework does not know that and must be
explicitly told that the Paragraph annotation has priority over the Sentence annotation, like this:

<typePriorities>
<priorityList>
<t ype>or g. myor g. Par agr aph</ t ype>
<t ype>or g. nyor g. Sent ence</t ype>
</priorityList>
</[typePriorities>

All of the<pri orityLi st > elements defined in the descriptor (and in all component descriptors
of an aggregate analysis engine descriptor) are merged to produce a single priority list.

Subtypes of types specified here are also ordered, unless overridden by another user-specified type
ordering. For example, if you specify type A comes before type B, then subtypes of A will come
before subtypes of B, unless there is an overriding specification which declares some subtype of B
comes before some subtype of A.

If there are inconsistencies between the priority list (type A declared before type B in one priority
list, and type B declared before type A in another), the framework will throw an exception.

User defined indexes may declare if they wish to use the type priority or not; see the next section.

2.4.1.5. Index Definition

<f sl ndexCol | ecti on>
<name>[Stri ng] </ nane>
<description>[String] </ descri ption>
<version>[String] </ ver si on>
<vendor >[St ri ng] </ vendor >

<i nport s>
<inmport ...>

</i ﬁﬁorts>

<f sl ndexes>
<f sl ndexDescri pti on>
</st ndexDescri pti on>
<f sl ndexDescri pti on>
</fs| ndexDescri pti on>

</ f sl ndexes>

UIMA Version 3.1.0 Component Descriptor Reference 11

Primitive Analysis Engine Descriptors

</ fsl ndexCol | ecti on>

Thef sl ndexCol | ect i on element declares Feature Sructure Indexes, each of which defined

an index that holds feature structures of a given type. Information in the CAS is always accessed
through an index. There isabuilt-in default annotation index declared which can be used to access
instances of type ui ma. t cas. Annot at i on (or its subtypes), sorted based on their begi n and
end features, and the type priority ordering (if specified). For all other types, thereis a defaullt,
unsorted (bag) index. If thereis aneed for a specialized index it must be declared in this element of
the descriptor. See Section 4.7, “Indexes and Iterators’ for details on FS indexes.

Like type systems and type priorities, an f s| ndexCol | ect i on can declare anane,
descri pti on, vendor, andver si on, and may import other f sl ndexCol | ect i ons. The import
syntax is described in Section 2.2, “Imports’ [4].

AnfslndexCol | ecti on may also define zero or moref sl ndexDescri pti on elements, each of
which defines asingle index. Each f s| ndexDescri pt i on hasthe form:

<f sl ndexDescri pti on>

<l abel >[Stri ng] </ | abel >
<t ypeName>[TypeNane] </ t ypeNanme>
<ki nd>sort ed| bag| set </ ki nd>

<keys>

<f sl ndexKey>

<f eat ur eNanme>[Nane] </ f eat ur eNanme>

<conpar at or >st andar d| r ever se</ conpar at or >
</ f sl ndexKey>

<f sl ndexKey>
<typePriority/>
</ f sl ndexKey>

</ keys>
</ f sl ndexDescri pti on>

Thel abel element defines the name by which applications and annotators refer to thisindex. The
t ypeNane element contains the name of the type that will be contained in thisindex. This must
match one of the type names defined in the <t ypeSyst enDescri pti on>.

There are three possible values for the <ki nd> of index. Sorted indexes enforce an ordering of
feature structures, based on defined keys. Bag indexes do not enforce ordering, and have no defined
keys. Set indexes do not enforce ordering, but use defined keys to specify equivalence classes;
addTolndexes will not add a Feature Structure to a set index if its keys match those of an entry of
the same type already in the index. If the <ki nd>element is omitted, it will default to sorted, which
is the most common type of index.

Prior to version 2.7.0, the bag and sorted indexes stored duplicate entries for the same identical

FS, if it was added to the indexes multiple times. As of version 2.7.0, thisis changed; a second or
subsequent add to index operation has no effect. This has the consegquence that a remove operation
now guarantees that the particular FSis removed (as opposed to only being able to say that one (of
perhaps many duplicate entries) is removed). Since sending to remote annotators only adds entries
to indexes at most once, this behavior is consistent with that.

12

Component Descriptor Reference UIMA Version 3.1.0

Primitive Analysis Engine Descriptors

Note that even after this change, there is still adistinct difference in meaning for bag and set
indexes. The set index uses equal defined key values plus the type of the Feature Structure to
determine equivalence classes for Feature Structures, and will not add a Feature Structure if it has
equal key values and the same type to an entry already in there.

It is possible, however, that users may be depending on having multiple instances of the

identical FeatureStructure in the indicies. Therefore, UIMA uses a VM defined property,
"uimaalow_duplicate add to indexes', which (if defined whend UIMA isloaded) will restore the
previous behavior.

Note: If duplicates are allowed, then the proper way to update an indexed Feature
Structureisto

» remove *all* instances of the FS to be updated
* update the features

* re-add the Feature Structure to the indexes (perhaps multiple times, depending on
the details of your logic).

Note: Thereisusually no need to explicitly declare aBag index in your descriptor. As of
UIMA v2.1, if you do not declare any index for atype (or any of its supertypes), a Bag
index will be automatically created if an instance of that type is added to the indexes.

An Sorted or Set index may define zero or more keys. These keys determine the sort order of

the feature structures within a sorted index, and partially determine equality for set indexes (the
equality measure always includes testing that the types are the same). Bag indexes do not use keys,
and equality is determined by Feature Structure identity (that is, two elements are considered equal
if and only if they are exactly the same feature structure, located in the same place in the CAS).
Keys are ordered by precedence —the first key is evaluated first, and subsequent keys are evaluated
only if necessary.

Each key isrepresented by an f s| ndexKey element. Most f s| ndexKeys contains a

f eat ur eName and aconpar at or . Thef eat ur eName must match the name of one of the features
for the type specified in the <t ypeNane> element for thisindex. The comparator defines how the
features will be compared —avalue of st andar d means that features will be compared using the
standard comparison for their data type (e.g. for numerical types, smaller values precede larger
values, and for string types, Unicode string comparison is performed). A value of r ever se means
that features will be compared using the reverse of the standard comparison (e.g. for numerical
types, larger values precede smaller values, etc.). For Set indexes, the comparator direction is
ignored — the keys are only used for the equality testing.

Each key used in comparisons must refer to a feature whose range type is Boolean, Byte, Short,
Integer, Long, Float, Double, or String.

Thereisasecond type of akey, one which contains only the <t ypePri ori t y/ >. When thiskey is

used, it indicates that Feature Structures will be compared using the type priorities declared in the
<t ypePrioriti es> section of the descriptor.

2.4.1.6. Capabilities

<capabilities>
<capability>

<i nput s>

UIMA Version 3.1.0 Component Descriptor Reference 13

Primitive Analysis Engine Descriptors

<type al | Annot at or Feat ures="true| fal se"[TypeNane] </t ype>
<f eat ur e>[TypeNane] : [Nane] </ f eat ur e>
</i nput s>

<out put s>
<type al | Annot at or Feat ures="true| fal se"[TypeNane] </t ype>

<f eat ur e>[TypeNane] : [Nane] </ f eat ur e>
</ out put >
<i nput Sof as>

<sof aNanme>[nane] </ sof aNanme>

</i ﬁbut Sof as>

<out put Sof as>
<sof aName>[nane] </ sof aNane>

</ out put Sof as>

<l anguagesSupport ed>
<l anguage>[| SO Language | D] </ | anguage>

</ a.n.gijagesSupported>
</ capability>

<capability>

</ capabi | i ty>

</ capabilities>

The capabilities definition is used by the UIMA Framework in several ways, including setting up
the Results Specification for process calls, routing control for aggregates based on language, and as
part of the Sofa mapping function.

Thecapabi | i ti es element contains one or more capabi | i ty elements. In Version 2 and
onwards, only one capability set should be used (multiple sets will continue to work for awhile, but
they're not logically consistently supported).

Each capabi | i t y containsi nput s, out put s, | anguagesSupport ed, i nput Sof as,
and out put Sof as. Inputs and outputs element are required (though they may be empty);
<l anguagesSupport ed>, <i nput Sof as>, and <out put Sof as> are optional.

Both inputs and outputs may contain a mixture of type and feature elements.

<t ype. . . > elements contain the name of one of the types defined in the type system or one of
the built in types. Declaring atype as an input means that this component expects instances of this
typeto bein the CASwhen it receivesit to process. Declaring a type as an output means that this
component creates new instances of thistypein the CAS.

Thereisan optional attribute al | Annot at or Feat ur es, which defaultsto false if omitted. The
Component Descriptor Editor tool defaults this to true when anew typeis added to the list of inputs
and/or outputs. When this attribute is true, it specifiesthat al of the type's features are also declared

14

Component Descriptor Reference UIMA Version 3.1.0

Primitive Analysis Engine Descriptors

asinput or output. Otherwise, the features that are required as inputs or populated as outputs must
be explicitly specified in feature elements.

<f eat ure. .. > elements contain the “fully-qualified” feature name, which isthe type name
followed by acolon, followed by the feature name, e.g. or g. myor g. TokenAnnot ati on: | enma.
<f eature. .. > elementsinthe <i nput s> section must also have a corresponding type declared
asaninput. In output sections, thisis not required. If the typeis not specified as an output, but
afeature for that typeis, this means that existing instances of the type have the values of the
specified features updated. Any type mentioned in a<f eat ur e> element must be either specified
as an input or an output or both.

| anguage elements contain one of the SO language identifiers, such as en for English, or en- US
for the United States dialect of English.

Thelist of language codes can be found here: http://www.ics.uci.edu/pub/ietf/http/rel ated/i so639.txt
and the country codes here: http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

<i nput Sof as> and <out put Sof as> declare sofa names used by this component. All Sofa names
must be unique within a particular capability set. A Sofa name must be an input or an output, and
cannot be both. It is an error to have a Sofa name declared as an input in one capability set, and aso
have it declared as an output in another capability set.

A <sof aName> iswritten as a simple Java-style identifier, without any periods in the name, except
that it may bewrittentoendin“. *”. If written in this manner, it specifies a set of Sofa names, all
of which start with the base name (the part before the .*) followed by a period and then an arbitrary
Javaidentifier (without periods). Thisform is used to specify in the descriptor that the component
could generate an arbitrary number of Sofas, the exact names and numbers of which are unknown
before the component is run.

2.4.1.7. OperationalProperties

Components can specify specific operational properties that can be useful in deployment. The
following are available:

<oper ati onal Properties>
<nmodi fi esCas> true|fal se </ nodifiesCas>
<mul ti pl eDepl oynment Al | owed> true|fal se </ nultipl eDepl oyment Al | owed>
<out put sNewCASes> true| fal se </out put sNewCASes>

</ oper ati onal Properti es>

Modi fi esCas, if false, indicates that this component does not modify the CAS. If it is not
specified, the default value is true except for CAS Consumer components.

mul ti pl eDepl oynent Al | owed, if true, allows the component to be deployed multiple timesto
increase performance through scale-out techniques. If it is not specified, the default value istrue,
except for CAS Consumer and Collection Reader components.

Note: If you wrap one or more CAS Consumers inside an aggregate as

the only components, you must explicitly specify in the aggregate the

mul ti pl eDepl oynent Al | owed property as false (assuming the CAS Consumer
components take the default here); otherwise the framework will complain about
inconsistent settings for these.

out put sNewCASes, if true, allows the component to create new CA Ses during processing, for
example to break alarge artifact into smaller pieces. See UIMA Tutorial and Developers Guides
Chapter 7, CAS Multiplier Developer's Guide for details.

UIMA Version 3.1.0 Component Descriptor Reference 15

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Primitive Analysis Engine Descriptors

2.4.1.8. External Resource Dependencies

<ext er nal Resour ceDependenci es>
<ext er nal Resour ceDependency>
<key>[Stri ng] </ key>
<description>[String] </description>
<interfaceNanme>[String] </interfaceNane>
<optional >true| fal se</optional >
</ ext er nal Resour ceDependency>

<ext er nal Resour ceDependency>

</ ext er nal Resour ceDependency>

</ ext er nal Resour ceDependenci es>

A primitive annotator may declare zero or more <ext er nal Resour ceDependency> elements.
Each dependency has the following elements:

» key —the string by which the annotator code will attempt to access the resource. Must be
unique within this annotator.

» descri ption —atextua description of the dependency.

* i nt er f aceNane —the fully-qualified name of the Javainterface through which the
annotator will accessthe data. Thisis optional. If not specified, the annotator can only get an
InputStream to the data.

» optional —whether the resourceis optional. If false, an exception will be thrown if no
resource is assigned to satisfy this dependency. Defaults to false.

2.4.1.9. Resource Manager Configuration

<r esour ceManager Conf i gur ati on>

<name>[St ri ng] </ nane>
<description>[String] </ descri ption>
<version>[String] </ version>

<vendor >[St ri ng] </ vendor >

<i nport s>
<inmport ...>

</inports>
<ext er nal Resour ces>

<ext er nal Resour ce>

<name>[St ri ng] </ nanme>

<description>[String] </ description>

<fil eResour ceSpecifier>

<fileUl>URL]</fileUrl>

</fil eResour ceSpecifier>

<i npl ement at i onNanme>[St ri ng] </i npl ement at i onNanme>
</ ext er nal Resour ce>

</ ext er nal Resour ces>

16 Component Descriptor Reference UIMA Version 3.1.0

Primitive Analysis Engine Descriptors

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>[Stri ng] </ key>
<r esour ceNanme>[Stri ng] </ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>

</ ext er nal Resour ceBi ndi ngs>

</ resour ceManager Conf i gur ati on>

This element declares externa resources and binds them to annotators' external resource
dependencies.

Ther esour ceManager Conf i gur at i on element may optionally contain ani nport,
which allows resource definitions to be stored in a separate (shareable) file. See Section 2.2,
“Imports’ [4] for details.

Theext er nal Resour ces element contains zero or more ext er nal Resour ce elements, each of
which consists of:

» nane —the name of the resource. This name isreferred to in the bindings (see below).
Resource names need to be unique within any Aggregate Analysis Engine or Collection
Processing Engine, so the Java-like or g. nyor g. myconponent . MyResour ce syntax is
recommended.

» descri pti on —English description of the resource.

» Resource Specifier — Declares the location of the resource. There are different possibilities
for how thisis done (see below).

* i npl enent ati onName — The fully-qualified name of the Java class that will be instantiated
from the resource data. Thisis optional; if not specified, the resource will be accessible
as an input stream to the raw data. If specified, the Java class must implement the
i nt er f aceNane that is specified in the External Resource Dependency to whichiitis
bound.

One possibility for the resource specifier isa<f i | eResour ceSpeci fi er >, as shown above. This
simply declares a URL to the resource data. This support is built on the Java class URL and its
method URL .openStream(); it supports the protocols “file”, “http” and “jar” (for referring to files
in jars) by default, and you can plug in handlers for other protocols. The URL hasto start with file:
(or some other protocol). It isrelative to either the classpath or the “ data path”. The data path works
like the classpath but can be set programmatically viaResour ceManager . set Dat aPat h() .
Setting the Java System property ui ma. dat apat h also works.

file:con apache. d.t xt isarelative path; relative paths for resources are resolved using the
classpath and/or the datapath. For the file protocol, URL s starting with file:/ or file:/// are absolute.
Notethat fil e: // or g/ apache/ d. t xt iSNOT an absolute path starting with “org”. The “//”
indicates that what follows is a host name. Therefore if you try to use this URL it will complain that
it can't connect to the host “org”

The URL value may contain references to externa override variables using the ${ var i abl e-
nane} syntax, eg.file:conml ${dictUrl}.txt.If avariableisundefined the valueisleft
unmodified and a warning message identifies the missing variable.

Another optionisa<fi | eLanguageResour ceSpeci fi er >, which isintended to support
resources, such as dictionaries, that depend on the language of the document being processed.
Instead of asingle URL, aprefix and suffix are specified, like this:

UIMA Version 3.1.0 Component Descriptor Reference 17

Aggregate Analysis Engine Descriptors

<fil eLanguageResour ceSpeci fi er>
<fileUrl Prefix>file:Fil eLanguageResource_i npl Test _data_</fil eUrl Prefi x>
<fileUrl Suffix> dat</fileUrl Suffix>

</ fil eLanguageResour ceSpeci fi er>

The URL of the actual resource is then formed by concatenating the prefix, the language
of the document (as an | SO language code, e.g. en or en- US — see Section 2.4.1.6,
“Capabilities’ [13] for more information), and the suffix.

A third option isacust onmResour ceSpeci f i er, which allows you to plug in an arbitrary Java
class. See Section 2.8, “Custom Resource Specifiers’ [36] for more information.

The ext er nal Resour ceBi ndi ngs element declares which resources are bound to which
dependencies. Each ext er nal Resour ceBi ndi ng consists of:

* key —identifies the dependency. For a binding declared in a primitive analysis
engine descriptor, this must match the value of the key element of one of the
ext er nal Resour ceDependency elements. Bindings may also be specified in aggregate
analysis engine descriptors, in which case a compound key is used — see Section 2.4.2.4,
“External Resource Bindings’ [21] .

* resour ceNane —the name of the resource satisfying the dependency. This must match the
value of the nane element of one of the ext er nal Resour ce declarations.

A given resource dependency may only be bound to one external resource; one external resource
may be bound to many dependencies — to allow resource sharing.

2.4.1.10. Environment Variable References

In severa places throughout the descriptor, it is possible to reference environment variables. In
Java, these are actually references to Java system properties. To reference system environment
variables from a Java analysis engine you must pass the environment variables into the Java virtual
machine by using the - D option on thej ava command line.

The syntax for environment variable referencesis <envVar Ref >[Var i abl eNane] </
envVar Ref >, where [VariableName] is any valid Java system property hame. Environment
variable references are valid in the following places:

» Thevalue of aconfiguration parameter (String-valued parameters only)

» The<annot at or | npl enent at i onNanme> element of a primitive AE descriptor

* The <name> element within <anal ysi sEngi neMet aDat a>

» Withina<fil eResour ceSpeci fier>or<fil eLanguageResour ceSpecifier>

For example, if the value of a configuration parameter were specified as:

<stri ng><envVar Ref >TEMP_DI R</ envVar Ref >/t enp. dat </ st ri ng>, and the value of the
TEMP_DI R Java System property werec: / t enp, then the configuration parameter's value would
evaluatetoc: /tenp/ t enp. dat .

Note: The Component Descriptor Editor does not support environment variable
references. If you need to, however, you can use the sour ce tab view in the CDE to
manually add this notation.

2.4.2. Aggregate Analysis Engine Descriptors

Aggregate Analysis Engines do not contain an annotator, but instead contain one or more
component (also called delegate) analysis engines.

18

Component Descriptor Reference UIMA Version 3.1.0

Aggregate Analysis Engine Descriptors

Aggregate Analysis Engine Descriptors maintain most of the same structure as Primitive Analysis
Engine Descriptors. The differences are:

» An Aggregate Analysis Engine Descriptor contains the element <pri mi ti ve>f al se</
primtive>ratherthan<primitive>true</prinitive>.

* An Aggregate Analysis Engine Descriptor must not include a
<annot at or | npl enent at i onNanme> element.

 Inplace of the <annot at or | npl enent at i onNane>, an Aggregate Analysis Engine
Descriptor must have a<del egat eAnal ysi sEngi neSpeci f i er s> element. See
Section 2.4.2.1, “ Delegate Analysis Engine Specifiers’ [19].

* An Aggregate Analysis Engine Descriptor may provide a<f | owCont r ol | er > element
immediately following the <del egat eAnal ysi sEngi neSpeci fi er s>. Section 2.4.2.2,
“FlowController” [20].

» Under the analysisEngineM etaData el ement, an Aggregate Analysis Engine Descriptor
may specify an additional element -- <f | owConst r ai nt s>. See Section 2.4.2.3,
“FlowConstraints’ [20]. Typically only one of <f | owCont r ol | er > and
<f | owConst r ai nt s> are specified. If both are specified, the <f | owCont r ol | er > takes
precedence, and the flow controller implementation can use the information in specified in
the <f | owConst r ai nt s> as part of its configuration input.

* An aggregate Analysis Engine Descriptors must not contain a
<t ypeSyst enDescri pti on> element. The Type System of the Aggregate Analysis Engine
is derived by merging the Type System of the Analysis Engines that the aggregate contains.

» Within aggregate Analysis Engine Descriptors, <conf i gur at i onPar amet er >
elements may define <over ri des>. See Section 2.4.3.3, “ Configuration Parameter
Overrides’ [27] .

» Externa Resource Bindings can bind resources to dependencies declared by any delegate
AE within the aggregate. See Section 2.4.2.4, “Externa Resource Bindings’ [21].

» An additional optiona element, <sof aMappi ngs>, may be included.

2.4.2.1. Delegate Analysis Engine Specifiers

<del egat eAnal ysi sEngi neSpeci fi er s>
<del egat eAnal ysi sengi ne key="[String]">
<anal ysi sEngi neDescri pti on>. .. </anal ysi sengi neDescri pti on> |
<inport .../>
</ del egat eAnal ysi sEngi ne>
<del egat eAnal ysi sengi ne key="[String]">

</ del egat eAnal ysi sEngi ne>

</ del egat eAnal ysi sEngi neSpeci fi er s>

Thedel egat eAnal ysi sEngi neSpeci fi er s element contains one or more
del egat eAnal ysi sEngi ne elements. Each of these must have a unique key, and must contain
either:

UIMA Version 3.1.0 Component Descriptor Reference 19

Aggregate Analysis Engine Descriptors

* A complete anal ysi sEngi neDescri pti on element describing the delegate analysis
engine OR

* Ani nport element giving the name or location of the XML descriptor for the delegate
analysis engine (see Section 2.2, “Imports’ [4]).

The latter is the much more common usage, and is the only form supported by the Component
Descriptor Editor tool.

2.4.2.2. FlowController

<fl owControll er key="[String]">
<fl owControl | erDescription>...</flowControl|erDescription> |
<inport .../>
</fl owControll er>

The optional f | owCont r ol | er element identifies the descriptor of the FlowController component
that will be used to determine the order in which delegate Analysis Engine are called.

Thekey attribute is optional, but recommended; it assigns the FlowController an identifier that can
be used for configuration parameter overrides, Sofa mappings, or external resource bindings. The
key must not be the same as any of the delegate analysis engine keys.

Aswith the del egat eAnal ysi sEngi ne element, thef | owCont r ol | er element may contain
either acompletef | owControl | er Descri pti on orani nport, but theimport is recommended.
The Component Descriptor Editor tool only supports imports here.

2.4.2.3. FlowConstraints

If a<fl owCont rol | er>isnot specified, the order in which delegate Analysis Engines are called
within the aggregate Analysis Engine is specified using the <f | owConst r ai nt s> element, which
must occur immediately following the conf i gur at i onPar anet er Set ti ngs element. If a

<f | owCont r ol | er > is specified, then the <f | owConst r ai nt s> are optional. They can be used
to pass an ordering of delegate keysto the <f | owCont rol | er >.

There are two options for flow constraints -- <f i xedFl ow> or <capabi | i t yLanguageF!| ow>.
Each is discussed in a separate section below.

Fixed Flow

<f | onConst r ai nt s>
<fi xedFl ow>
<node>[St ri ng] </ node>
<node>[St ri ng] </ node>

</ fi xedFl ow>
</ fl owConstr ai nt s>

Thef | owConst rai nt s element must be included immediately following the
confi gurati onPar anet er Set ti ngs element.

Currently thef | owConst r ai nt s element must contain af i xedFl ow element. Eventually, other
types of flow constraints may be possible.

Component Descriptor Reference UIMA Version 3.1.0

Aggregate Analysis Engine Descriptors

Thefi xedFl owelement contains one or more node elements, each of which contains
an identifier which must match the key of a delegate analysis engine specified in the
del egat eAnal ysi sEngi neSpeci fi er s element.

Capability Language Flow

<f| onConst r ai nt s>
<capabi |l i t yLanguageFl ow>
<node>[Stri ng] </ node>
<node>[St ri ng] </ node>

</ capabi | i t yLanguageF| ow>
</ fl owConst r ai nt s>

If you use <capabi | i t yLanguageFl ow>, the delegate Analysis Engines named by the <node>
elements are called in the given order, except that a delegate Analysis Engine is skipped if any of
the following are true (according to that Analysis Engine's declared output capabilities):

« It cannot produce any of the aggregate Analysis Engine's output capabilities for the language
of the current document.

 All of the output capabilities have already been produced by an earlier Analysis Enginein
the flow.

For example, if two annotators produce or g. myor g. TokenAnnot at i on feature structures for the
same language, these feature structures will only be produced by the first annotator in the list.

Note: The flow analysis uses the specific types that are specified in the output capabilities,
without any expansion for subtypes. So, if you expect atype TT and another type SubTT
(which isasubtype of TT) in the output, you must include both of them in the output
capabilities.

2.4.2.4. External Resource Bindings

Aggregate analysis engine descriptors can declare resource bindings that bind resources

to dependencies declared in any of the delegate analysis engines (or their subcomponents,
recursively) within that aggregate. This allows resource sharing. Any binding at this level overrides
(supersedes) any binding specified by a contained component or their subcomponents, recursively.

For example, consider an aggregate Analysis Engine Descriptor that contains delegate
Analysis Engines with keys annot at or 1 and annot at or 2 (as declared in the

<del egat eAnal ysi sEngi ne> element — see Section 2.4.2.1, “Delegate Analysis Engine
Specifiers’ [19]), where annot at or 1 declares aresource dependency with key myResour ce
and annot at or 2 declares a resource dependency with key someResour ce .

Within that aggregate Analysis Engine Descriptor, the following
r esour ceManager Conf i gur at i on would bind both of those dependencies to a single external
resource file.

<r esour ceManager Conf i gur ati on>

<ext er nal Resour ces>
<ext er nal Resour ce>
<name>Exanpl eResour ce</ name>
<fil eResour ceSpecifier>
<fileUrl>file: MyResourceFile.dat</fileUrl>

UIMA Version 3.1.0 Component Descriptor Reference 21

Configuration Parameters

</fil eResourceSpecifier>
</ ext er nal Resour ce>
</ ext er nal Resour ces>

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>annot at or 1/ nyResour ce</ key>
<r esour ceNane>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>
<ext er nal Resour ceBi ndi ng>
<key>annot at or 2/ someResour ce</ key>
<r esour ceNanme>Exanpl eResour ce</ r esour ceNanme>
</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi ngs>

</ resour ceManager Conf i gur ati on>

The syntax for the ext er nal Resour ces declaration is exactly the same as described previously.
In the resource bindings note the use of the compound keys, e.g. annot at or 1/ nyResour ce. This
identifies the resource dependency key nyResour ce within the annotator with key annot at or 1.
Compound resource dependencies can be multiple levels deep to handle nested aggregate analysis
engines.

2.4.2.5. Sofa Mappings

Sofa mappings are specified between Sofa names declared in this aggregate descriptor as part of
the <capabi | i t y> section, and the Sofa names declared in the del egate components. For purposes
of the mapping, al the declarations of Sofasin any of the capability sets contained within the
<capabi |l i ti es> element are considered together.

<sof aMappi ngs>
<sof aMappi ng>
<conponent Key>[keyNane] </ conponent Key>
<conponent Sof aNanme>[sof aNane] </ conponent Sof aNane>
<aggr egat eSof aNane>[sof aNane] </ aggr egat eSof aNane>
</ sof aMappi ng>

</§6fawhppings>

The <componentSofaName> may be omitted in the case where the component is not aware
of Multiple Views or Sofas. In this case, the UIMA framework will arrange for the specified
<aggregateSofaName> to be the one visible to the delegate component.

The <componentKey> is the key name for the component as specified in the list of delegate
components for this aggregate.

The sofaNames used must be declared as input or output sofas in some capability set.

2.4.3. Configuration Parameters

Configuration parameters may be declared and set in both Primitive and Aggregate descriptors.
Parameters set in an aggregate may override parameters set in one or more of its delegates.

2.4.3.1. Configuration Parameter Declaration

Configuration Parameters are made available to annotator implementations and applications by the
following interfaces:

Component Descriptor Reference UIMA Version 3.1.0

Configuration Parameters

« Annot at or Cont ext 2 (passed as an argument to the initialize() method of aversion 1
annotator)

» Confi gur abl eResour ce (every Analysis Engine implements this interface)

* Ui maCont ext (passed as an argument to theinitialize() method of a version 2 annotator)
(you can get this from any resource, including Analysis Engines, using the method
get Ui maCont ext ().

Use AnnotatorContext within version 1 annotators and UimaContext for version 2 annotators and
outside of annotators (for instance, in CasConsumers, or the containing application) to access
configuration parameters.

Configuration parameters are set from the corresponding elements in the XML descriptor for the
application. If you need to programmatically change parameter settings within an application, you
can use methods in ConfigurableResource; if you do this, you need to call reconfigure() afterwards
to have the UIMA framework notify al the contained analysis components that the parameter
configuration has changed (the analysis engine's reinitialize() methods will be called). Note that in
the current implementation, only integrated deployment components have configuration parameters
passed to them; remote components obtain their parameters from their remote startup environment.
Thiswill likely change in the future.

There are two ways to specify the <conf i gur at i onPar anet er s> section —asalist of
configuration parameters or alist of groups. A list of parameters, which are not part of any group,
looks like this:

<confi gurati onPar anet er s>
<confi gurati onPar anmet er >

<name>[St ri ng] </ nane>
<ext er nal Overri deName>[St ri ng] </ ext er nal Over ri deName>
<description>[String] </ descri ption>
<type>String| I nt eger| Fl oat | Bool ean</t ype>
<mul ti Val ued>true| fal se</ nul ti Val ued>
<mandat or y>t r ue| f al se</ mandat ory>
<overrides>

<par anet er >[St ri ng] </ par anet er >

<par anet er >[Stri ng] </ par anet er >

</ overrides>
</ confi gur ati onPar anet er >
<confi gur ati onPar anet er >

</ confi gur ati onPar amet er >

</ confi gurati onPar anet er s>

For each configuration parameter, the following are specified:

» name — the name by which the annotator code refers to the parameter. All parameters
declared in an analysis engine descriptor must have distinct names. (required). The nameis
composed of normal Javaidentifier characters.

» externalOverrideName — the name of a property in an external settings file that if defined
overrides any value set in this descriptor or inits parent. See Section 2.4.3.4, “External
Configuration Parameter Overrides’ [28] for a discussion of external configuration
parameter overrides. (optional)

* description —anatural language description of the intent of the parameter (optional)

2Deprecated; use UimaContext instead.

UIMA Version 3.1.0 Component Descriptor Reference 23

Configuration Parameters

* type—the datatype of the parameter's value — must be one of St ri ng, I nt eger, Fl oat , or
Bool ean (required).

« multiValued —t r ue if the parameter can take multiple-values (an array), f al se if the
parameter takes only a single value (optional, defaultsto false).

* mandatory —t r ue if avalue must be provided for the parameter (optional, defaultsto
false).

» overrides—thisisused only in aggregate Analysis Engines, but isincluded here for
completeness. See Section 2.4.3.3, “Configuration Parameter Overrides’ [27] for a
discussion of configuration parameter overriding in aggregate Analysis Engines. (optional).

A list of groupslooks likethis:

<configurati onParaneters defaul t Goup="[String]"
searchStrat egy="none| defaul t _fal | back| | anguage_f al | back" >

<conmmonPar anmet er s>
[zero or nore paraneters]
</ comonPar anet er s>

<confi gurati onG oup names="nanmel nane2 nane3 ...">
[zero or nore paraneters]
</ confi gurati onG oup>

<configurati onG oup nanes="nane4 nane5 ...">

[zero or nore paraneters]
</ confi gurati onG oup>

</ confi gurati onPar aret er s>

Both the <commonPar anet er s> and <conf i gur at i onG oup> €lements contain zero or more
<confi gur ati onPar aret er > elements, with the same syntax described above.

The <conmonPar anet er s> element declares parameters that exist in al groups. Each

<confi gur ati onG oup> element has a names attribute, which contains alist of group names
separated by whitespace (space or tab characters). Names consist of any number of non-whitespace
characters; however the Component Descriptor Editor tool restricts thisto be normal Java
identifiers, including the period (.) and the dash (-). One configuration group will be created for
each name, and all of the groups will contain the same set of parameters.

Thedef aul t G oup attribute specifies the name of the group to be used in the case where an
annotator does alookup for a configuration parameter without specifying a group name. It may aso
be used as afallback if the annotator specifies a group that does not exist — see below.

Thesear chSt r at egy attribute determines the action to be taken when the context is queried for
the value of a parameter belonging to a particular configuration group, if that group does not exist
or does not contain a value for the requested parameter. There are currently three possible values:

» none—thereisno falback; return null if there is no value in the exact group specified by the
user.

» default_fallback —if thereis no value found in the specified group, look in the default
group (as defined by the def aul t attribute)

Component Descriptor Reference UIMA Version 3.1.0

Configuration Parameters

 language fallback —this setting allows for a specific use of configuration parameter
groups where the groups names correspond to | SO language and country codes (for an

example, see below). The fallback sequenceis. <l ang>_<country>_<regi on> -
<l ang>_<country> - <lang> - <default>.

Example

<configurati onParanet ers defaul t G oup="en"
searchStrat egy="I1 anguage_f al | back" >

<commonPar anet er s>
<confi gur ati onPar anet er >
<name>Di cti onar yFi | e</ nane>
<descri ption>Locati on of dictionary for this
| anguage</ descri pti on>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ nandat or y>
</ confi gur ati onPar anet er >
</ commonPar anet er s>

<configurati onG oup names="en de en-US"/>

<configurati onG oup nanmes="zh">
<confi gurati onPar anmet er >
<name>DBC_St r at egy</ nane>
<description>Strategy for dealing with doubl e-byte
characters. </ descri pti on>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ mandat or y>
</ confi gur ati onPar anet er >
</ confi gurati onG oup>

</ confi gurati onPar anet er s>

In this example, we are declaring aDi ct i onar yFi | e parameter that can have a different value
for each of the languages that our AE supports — English (general), German, U.S. English, and
Chinese. For Chinese only, we also declareaDBC_St r at egy parameter.

We areusing thel anguage_f al | back search strategy, so if an annotator requests the dictionary
file for the en- GB (British English) group, we will fall back to the more general en group.

Since we have defined en as the default group, this value will be returned if the context is queried
for the Di cti onar yFi | e parameter without specifying any group name, or if a nonexistent group
name is specified.

2.4.3.2. Configuration Parameter Settings

For configuration parameters that are not part of any group, the
<conf i gur ati onPar anet er Set t i ngs> element looks like this

<confi gurati onPar anet er Setti ngs>
<naneVal uePai r >
<name>[St ri ng] </ nane>
<val ue>
<string>[String] </string>

UIMA Version 3.1.0 Component Descriptor Reference 25

Configuration Parameters

<i nteger >[I nteger] </integer> |
<fl oat>[Fl oat] </fl oat > |
<bool ean>true| f al se</ bool ean> |
<array> ... <larray>
</ val ue>
</ naneVal uePai r >

<naneVal uePai r >
</ naneVal uePai r >

</ confi gurati onPar anet er Setti ngs>

There are zero or more nanmeVal uePai r elements. Each nameVal uePai r contains a name (which
refers to one of the configuration parameters) and a value for that parameter.

Theval ue element contains an element that matches the type of the parameter. For single-
valued parameters, thisis either <st ri ng>, <i nt eger >, <f | oat >, or <bool ean>. For multi-
valued parameters, thisis an <ar r ay> element, which then contains zero or more instances of the
appropriate type of primitive value, e.g.:

<array><string>0One</string><string>Two</string></array>

For parameters declared in configuration groups the <conf i gur at i onPar anet er Setti ngs>
element looks like this:

<confi gurati onPar anmet er Setti ngs>

<settingsFor G oup nane="[String]">
[one or nore <naneVal uePair> el ement s]
</ settingsFor G oup>

<setti ngsFor G oup nane="[String]">
[one or nore <naneVal uePair> el ement s]
</ settingsFor G oup>

</ confi gurati onPar anet er Setti ngs>

where each <set t i ngsFor G oup> element has a name that matches one of the configuration
groups declared under the <conf i gur at i onPar anet er s> element and contains the parameter
settings for that group.

Example
Here are the settings that correspond to the parameter declarations in the previous example:

<confi gurati onPar anmet er Setti ngs>

<setti ngsFor G oup nane="en">
<naneVal uePai r >
<name>Di cti onaryFi | e</ nanme>
<val ue><stri ng>resourcesEngl i shdi cti onary. dat ></ st ri ng></ val ue>
</ naneVal uePai r >
</ settingsFor G oup>

<settingsFor G oup nane="en-US">

26 Component Descriptor Reference UIMA Version 3.1.0

Configuration Parameters

<naneVal uePai r >
<name>Di cti onar yFi | e</ nanme>
<val ue><string>resourcesEngl i sh_USdi cti onary. dat </ stri ng></val ue>
</ nanmeVal uePai r >
</ settingsFor G oup>

<setti ngsFor G oup nane="de">
<naneVal uePai r >
<nane>Di cti onar yFi | e</ name>
<val ue><stri ng>resour cesDeut schdi cti onary. dat </ stri ng></val ue>
</ nanmeVal uePai r >
</ settingsFor G oup>

<settingsFor G oup nane="zh">
<naneVal uePai r >
<name>Di cti onar yFi | e</ nanme>
<val ue><stri ng>r esour cesChi nesedi cti onary. dat </ stri ng></val ue>
</ nameVal uePai r >

<naneVal uePai r >
<nanme>DBC_St r at egy</ nanme>
<val ue><stri ng>def aul t </ stri ng></val ue>
</ naneVal uePai r >
</ setti ngsFor G oup>

</ confi gurati onPar anet er Setti ngs>

2.4.3.3. Configuration Parameter Overrides

In an aggregate Analysis Engine Descriptor, each <conf i gur at i onPar aret er > element should
contain an <over ri des> element, with the following syntax:

<overrides>

<par anet er >
[del egat eAnal ysi sEngi neKey] / [par anmet er Nane]
</ par anet er >

<par anet er >

[del egat eAnal ysi sEngi neKey] / [par amet er Nane]
</ par anet er >

</ overri des>

Since aggregate Analysis Engines have no code associated with them, the only way in which their
configuration parameters can affect their processing is by overriding the parameter values of one
or more delegate analysis engines. The <over ri des> element determines which parameters, in
which delegate Analysis Engines, are overridden by this configuration parameter.

For example, consider an aggregate Analysis Engine Descriptor that contains delegate Analysis
Engines with keysannot at or 1 and annot at or 2 (as declared in the <delegateA nalysisEngine>
element — see Section 2.4.2.1, “ Delegate Analysis Engine Specifiers’ [19]) and also declares a
configuration parameter as follows:

<confi gur ati onPar anet er >
<nane>Aggr egat ePar anx/ nane>
<type>String</type>

UIMA Version 3.1.0 Component Descriptor Reference 27

Configuration Parameters

<overri des>
<par anet er >annot at or 1/ par anil.</ par anet er >
<par anet er >annot at or 2/ par an2</ par anet er >
</ overri des>
</ confi gur ati onPar anet er >

The value of the Aggr egat ePar amparameter (whether assigned in the aggregate descriptor or at
runtime by an application) will override the value of parameter par ant in annot at or 1 and aso
override the value of parameter par an? in annot at or 2. No other parameters will be affected.
Note that Aggr egat ePar ammay itself be overridden by a parameter in an outer aggregate that has
this aggregate as one of its delegates.

Prior to release 2.4.1, if an aggregate Analysis Engine descriptor declared a configuration
parameter with no explicit overrides, that parameter would override any parameters having the
same name within any delegate analysis engine. Starting with release 2.4.1, support for this usage
has been dropped.

2.4.3.4. External Configuration Parameter Overrides

External parameter overrides are usually declared in primitive descriptors as away to easily
modify the parametersin some or all of an application's annotators. By using external settings files
and shared parameter names the configuration information can be specified without regard for a
particular descriptor hierachy.

Configuration parameter declarations in primitive and aggregate descriptors may include an

<ext er nal Over ri deNanme> element, which specifies the name of a property that may be defined
in an external settingsfile. If thiselement is present, and if a entry can be found for itsnamein a
settings files, then this value overrides the val ue otherwise specified for this parameter.

The value overrides any value set in this descriptor or set by an override in a parent aggregate.

In primitive descriptors the value set by an external override is aways applied. In aggregate
descriptors the value set by an external override appliesto the aggregate parameter, and is passed
down to the overridden delegate parametersin the usual way, i.e. only if the delegate's parameter
has not been set by an external override.

Im the absence of external overrides, parameter evaluation can be viewed as proceeding from the
primitive descriptor up through any aggregates containing overrides, taking the last setting found.
With external overrides the search ends with the first external override found that has a value
assigned by a settingsfile.

The same external name may be used for multiple parameters; the effect of thisis that one setting
will override multiple parameters.

The settings for al descriptorsin apipeline are usually loaded from one or more files whose
names are obtained from the Java system property UimaExternalOverrides. The value of the
property must be a comma-separated list of resource names. If the name has a prefix of "file" or
no prefix, the filesystem is searched. If the name has a prefix of "path:" the rest must be a Java-
style dotted name, similar to the name attribute for descriptor imports. The dots are replaced

by file separators and a suffix of ".settings' is appended before searching the datapath and
classpath. e.g. - DU naExt er nal Overrides=/data/filel.settings,file:relative/
file2.settings, path:org. apache. ui ma. resources. fil e3.

Override settings may also be specified when creating an analysis engine by putting aSet t i ngs
object in the additional parameters map for the pr oduceAnal ysi sEngi ne method. In this case
the Java system property UimaExternal Overridesisignored.

Component Descriptor Reference UIMA Version 3.1.0

Configuration Parameters

/1 Construct an anal ysis engine that uses two settings files
Settings extSettings =
U MAFr anewor k. get Resour ceSpeci fi er Factory().createSettings();
for (String fnane : new String[] { "external Override. settings"
"default.settings" }) {

FilelnputStreamfis = new Fil el nput St rean(f nane);

ext Settings.load(fis);

fis.close();

}
Map<Stri ng, Obj ect > aeParms = new HashMap<Stri ng, Qbj ect>();

aePar ms. put (Resour ce. PARAM _EXTERNAL_OVERRI DE_SETTI NGS, ext Setti ngs);
Anal ysi sengi ne ae = Ul MAFr amewor k. pr oduceAnal ysi sengi ne(desc, aeParns);

These external settings consist of key - value pairs stored in afile using the UTF-8 character
encoding, and written in a style similar to that of Java propertiesfiles.

* Leading whitespace isignored.

» Comment lines start with '# or "".

» The key and value are separated by whitespace, '="or ":'.

» Keysmust contain at |east one character and only letters, digits, or the characters'. /- ~ '

 If alineendswith '\' it is extended with the following line (after removing any leading
whitespace.)

» Whitespace is trimmed from both keys and values.

» Duplicate key values are ignored — once avalue is assigned to akey it cannot be changed.

» Values may reference other settings using the syntax '${ key}'.

» Array values are represented as alist of strings separated by commas or line breaks, and
bracketed by the []' characters. The value must start with an '[' and is terminated by the first
unescaped 1" which must be at the end of aline. The elements of an array (and hence the
array size) may be indirectly specified using the '${ key}' syntax but the brackets []' must be
explicitly specified.

* Invaluesthe special characters'${ } [,] \' are treated as regular charactersif preceeded by
the escape character '\'.

keyl : wvaluel
key2 = value 2
key3 el ement 2, el enent3, elenent4
Next assignment is ignored as key3 has already been set

key3 : val ue ignored
keyd = [array elenentl, ${key3}, elenent5
el ement 6 |

key5 value with a reference ${keyl} to keyl
key6 : long value string \

continued fromprevious line (with | eadi ng whitespace stripped)
key7 = wvalue without a reference \${not-a-key}
key8 \[value that is not an array]
key9 : [array elenentl\, with enbedded comma, elenent2]

Multiple settings files are allowed; they are loaded in order, such that early ones take precedence
over later ones, following the first-assignment-wins rule. So, if you have lots of settings, you can
put the defaultsin onefile, and thenin aearlier file, override just the ones you need to.

An external override name may be specified for a parameter declared in agroup, but if the
parameter is in the common group or the group is declared with multiple names, the external name
is shared amongst al, i.e. these parameters cannot be given group-specific values.

UIMA Version 3.1.0 Component Descriptor Reference 29

Flow Controller Descriptors

2.4.3.5. Direct Access to External Configuration Parameters

Annotators and flow controllers can directly access these shared configuration parameters from
their UimaContext. Direct access means an access where the key to select the shared parameter is
the parameter name as specified in the external configuration settings file.

String val ue = aCont ext. get SharedSetti ngVal ue(par anmNane) ;
String val ues[] = aContext.get SharedSetti ngArray(arrayParanNane) ;
String all Names[] = aCont ext. get SharedSetti ngNanmes();

Java code called by an annotator or flow controller in the same thread or a child thread can use
the Ui maCont ext Hol der to get the annotator's UimaContext and hence access the shared
configuration parameters.

U maCont ext ui maCont ext = Ui naCont ext Hol der . get Ui maCont ext () ;
if (uimaContext !'= null) {
val ue = ui maCont ext . get Shar edSet ti ngVval ue(par amNane) ;

}

The UIMA framework puts the context in an InheritableThreadl ocal variable. The value will be
null if get Ui maCont ext isnot invoked by an annotator or flow controller on the same thread or a
child thread.

2.4.3.6. Other Uses for External Configuration Parameters

Explicit references to shared configuration parameters can be specified as part of the value of
the name and location attributes of thei nport element and in the value of the fileUrl for a
fil eResour ceSpecifier (seeSection 2.2, “Imports’ [4] and Section 2.4.1.9, “Resource
Manager Configuration” [16]).

2.5. Flow Controller Descriptors

The basic structure of a Flow Controller Descriptor is as follows:

<?xm version="1.0" ?>
<fl onControl | er Descri ption
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">
<f ramewor kI npl ement at i on>or g. apache. ui ma. j ava</ f r amewor kIl npl emrent at i on>
<i npl enent ati onNane>[Cl assNane] </ i npl enent at i onNane>
<pr ocessi hgResour ceMet aDat a>
</ processi ngResour ceMet aDat a>
<ext er nal Resour ceDependenci es>

</ ext er nal Resour ceDependenci es>

<r esour ceManager Confi gur at i on>

30

Component Descriptor Reference UIMA Version 3.1.0

Collection Processing Component Descriptors

</ r esour ceManager Conf i gur ati on>

</fl owControl | er Descri ption>

Thef r amewor ki npl enent at i on element must always be set to the value
or g. apache. ui ma. j ava.

Thei npl ement at i onName element must contain the fully-qualified class name of the Flow
Controller implementation. This must name a class that implements the FI owCont r ol | er
interface.

Thepr ocessi ngResour ceMet aDat a element contains essentially the same information as
aPrimitive Analysis Engine Descriptor'sanal ysi sEngi neMet aDat a el ement, described in
Section 2.4.1.2, “ Analysis Engine MetaData” [9].

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur at i on elements
are exactly the same asin Primitive Analysis Engine Descriptors (see Section 2.4.1.8,
“External Resource Dependencies’ [16] and Section 2.4.1.9, “Resource Manager
Configuration” [16]).

2.6. Collection Processing Component Descriptors

There are three types of Collection Processing Components — Collection Readers, CAS Initiaizers
(deprecated as of UIMA Version 2), and CAS Consumers. Each type of component has a
corresponding descriptor. The structure of these descriptorsis very similar to that of primitive
Analysis Engine Descriptors.

2.6.1. Collection Reader Descriptors

The basic structure of a Collection Reader descriptor is as follows:

<?xm version="1.0" ?>
<col | ecti onReader Descri pti on
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">

<f ramewor kI npl ement at i on>or g. apache. ui ma. j ava</ f r amewor kIl npl enrent at i on>
<i npl enent ati onNane>[Cl assNane] </ i npl enent at i onNane>

<pr ocessi hgResour ceMet aDat a>

</ i:).r;)cessi ngResour ceMet aDat a>
<ext er nal Resour ceDependenci es>
<) é;(t er nal Resour ceDependenci es>

<r esour ceManager Confi gur at i on>

</ r esour ceManager Conf i gurati on>

</ col | ecti onReader Descri pti on>

Thef r amewor ki npl enent at i on element must always be set to the value
or g. apache. ui ma. j ava.

UIMA Version 3.1.0 Component Descriptor Reference 31

CAS Initializer Descriptors (deprecated)

Thei npl errent at i onNarre element contains the fully-qualified class name of the Collection
Reader implementation. This must name a class that implements the Col | ect i onReader
interface.

The pr ocessi ngResour ceMet aDat a element contains essentially the same information as a
Primitive Analysis Engine Descriptor's anal ysi sEngi neMet aDat a element:

<pr ocessi hgResour ceMet aDat a>
<name> [String] </nanme>
<description>[String] </ description>
<versi on>[String] </ versi on>
<vendor >[Stri ng] </ vendor >
<confi gurati onPar anmet er s>
</cbﬁ+igurationParaneters>
<confi gurati onPar anet er Setti ngs>
</ébﬁfigurationParaneterSettings>
<t ypeSyst enDescri pti on>
<)iype8ystentbscription>
<typePriorities>
<}iypePriorities>
<f sl ndexes>
<)f§lndexes>
<capabilities>
</ capabi | i ties>

</ pr ocessi ngResour ceMet aDat a>

The contents of these elements are the same as that described in Section 2.4.1.2, “Analysis Engine
MetaData” [9], with the exception that the capabilities section should not declare any inputs
(because the Collection Reader is always the first component to receive the CAS).

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur at i on elements
are exactly the same asin the Primitive Analysis Engine Descriptors (see Section 2.4.1.8,
“External Resource Dependencies’ [16] and Section 2.4.1.9, “Resource Manager
Configuration” [16]).

2.6.2. CAS Initializer Descriptors (deprecated)

The basic structure of a CAS Initializer Descriptor is as follows:

<?xm version="1.0" encodi ng="UTF-8" ?>
<caslnitializerDescription
xm ns="http://ui ma. apache. or g/ r esour ceSpeci fier">

<f ramewor kI npl emrent at i on>or g. apache. ui ma. j ava</ f ramewor kIl npl ement ati on>
<i npl enent ati onName>[Cl assNane] </i npl ement at i onNanme>

32

Component Descriptor Reference UIMA Version 3.1.0

CAS Initializer Descriptors (deprecated)

<pr ocessi hgResour ceMet aDat a>
</b}60essingResourcertaData>
<ext er nal Resour ceDependenci es>
</ ext er nal Resour ceDependenci es>
<r esour ceManager Confi gur at i on>
</;ééourcewhnagerCaniguration>

</caslnitializerDescription>

Thef r amewor ki npl enent at i on element must always be set to the value
or g. apache. ui ma. j ava.

Thei npl errent at i onNarre element contains the fully-qualified class name of the CAS Initializer
implementation. This must name a class that implementsthe Casl ni ti al i zer interface.

The pr ocessi ngResour ceMet aDat a element contains essentialy the same information as a
Primitive Analysis Engine Descriptor's anal ysi sEngi neMet aDat a element, as described in
Section 2.4.1.2, “Analysis Engine MetaData” [9], with the exception of some changes to the
capabilities section. A CAS Initializer's capabilities element looks like this:

<capabilities>
<capability>
<out put s>
<type al | Annot at or Feat ures="true|fal se">[String] </type>
<type>[TypeNane] </ t ype>

<f eat ure>[TypeNane] : [Nane] </ f eat ur e>
</ out put s>

<out put Sof as>
<sof aName>[nane] </ sof aNane>

</ out put Sof as>

<m nmeTypesSupport ed>
<m meType>[M ME Type] </ m meType>

</ m ﬁeTypesSupported>
</ capability>

<capability>
</ capabi | i ty>

</ capabi | i ties>

The differences between a CAS Initializer's capabilities declaration and an Analysis Engine's
capabilities declaration are that the CAS Initializer does not declare any input CAS types and
features or input Sofas (because it is aways the first to operate on a CAS), it doesn't have a
language specifier, and that the CAS Initializer may declare a set of MIME types that it supports
for its input documents. Examples include: text/plain, text/html, and application/pdf. For alist

of MIME types see http://www.iana.org/assignments/media-types/. Thisinformation is currently

UIMA Version 3.1.0 Component Descriptor Reference 33

http://www.iana.org/assignments/media-types/

CAS Consumer Descriptors

only for users information, the framework does not use it for anything. This may change in future
versions.

The ext er nal Resour ceDependenci es andr esour ceManager Conf i gur at i on elements
are exactly the same asin the Primitive Analysis Engine Descriptors (see Section 2.4.1.8,
“External Resource Dependencies’ [16] and Section 2.4.1.9, “Resource Manager
Configuration” [16]).

2.6.3. CAS Consumer Descriptors
The basic structure of a CAS Consumer Descriptor is as follows:

<?xm version="1.0" encodi ng="UTF-8" ?>
<casConsuner Descri pti on
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">
<f ramewor kI npl ement at i on>or g. apache. ui ma. j ava</ f r amewor kIl npl ement at i on>
<i npl enent ati onNane>[Cl assNane] </ i npl enent at i onNane>
<pr ocessi ngResour ceMet aDat a>
</ .p.r;)cessi ngResour ceMet aDat a>
<ext er nal Resour ceDependenci es>
</é%iernalResourceDependencies>

<r esour ceManager Confi gur ati on>

</ resour ceManager Conf i gur ati on>
</ casConsuner Descri pti on>

Thef r anewor ki npl enent at i on element currently must have the value
org. apache. ui ma. j ava, or or g. apache. ui ma. cpp.

The next subelement, <annot at or | npl enent at i onNanme> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class name for
Javaimplementations, or the name of a.dll or .so file for C++ implementations.

Thef r anewor kI npl enent at i on element must always be set to the value
or g. apache. ui ma. j ava.

Thei npl ement at i onName element must contain the fully-qualified class name of the CAS
Consumer implementation, or the name of a .dll or .so file for C++ implementations. For Java, the
named class must implement the CasConsuner interface.

The pr ocessi ngResour ceMet aDat a el ement contains essentially the same information as

a Primitive Analysis Engine Descriptor's anal ysi sEngi neMet aDat a element, described in
Section 2.4.1.2, “ Analysis Engine MetaData” [9], except that the CAS Consumer Descriptor's
capabi | i ti es element should not declare outputs or outputSofas (since CAS Consumers do not
modify the CAS).

The ext er nal Resour ceDependenci es andr esour ceManager Conf i gur at i on e ements
are exactly the same asin Primitive Analysis Engine Descriptors (see Section 2.4.1.8,
“External Resource Dependencies’ [16] and Section 2.4.1.9, “Resource Manager
Configuration” [16]).

34 Component Descriptor Reference UIMA Version 3.1.0

Service Client Descriptors

2.7. Service Client Descriptors

Service Client Descriptors specify only alocation of aremote service. They are therefore much
simpler in structure. In the UIMA SDK, a Service Client Descriptor that refersto avalid Analysis
Engine or CAS Consumer service can be used in place of the actual Analysis Engine or CAS
Consumer Descriptor. The UIMA SDK will handle the details of calling the remote service. (For
details on deploying an Analysis Engine or CAS Consumer as a service, see UIMA Tutorial and
Developers Guides Section 3.6, “Working with Remote Services'.

The UIMA SDK is extensible to support different types of remote services. In future versions, there
may be different variations of service client descriptors that cater to different types of services. For
now, the only type of service client descriptor istheuri Speci fi er, which supports the SOAP
and Vinci protocols.

<?xm version="1.0" encodi ng="UTF-8" ?>
<uri Specifier xm ns="http://uima. apache. org/resourceSpecifier">
<resour ceType>Anal ysi sengi ne | CasConsuner </resourceType>
<uri>[URI]</uri>
<pr ot ocol >SOAP | SOAPw t hAttachnents | Vinci </protocol >
<timeout >[I nteger] </ti meout >
<par amet er s>
<par aneter nane="VNS_HOST" val ue="son®e.internet.ip.name-or-address"/>
<par anet er nane="VNS_PORT" val ue="9000"/>
<par anet er nane="Get Met aDat aTi meout" val ue="[Integer]"/>
</ par anet er s>
</ uri Specifier>

Ther esour ceType element isrequired for new descriptors, but is currently allowed to be
omitted for backward compatibility. It specifies the type of component (Analysis Engine or CAS
Consumer) that isimplemented by the service endpoint described by this descriptor.

Theuri element contains the URI for the web service. (Note that in the case of Vinci, thiswill be
the service name, which islooked up in the Vinci Naming Service.)

Thepr ot ocol element may be set to SOAP, SOAPwithAttachments, or Vinci; other protocols
may be added later. These specify the particular data transport format that will be used.

Theti meout elementisoptional. If present, it specifiesthe number of milliseconds to wait for a
request to be processed before an exception is thrown. A value of zero or lesswill wait forever. If
no timeout is specified, adefault value (currently 60 seconds) will be used.

The parameters element is optional. If present, it can specify values for each of the following:

* VNS_HOST: host name for the Vinci naming service.

* VNS_PORT: port number for the Vinci naming service.

e Get Met aDat aTi meout : timeout period (in milliseconds) for the GetMetaData call. If not
specified, the default is 60 seconds. This may need to be set higher if there are alot of clients
competing for connections to the service.

If the VNS_HOST and VNS_PORT are not specified in the descriptor, the values used for these
comes from parameters passed on the Java command line using the - DVNS_HOST=<host > and/or

- DVNS_PORT=<por t > system arguments. If not present, and a system argument is also not present,
the values for these default to | ocal host for the VNS_HOST and 9000 for the VNS _PORT.

UIMA Version 3.1.0 Component Descriptor Reference 35

Custom Resource Specifiers

For details on how to deploy and call Analysis Engine and CAS Consumer services, see UIMA
Tutorial and Developers Guides Section 3.6, “Working with Remote Services'.

2.8. Custom Resource Specifiers

A Custom Resource Specifier allows you to plug in your own Javaclass asa UIMA Resource. For
example you can support a new service protocol by plugging in a Java class that implements the
UIMA Anal ysi sEngi ne interface and communicates with the remote service.

A Custom Resource Specifier has the following format:

<?xm version="1.0" encodi ng="UTF-8" ?>
<cust onResour ceSpeci fi er xm ns="http://ui nma. apache. or g/ resourceSpecifier">
<resour ced assNane>[Java Cl ass Nane] </ resour ceCl assNane>
<par anet er s>
<paraneter nane="[String]" value="[String]"/>
<par aneter nane="[String]" value="[String]"/>
</ par anet er s>
</ cust omResour ceSpeci fi er>

Ther esour ced assName element must contain the fully-qualified name of a Java class that can
be found in the classpath (including the UIMA extension classpath, if you have specified one using
the Resour ceManager . set Ext ensi onCl assPat h method). This class must implement the
UIMA Resour ce interface.

When an application calls the Ul MAFr amewor k. pr oduceResour ce method and passes a

Cust onResour ceSpeci fi er, the UIMA framework will load the named class and call its
initialize(ResourceSpecifier, Map) method, passing the Cust onResour ceSpeci fi er
asthefirst argument. Y our class can override thei ni ti al i ze method and use the

Cust onResour ceSpeci fi er APl to get accessto the par anet er names and values specifiedin
the XML.

If you are using a custom resource specifier to plug in a class that implements a new service
protocol, your class must also implement the Anal ysi sEngi ne interface. Generally it should

also extend Anal ysi sEngi nel npl Base. The key methods that should be implemented are

get Met aDat a, pr ocessAndQut put NewCASes, col | ecti onProcessConpl et e, and dest r oy.

36

Component Descriptor Reference UIMA Version 3.1.0

Chapter 3. Collection Processing Engine
Descriptor Reference

A UIMA Callection Processing Engine (CPE) is a combination of UIMA components assembled
to analyze a collection of artifacts. A CPE is an instantiation of the UIMA Collection Processing
Architecture, which defines the collection processing components, interfaces, and APIs. A CPE
is executed by aUIMA framework component called the Collection Processing Manager (CPM),
which provides a number of services for deploying CPES, running CPEs, and handling errors.

A CPE can be assembled programmatically within a Java application, or it can be assembled
declaratively viaa CPE configuration specification, called a CPE Descriptor. This chapter describes
the format of the CPE Descriptor.

Details about the CPE, including its function, sub-components, APIs, and related tools, can

be found in UIMA Tutorial and Developers' Guides Chapter 2, Collection Processing Engine
Developer's Guide. Here we briefly summarize the CPE to define terms and provide context for the
later sections that describe the CPE Descriptor.

3.1. CPE Overview

Processing Pipelines

CAS Initializer
AE1 AE2 AEa

cAs
Work Queue Output Queue CAS Consumers

CollectionReader —| ArtifactProducer — B1|B:z|B2 B1(Bz(Bs cet

~
Content(Text)
E Index

Figure 3.1. CPE Runtime Overview

Anillustration of the CPE runtime is shown in Figure 3.1, “ CPE Runtime Overview” [37].

Some of the CPE components, such as the queues and processing pipelines, are internal to the
CPE, but their behavior and deployment may be configured using the CPE Descriptor. Other

CPE components, such as the Collection Reader and CAS Processors, are defined and configured
externally from the CPE and then plugged in to the CPE to create the overall engine. The parts of a
CPE are:

Collection Reader
understands the native data collection format and iterates over the collection producing subjects
of anaysis

CPE Descriptor Reference 37

Notation

CAS Initializer*
initializes a CAS with a subject of analysis

Artifact Producer
asynchronously pulls CASes from the Collection Reader, creates batches of CASes and puts
them into the work queue

Work Queue
shared queue containing batches of CA Ses queued by the Artifact Producer for analysis by
Analysis Engines

B1-Bn
individual batches containing 1 or more CASes

AE1-AEn
Analysis Engines arranged by a CPE descriptor

Processing Pipelines
each pipeline runsin a separate thread and contains a replicated set of the Analysis Engines
running in the defined sequence

Output Queue
holds batches of CASeswith analysis results intended for CAS Consumers

CAS Consumers
perform collection level analysis over the CASes and extract analysis results, e.g., creating
indexes or databases

3.2. Notation

CPE Descriptors are XML files. This chapter uses an informal notation to specify the syntax of
CPE Descriptors.

The notation used in this chapter is:

* Andlipsis(...) inside an element body indicates that the substructure of that element has
been omitted (to be described in another section of this chapter). An example of this would
be:

<col | ecti onReader >

</ col | ecti onReader >

* Andllipsisimmediately after an element indicates that the element type may be repeated
arbitrarily many times. For example:

<par anet er >[St ri ng] </ par anet er >
<par anet er >[St ri ng] </ par anet er >

indicates that there may be arbitrarily many parameter elementsin this context.

* Anéllipsisinside an element means details of the attributes associated with that element are
defined later, e.g.:

'Deprecated

38 CPE Descriptor Reference UIMA Version 3.1.0

Imports

<casProcessor ...>

» Bracketed expressions (e.g. [St ri ng]) indicate the type of value that may be used at that
location.

» A vertica bar, asint rue| f al se, indicates alternatives. This can be applied to literal
values, bracketed type names, and elements.

Which elements are optiona and which are required is specified in prose, not in the syntax
definition.

3.3. Imports

As of version 2.2, a CPE Descriptor can use the samei npor t mechanism as other component
descriptors. This allows referring to component descriptors using either relative paths (resolved
relative to the location of the CPE descriptor) or the classpath/datapath. For details see Chapter 2,
Component Descriptor Reference.

The follwing older syntax is still supported, but not recommended:

<descri pt or >
<include href="[URL or File]"/>
</ descri pt or>

The[URL or File] attributeisaURL or afilename for the descriptor of the incorporated
component. The argument isfirst attempted to be resolved as a URL.

Relative pathsin ani ncl ude are resolved relative to the current working directory (NOT the
CPE descriptor location asisthe case for i nport). A filename relative to another directory can be
specified using the CPM_HOVE variable, e.g.,

<descri pt or >

<i ncl ude href="${CPM HOVE}/ desc_dir/descriptor.xm"/>
</ descri pt or >

In this case, the value for the CPM_HOVE variable must be provided to the CPE by specifying it on
the Java command line, e.g.,

j ava - DCPM HOVE="C: / Progr am Fi | es/ apache/ ui ma/ cpni' ...

3.4. CPE Descriptor Overview

A CPE Descriptor consists of information describing the following four main elements.

1. The Callection Reader, which is responsible for gathering artifacts and initializing the
Common Analysis Structure (CAS) used to support processing in the UIMA collection
processing engine.

2. The CASProcessors, responsible for analyzing individua artifacts, analyzing across
artifacts, and extracting analysis results. CAS Processors include Analysis Engines and CAS
Consumers.

3. Operational parameters of the Collection Processing Manager (CPM), such as checkpoint
frequency and deployment mode.

UIMA Version 3.1.0 CPE Descriptor Reference 39

Collection Reader

4. Resource Manager Configuration (optional).

The CPE Descriptor has the following high level skeleton:

<?xm version="1.0"?>
<cpeDescri pti on>
<col | ecti onReader >

</ col | ecti onReader >
<casProcessors>

</ casProcessor s>
<cpeConfi g>

</ cpeConfi g>
<r esour ceManager Conf i gur ati on>

</ resour ceManager Confi gur ati on>
</ cpeDescri pti on>

Details of each of the four main elements are described in the sections that follow.

3.5. Collection Reader

The<col | ecti onReader > section identifies the Collection Reader and optional CAS Initializer
that are to be used in the CPE. The Collection Reader is responsible for retrieval of artifacts from a
collection outside of the CPE, and the optional CAS Initializer (deprecated as of UIMA Version 2)
isresponsible for initializing the CAS with the artifact.

A Collection Reader may initialize the CASitself, in which case it does not require a CAS
Initializer. This should be clearly specified in the documentation for the Collection Reader.
Specifying a CAS Initializer for a Collection Reader that does not make use of a CAS Initializer
will not cause an error, but the specified CAS Initializer will not be used.

The complete structure of the <col | ecti onReader > sectionis:

<col | ecti onReader >
<col | ectionlterator>
<descri pt or >
<import ...> | <include .../>
</ descri pt or >
<configurati onParaneterSettings>...</configurationParaneterSettings>
<sof aNameMappi ngs>. . . </ sof aNaneMappi ngs>
</col l ectionlterator>
<caslnitializer>
<descri pt or >
<import ...> | <include .../>
</ descri pt or >
<configurati onParaneterSettings>...</configurationParaneterSettings>
<sof aNameMappi ngs>. . . </ sof aNaneMappi ngs>
</caslnitializer>
</ col | ecti onReader >

The<col | ecti onl t er at or > identifies the descriptor for the Collection Reader, and the
<casl ni tializer> identifiesthe descriptor for the CAS Initializer. The format and details
of the Collection Reader and CAS Initializer descriptors are described in Section 2.6.1,
“Collection Reader Descriptors’ . The <confi gur ati onPar anet er Setti ngs> and the
<sof aNameMappi ngs> elements are described in the next section.

40

CPE Descriptor Reference UIMA Version 3.1.0

Error handling for Collection Readers

3.5.1. Error handling for Collection Readers

The CPM will abort if the Collection Reader throws a large number of consecutive exceptions
(default = 100). This default can by changed by using the Javainitialization parameter
- DMaxCREr r or Thr eshol d xxx.

3.6. CAS Processors

The <casPr ocessor s> section identifies the components that perform the analysis on the input
data, including CAS analysis (Analysis Engines) and analysis results extraction (CAS Consumers).
The CAS Consumers may also perform collection level analysis, where the analysisis performed
(or aggregated) over multiple CASes. The basic structure of the CAS Processors section is:

<casProcessors
dr opCasOnExcepti on="true| fal se"
casPool Si ze="[Nunber]"
pr ocessi ngUni t Thr eadCount =" [Nunmber] " >
<casProcessor ...>
</ casProcessor >
<casProcessor ...>

</ casProcessor >

</ casProcessor s>

The <casPr ocessor s> section has two mandatory attributes and one optional attribute that
configure the characteristics of the CAS Processor flow in the CPE. The first mandatory attribute
is a casPool Size, which defines the fixed number of CAS instances that the CPM will create and
use during processing. All CAS instances are maintained in a CAS Pool with a check-in and check-
out access. Each CAS is checked-out from the CAS Pool by the Collection Reader and initialized
with an initial subject of analysis. The CAS is checked-ininto the CAS Pool when it is completely
processed, at the end of the processing chain. A larger CAS Pool size will result in more memory
being used by the CPM. CAS objects can be large and care should be taken to determine the
optimum size of the CAS Pool, weighing memory tradeoffs with performance.

The second mandatory <casPr ocessor s> attributeispr ocessi nguni t Thr eadCount , which
specifies the number of replicated Processing Pipelines. Each Processing Pipelinerunsin its

own thread. The CPM takes CA Ses from the work queue and submits each CAS to one of the
Processing Pipelines for analysis. A Processing Pipeline contains one or more Analysis Engines
invoked in a given sequence. If more than one Processing Pipeline is specified, the CPM replicates
instances of each Analysis Engine defined in the CPE descriptor. Each Processing Pipeline thread
runs independently, consuming CA Ses from work queue and depositing CASes with analysis
results onto the output queue. On multiprocessor machines, multiple Processing Pipelines can run
in paralel, improving overall throughput of the CPM.

Note: The number of Processing Pipelines should be equal to or greater than CAS Pool
size.

Elements in the pipeline (each represented by a <casProcessor> element) may indicate that they
do not permit multiple deployment in their Analysis Engine descriptor. If so, even though multiple
pipelines are being used, all CA Ses passing through the pipelines will be routed through one
instance of these marked Engines.

UIMA Version 3.1.0 CPE Descriptor Reference 41

Specifying an Individual CAS Processor

Thefinal, optional, <casProcessors> attribute is dr opCasOnExcept i on. It defines apolicy that
determines what happens with the CAS when an exception happens during processing. If the
value of this attribute is set to true and an exception happens, the CPM will natify all registered
listeners of the exception (see UIMA Tutorial and Developers Guides Section 2.3.1, “Using
Listeners’), clear the CAS and check the CAS back into the CAS Pool so that it can be re-used.
The presumption is that an exception may leave the CAS in an inconsistent state and therefore that
CAS should not be allowed to move through the processing chain. When this attribute is omitted
the CPM's default is the same as specifying dr opCasOnExcept i on="f al se".

3.6.1. Specifying an Individual CAS Processor

The CAS Processors that make up the Processing Pipeline and the CAS Consumer pipeline are
specified with the <casPr ocessor > entity, which appears within the <casPr ocessor s> entity.
It may appear multiple times, once for each CAS Processor specified for this CPE.

The order of the <casPr ocessor > entities with the <casPr ocessor s> section specifies the
order in which the CAS Processors will run. Although CAS Consumers are usually put at the end of
the pipeline, they need not be. Also, Aggregate Analysis Engines may include CAS Consumers.

The overall format of the <casPr ocessor > entity is:

<casProcessor depl oynent="|ocal | renote|integrated" name="[String]" >
<descri pt or >
<import ...> | <include .../>
</ descri pt or>
<configurati onParaneterSettings>...</configurati onParaneterSettings>
<sof aNameMappi ngs>. . . </ sof aNameMappi ngs>
<runl nSepar at ePr ocess>. . . </ runl nSepar at ePr ocess>
<depl oyment Par anet er s>. . . </ depl oynment Par anet er s>
<filter/>
<errorHandl i ng>...</errorHandl i ng>
<checkpoi nt bat ch="Nunber"/>
</ casProcessor >

The <casPr ocessor > element has two mandatory attributes, depl oynment and nane. The
mandatory nane attribute specifies a unique string identifying the CAS Processor.

The mandatory depl oynment attribute specifies the CAS Processor deployment mode. Currently,
three deployment options are supported:

integrated
indicates integrated deployment of the CAS Processor. The CPM deploys and collocates
the CAS Processor in the same process space as the CPM. Thistype of deployment is
recommended to increase the performance of the CPE. However, it is NOT recommended to
deploy annotators containing JNI thisway. Such CAS Processors may cause afatal exception
and force the VM to exit without cleanup (bringing down the CPM). Any UIMA SDK
compliant pure Java CAS Processors may be safely deployed this way.

The descriptor for an integrated deployment can, in fact, be aremote service descriptor. When
used this way, however, the CPM error recovery options (see below) operate in the integrated
mode, which means that many of the retry options are not available.

remote
indicates non-managed deployment of the CAS Processor. The CAS Processor descriptor
referenced in the <descri pt or > element must be aVinci Service Client Descriptor, which
identifies aremotely deployed CAS Processor service (see UIMA Tutorial and Developers

42 CPE Descriptor Reference UIMA Version 3.1.0

Specifying an Individual CAS Processor

Guides Section 3.6, “Working with Remote Services’). The CPM assumes that the CAS
Processor is aready running as a remote service and will connect to it using the URI provided
in the client service descriptor. The lifecycle of aremotely deployed CAS Processor is not
managed by the CPM, so appropriate infrastructure should be in place to start/restart such CAS
Processors when necessary. This deployment provides fault isolation and is implementation
(i.e., programming language) neutral.

local
indicates managed deployment of the CAS Processor. The CAS Processor descriptor
referenced in the <descr i pt or > element must be aVinci Service Deployment Descriptor,
which configures a CAS Processor for deployment as a Vinci service (see UIMA Tutoria
and Developers Guides Section 3.6, “Working with Remote Services’). The CPM deploys
the CAS Processor in a separate process and manages the life cycle (start/stop) of the CAS
Processor. Communication between the CPM and the CAS Processor is done with Vinci.
When the CPM completes processing, the process containing the CAS Processor is terminated.
This deployment mode insulates the CPM from the CA S Processor, creating a more robust
deployment at the cost of a small communication overhead. On multiprocessor machines, the
separate processes may run concurrently and improve overall throughput.

A number of elements may appear within the <casPr ocessor > element.

3.6.1.1. <descriptor> Element

The <descri pt or > element is mandatory. It identifies the descriptor for the referenced CAS
Processor using the syntax described in Section 2.4, “ Analysis Engine Descriptors’.
» For r enot e CAS Processors, the referenced descriptor must be aVinci Service Client
Descriptor, which identifies aremotely deployed CAS Processor service.
 For local CAS Processors, the referenced descriptor must be aVinci Service Deployment
Descriptor.
 For integrated CAS Processors, the referenced descriptor must be an Analysis Engine
Descriptor (primitive or aggregate).

See UIMA Tutorial and Developers Guides Section 3.6, “Working with Remote Services’ for
more information on creating these descriptors and deploying services.

3.6.1.2. <configurationParameterSettings> Element

This element provides away to override the contained Analysis Engine's parameters settings. Any
entry specified here must already be defined; values specified replace the corresponding values for
each parameter. For Cas Processors, this mechanism is only available when they are deployed in
“integrated” mode. For Collection Readers and Initializers, it alwaysis available.

The content of this element isidentical to the com?onent descriptor for specifying parameters (in
the case where no parameter groups are specified)“. Hereis an example:

<confi gurati onPar anet er Setti ngs>
<naneVal uePai r >
<name>Ci vi |l i anTi t| es</ nane>
<val ue>
<array>
<string>M.</string>
<string>Ms. </string>

2An earlier UIMA version required these to have a suffix of “_p”, e.g., “string_p”. Thisis no longer required, but this format is accepted,
aso, for backward compatibility.

UIMA Version 3.1.0 CPE Descriptor Reference 43

Specifying an Individual CAS Processor

<string>Ms.</string>
<string>Dr.</string>
</ array>
</ val ue>
</ naneVal uePai r >

</ confi gurati onPar anet er Setti ngs>

3.6.1.3. <sofaNameMappings> Element

This optional element provides a mapping from defined Sofa names in the component, or the
default Sofa name (if the component does not declare any Sofa names). The form of thiselement is:

<sof aNameMappi ngs>
<sof aNanmeMappi ng cpeSof aName="a_CPE_nane"
conponent Sof aName="a_conponent _Nane"/ >

</ sof aNameMappi ngs>
There can be any number of <sof aNaneMappi ng> elements contained in the

<sof aNameMappi ngs> element. The conponent Sof aNane attribute is optional; leave it out to
specify amapping for the _I ni ti al Vi ew- that is, for Single-View components.

3.6.1.4. <runinSeparateProcess> Element

The <r unl nSepar at ePr ocess> element is mandatory for | ocal CAS Processors, but should
not appear for r enot e or i nt egr at ed CAS Processors. It enables the CPM to create external
processes using the provided runtime environment. Applications launched this way communicate
with the CPM using the Vinci protocol and connectivity is enabled by alocal instance of the
VNS that the CPM manages. Since communication is based on Vinci, the application need not
be implemented in Java. Any language for which Vinci provides support may be used to create
an application, and the CPM will seamlessly communicate with it. The overall structure of this
elementis:

<runl nSepar at ePr ocess>
<exec dir="[String]" executable="[String]">
<env key="[String]" value ="[String]"/>

<arg>[String] </ arg>
</ exec>
</ runl nSepar at ePr ocess>

The <exec> element provides information about how to execute the referenced CAS Processor.
Two attributes are defined for the <exec> element. The di r attributeis currently not used — it
isreserved for future functionality. The execut abl e attribute specifies the actual Vinci service
executable that will be run by the CPM, e.g., j ava, abatch script, an application (.exe), etc. The
executable must be specified with afully qualified path, or be found in the PATH of the CPM.

The <exec> element has two elements within it that define parameters used to construct the
command line for executing the CAS Processor. These elements must be listed in the order in
which they should be defined for the CAS Processor.

The optional <env> element is used to set an environment variable. The variable key will be set to
val ue. For example,

CPE Descriptor Reference UIMA Version 3.1.0

Specifying an Individual CAS Processor

<env key="CLASSPATH' val ue="C: Javalib"/>

will set the environment variable CLASSPATH to the value C. Javal i b. The <env> element may
be repeated to set multiple environment variables. All of the key/value pairs will be added to the
environment by the CPM prior to launching the executable.

Note: The CPM actually adds ALL system environment variables when it launches the
program. It queries the Operating System for its current system variables and one by one
adds them to the program's process configuration.

The <ar g> element is used to specify arbitrary string arguments that will appear on the command
line when the CPM runs the command specified in the execut abl e attribute.

For example, the following would be used to invoke the UIMA Javaimplementation of the Vinci
service wrapper on aJava CAS Processor:

<runl nSepar at ePr ocess>
<exec executabl e="java">
<ar g>&m nus; DVNS_HOST=I ocal host </ ar g>
<ar g>&m nus; DVNS_PORT=9099</ ar g>
<ar g>or g. apache. ui ma. r ef erence_i npl . anal ysi s_engi ne. servi ce.
vi nci . Vi nci Anal ysi sEngi neServi ce_i npl </ ar g>
<ar g>C: ui madescdepl oyCasProcessor. xm </ ar g>
</ exec>
<runl nSepar at ePr ocess>

Thiswill cause the CPM to run the following command line when starting the CAS Processor:

java - DVNS_HOST=Il ocal host - DVNS_PORT=9099
or g. apache. ui ma. ref erence_i npl . anal ysi s_engi ne. servi ce. vi nci . \\
Vi nci Anal ysi sEngi neSer vi ce_i npl
C: ui madescdepl oyCasProcessor . xm

The first argument specifies that the Vinci Naming Serviceisrunning onthel ocal host . The
second argument specifies that the Vinci Naming Service port number is 9099. The third argument
(split over 2 lines in this documentation) identifies the UIMA implementation of the Vinci service
wrapper. This class contains the mai n method that will execute. That main method in turn takes
asingle argument — the filename for the CA S Processor service deployment descriptor. Thus

the last argument identifies the Vinci service deployment descriptor file for the CAS Processor.
Since this is the same descriptor file specified earlier in the <descri pt or > element, the string
${descri pt or} can be used to refer to the descriptor, e.g.:

<ar g>${descriptor}</arg>

The CPM will expand this out to the service deployment descriptor file referenced in the
<descri pt or > element.

3.6.1.5. <deploymentParameters> Element

The <depl oynent Par anet er s> element defines a number of deployment parameters that control
how the CPM will interact with the CAS Processor. This element has the following overal form:

<depl oynent Par anet er s>
<paraneter nane="[String]" value="..." type="string|integer" />

UIMA Version 3.1.0 CPE Descriptor Reference 45

Specifying an Individual CAS Processor

</ depl oyment Par anet er s>

The nane attribute identifies the parameter, the val ue attribute specifies the value that will be
assigned to the parameter, and the t ype attribute indicates the type of the parameter, either st ri ng
ori nt eger . The available parameters include:

service-access
string parameter whose value must be “exclusive’, if present. This parameter is only effective
for remote deployments. It modifies the Vinci service connections to be preallocated and
dedicated, one service instance per pipe-line. It is only relevant for non-Integrated deployement
modes. If there are fewer services instances that are available (and aive — responding to a
“ping” request) than there are pipelines, the number of pipelines (the number of concurrent
threads) is reduced to match the number of available instances. If not specified, the VNSis
queried each time a service is needed, and a“random” instance is assigned from the pool of
available instances. If a services dies during processing, the CPM will useits normal error
handling procedures to attempt to reconnect. The number of attemptsis specified in the CPE
descriptor for each Cas Processor using the <maxConsecut i veRest arts val ue="10"
action="kill-pipeline" waitTi meBet weenRetri es="50"/> xml element. The
“value’ attribute is the number of reconnection tries; the “action” sayswhat to do if the retries
exceed the limit. The “kill-pipeline” action stops the pipeline that was associated with the
failing service (other pipelines will continue to work). The CAS in process within akilled
pipeline will be dropped. These events are communicated to the application using the normal
event listener mechanism. Thewai t Ti meBet weenRet ri es says how many milliseconds to
wait inbetween attempts to reconnect.

vnsHost
(Deprecated) string parameter specifying the VNS host, e.g., | ocal host for local CAS
Processors, host name or IP address of VNS host for remote CAS Processors. This parameter
is deprecated; use the parameter specification instead inside the Vinci Service Client
Descriptor, if needed. It isignored for integrated and local deployments. If present, for remote
deployments, it specifies the VNS Host to use, unless that is specified in the Vinci Service
Client Descriptor.

vnsPort
(Deprecated) integer parameter specifying the VNS port number. This parameter is deprecated;
use the parameter specification instead inside the Vinci Service Client Descriptor, if needed. It
isignored for integrated and local deployments. If present, for remote deployments, it specifies
the VNS Port number to use, unless that is specified in the Vinci Service Client Descriptor.

For example, the following parameters might be used with a CAS Processor deployed in local
mode:

<depl oynent Par anet er s>
<par anet er nane="servi ce-access" val ue="excl usive" type="string"/>
</ depl oynent Par anet er s>

3.6.1.6. <filter> Element

The <filter> element is arequired element but currently should be left empty. Thiselement is
reserved for future use.

3.6.1.7. <errorHandling> Element

The mandatory <er r or Handl i ng> element defines error and restart policies for the CAS
Processor. Each CAS Processor may define different actions in the event of errors and restarts.

CPE Descriptor Reference UIMA Version 3.1.0

Specifying an Individual CAS Processor

The CPM monitors and logs errant behaviors and attempts to recover the component based on the
policies specified in this element.

There are two kinds of faults:

1. One kind only occurs with non-integrated CAS Processors — this fault is either atimeout
attempting to launch or connect to the non-integrated component, or some other kind of
connection related exception (for instance, the network connection might timeout or get
reset).

2. The other kind happens when the CAS Processor component (an Annotator, for example)
throws any kind of exception. This kind may occur with any kind of deployment, integrated
or not.

The <errorHandling> has specifications for each of these kinds of faults. The format of this element
is:

<error Handl i ng>
<maxConsecuti veRestarts action="conti nue| di sabl e[term nate"
val ue="[Nunber]"/ >
<error Rat eThreshol d acti on="conti nue| di sabl e|term nate" val ue="[Rate]"/>
<ti meout max="[Nunber]"/>
</ error Handl i ng>

The mandatory <maxConsecut i veRest ar t s> element applies only to faults of the first kind,
and therefore, only applies to non-integrated deployments. If such afault occurs, aretry is
attempted, up to val ue="[Nunber] " of times. Thisretry resets the connection (if one was
made) and attempts to reconnect and perhaps re-launch (see below for details). The original CAS
(not a partialy updated one) is sent to the CAS Processor as part of the retry, once the deployed
component has been successfully restarted or reconnected to.

Theact i on attribute specifies the action to take when the threshold specified by the
val ue="[Number]" isexceeded. The possible actions are:

continue
skip any further processing for this CAS by this CAS Processor, and pass the CAS to the next
CAS Processor in the Pipeline.

The “restart” action is done, because it is needed for the next CAS.

If thedr opCasOnExcept i on="t rue", the CPM will NOT pass the CASto the next CAS
Processor in the chain. Instead, the CPM will abort processing of this CAS, release the CAS
back to the CAS Pool and will process the next CAS in the queue.

The counter counting the restarts toward the threshold is only reset after a CAS is successfully
processed.

disable
the current CASishandled just asinthe cont i nue case, but in addition, the CAS Processor is
marked so that its process() method will not be called again (i.e., it will be “skipped” for future
CASes)

terminate
the CPM will terminate all processing and exit.

The definition of an error for the <maxConsecut i veRest ar t s> element differs slightly for each
of the three CAS Processor deployment modes:

UIMA Version 3.1.0 CPE Descriptor Reference 47

Specifying an Individual CAS Processor

local
Local CAS Processors experience two general error types.

* launch errors — errors associated with launching a process
* processing errors — errors associated with sending Vinci commands to the process

A launch error is defined by afailure of the process to successfully register with the local
VNS within adefault time window. The current timeout is 15 minutes. Multiple local CAS
Processors are launched sequentially, with a subsegquent processor launched immediately after
its previous processor successfully registers with the VNS,

A processing error is detected if a connection to the CAS Processor islost or if the processing
time exceeds a specified timeout value.

For local CAS Processors, the <maxConsecutiveRestarts> element specifies the number of
consecutive attempts made to launch the CAS Processor at CPM startup or after the CPM has
lost a connection to the CAS Processor.

remote
For remote CAS Processors, the <maxConsecutiveRestarts> element appliesto errors from
sending Vinci commands. An error is detected if a connection to the CAS Processor islost,
or if the processing time exceeds the timeout value specified in the <timeout> element (see
below).

integrated
Although mandatory, the <maxConsecutiveRestarts> element is NOT used for integrated CAS
Processors, because Integrated CA S Processors are not re-instantiated/restarted on exceptions.
This setting isignored by the CPM for Integrated CAS Processors but it is required. Future
version of the CPM will make this element mandatory for remote and local CAS Processors
only.

The mandatory <er r or Rat eThr eshol d> element isused for al faults — both those above, and
exceptions thrown by the CAS Processor itself. It specifies the number of retries for exceptions
thrown by the CAS Processor itself, a maximum error rate, and the corresponding action to take
when thisrate is exceeded. Theval ue attribute specifies the error rate in terms of errors per
sample sizein theform “N M, where N is the number of errors and Mis the sample size, defined in
terms of the number of documents.

The first number is used also to indicate the maximum number of retries. If this number isless than
the <maxConsecuti veRestarts val ue="[Nunber]">, itwill override, reducing the number
of “restarts’ attempted. A retry isdone only if thedr opCasOnExcepti on isfase Ifitissetto
true, no retry occurs, but the error is counted.

When the number of counted errors exceeds the sample size, an action specified by theact i on
attribute is taken. The possible actions and their meaning are the same as described above for the
<maxConsecut i veRest art s> element:

e continue

e disable

e terminate

Thedr opCasOnExcepti on="true" attribute of the <casPr ocessor s> element modifies the
action taken for continue and disable, in the same manner as above. For example:

<error Rat eThreshol d val ue="3/1000" acti on="di sabl e"/>

48

CPE Descriptor Reference UIMA Version 3.1.0

CPE Operational Parameters

specifies that each error thrown by the CAS Processor itself will be retried up to 3 times (if
dr opCasOnExcept i on isfalse) and the CAS Processor will be disabled if the error rate exceeds 3
errorsin 1000 documents.

If adocument causes an error and the error rate threshold for the CAS Processor is not exceeded,
the CPM increments the CAS Processor's error count and retries processing that document (if

dr opCasOnExcept i on isfalse). The retry means that the CPM callsthe CAS Processor's
process() method again, passing in as an argument the same CAS that previously caused an
exception.

Note: The CPM does not attempt to rollback any partial changes that may have been
applied to the CASin the previous process() call.

Errors are accumulated across documents. For example, assume the error rate threshold is 3/ 1000.
The same document may fail three times before finally succeeding on the fourth try, but the error
count is now 3. If one more error occurs within the current sample of 1000 documents, the error
rate threshold will be exceeded and the specified action will be taken. If no more errors occur
within the current sample, the error counter is reset to O for the next sample of 1000 documents.

The<t i neout > element is amandatory element. Although mandatory for all CAS Processors, this
element is only relevant for local and remote CAS Processors. For integrated CAS Processors, this
element isignored. In the current CPM implementation the integrated CA S Processor process()
method is not subject to timeouts.

The max attribute specifies the maximum amount of time in milliseconds the CPM will wait for a
process() method to complete When exceeded, the CPM will generate an exception and will treat
this as an error subject to the threshold defined in the <er r or Rat eThr eshol d> element above,
including doing retries.

Retry action taken on a timeout

The action taken depends on whether the CAS Processor is local (managed) or remote
(unmanaged). Local CAS Processors (which are services) are killed and restarted, and a new
connection to them is established. For remote CAS Processors, the connection to them is dropped,
and a new connection is reestablished (which may actually connect to a different instance of the
remote services, if it has multiple instances).

3.6.1.8. <checkpoint> Element

The <checkpoi nt > element is an optional element used to improve the performance of CAS
Consumers. It has asingle attribute, bat ch, which specifies the number of CASesin abatch, e.g.:

<checkpoi nt bat ch="1000">

sets the batch size to 1000 CA Ses. The batch size is the interval used to mark a point in processing
requiring special handling. The CAS Processor's bat chPr ocessConpl et e() method will be
called by the CPM when this mark is reached so that the processor can take appropriate action.
This mark could be used as a mechanism to buffer up resultsin CAS Consumers and perform time-
consuming operations, such as check-pointing, that should not be done on a per-document basis.

3.7. CPE Operational Parameters

The parameters for configuring the overall CPE and CPM are specified in the <cpeConf i g>
section. The overall format of this section is:

UIMA Version 3.1.0 CPE Descriptor Reference 49

CPE Operational Parameters

<cpeConfi g>
<start At >[Nunber O | D] </ start At >

<numToPr ocess>[Nunber] </ nuniToPr ocess>

<out put Queue dequeueTi neout ="[Nunber]" queued ass="[d assNane]" />
<checkpoint file="[File]" tinme="[Nunber]" batch="[Nunber]"/>
<timerlnpl>[Cl assNane] </ ti merl npl >

<depl oyAs>vi nci Servi ce| i nteractive|i nmredi at e| si ngl e-t hr eaded
</ depl oyAs>

</ cpeConfi g>

This section of the CPE descriptor alows for defining the starting entity, the number of entities

to process, a checkpoint file and frequency, a pluggable timer, an optional output queue
implementation, and finally a mode of operation. The mode of operation determines how the CPM
interacts with users and other systems.

The<st art At > element is an optional argument. It defines the starting entity in the collection at
which the CPM should start processing.

The implementation in the CPM passes this argument to the Collection Reader as the value of the
parameter “st ar t Nunber ”. The CPM does not do anything else with this parameter; in particular,
the CPM has no ahility to skip to a specific document - that function, if available, is only provided
by a particular Collection Reader implementation.

If the <st ar t At > element is used, the Collection Reader descriptor must define a single-valued
configuration parameter with the name st ar t Nunber . It can declare this value to be of any type;
the value passed in this XML element must be convertible to that type.

A typical useisto declare thisto be an integer type, and to pass the sequential document number
where processing should start. An alternative implementation might take a specific document 1D;
the collection reader could search through its collection until it reaches this ID and then start there.

This parameter will only make sense if the particular collection reader isimplemented to use the
st art Nunber configuration parameter.

The <nuniToPr ocess> element is an optional element. It specifies the total number of entities
to process. Use-1toindicate ALL. If not defined, the number of entities to process will be taken
from the Collection Reader configuration. If present, this value overrides the Collection Reader
configuration.

The <out put Queue> element is an optional element. It enables plugging in a custom
implementation for the Output Queue. When omitted, the CPM will use a default output queue that
is based on First-in First-out (FIFO) model.

The UIMA SDK provides a second implementation for the Output Queue that can be plugged into
the CPM, named “ or g. apache. ui ma. col | ecti on. i npl . cpm engi ne. SequencedQueue ”.

This implementation supports handling very large documents that are split into “chunks’;

it provides a delivery mechanism that insures the sequential order of the chunks using
information carried in the CAS metadata. This metadata, which isrequired for this
implementation to work correctly, must be added as an instance of a Feature Structure of type
or g. apache. es. tt. Docunent Met aDat a and referred to by an additional feature named

50

CPE Descriptor Reference UIMA Version 3.1.0

CPE Operational Parameters

esDocunent Met aDat a in the specia instance of ui ma. t cas. Docunent Annot at i on that is
associated with the CAS. Thisisusually done by the Collection Reader; the instance contains the
following features:

sequenceNumber
[Number] the sequential number of achunk, starting at 1. If not achunk (i.e. complete
document), the value should be 0.

documentld
[Number] current document id. Chunks belonging to the same document have identical
document id.

isCompleted
[Number] 1if the chunk isthe last in a sequence, 0 otherwise.

url
[String] document url.

throttlelD
[String] special attribute currently used by OmniFind.

Thisimplementation of a sequenced queue supports proper sequencing of CASesin CPM
deployments that use document chunking. Chunking is a technique of splitting large documents
into pieces to reduce overall memory consumption. Chunking does not depend on the number of
CASesinthe CAS Poal. It works equally well with one or more CASes in the CAS Pool. Each
chunk is packaged in a separate CAS and placed in the Work Queue. If the CAS Pool is depleted,
the CollectionReader thread is suspended until a CAS s released back to the pool by the processing
threads. A document may be split into 1, 2, 3 or more chunks that are analyzed independently.

In order to reconstruct the document correctly, the CAS Consumer can depend on receiving

the chunks in the same sequential order that the chunks were “produced”, when this sequenced
gueue implementation is used. To plug in this sequenced queue to the CPM use the following
specification:

<out put Queue dequeueTi meout ="100000" queueC ass=
"org. apache. ui ma. col | ecti on. i npl.cpm engi ne. SequencedQueue"/ >

where the mandatory queued ass attribute defines the name of the class and the second
mandatory attribute, dequeueTi meout specifies the maximum number of milliseconds to wait for
the expected chunk.

Note: The value for thistimeout must be carefully determined to avoid excessive
occurrences of timeouts. Typically, the size of a chunk and the type of analysis being done
are the most important factors when deciding on the value for the timeout. The larger

the chunk and the more complicated analysis, the more time it takes for the chunk to go
from source to sink. Y ou may specify O, in which case, the timeout isdisabled - i.e,, itis
equivalent to an infinitely long timeout.

If the chunk doesn't arrive in the configured time window, the entire document is presumed to be
invalid and the CAS is dropped from further processing. This action occurs regardless of any other
error action specification. The SequencedQueue invalidate the document, adding the offending
document's metadata to alocal cache of invalid documents.

If the time out occurs, the CPM notifies all registered listeners (see UIMA Tutorial and Developers
Guides Section 2.3.1, “Using Listeners’) by calling entityProcessComplete(). As part of this call,
the SequencedQueue will pass null instead of a CAS as the first argument, and a specia exception

UIMA Version 3.1.0 CPE Descriptor Reference 51

CPE Operational Parameters

— CPM ChunkTimeoutException. The reason for passing null as the first argument is because the
time out occurs due to the fact that the chunk has not been received in the configured timeout
window, so thereisno CAS available when the timeout event occurs.

The CPM ChunkTimeoutException object includes an API that allows the listener to retrieve the
offending document id as well as the other metadata attributes as defined above. These attributes
are part of each chunk's metadata and are added by the Collection Reader.

Each chunk that SequencedQueue works on is subjected to atest to determine if the chunk belongs
to an invalid document. This test checks the chunk's metadata against the datain the local cache.

If thereis amatch, the chunk is dropped. This check is only performed for chunks and complete
documents are not subject to this check.

If thereis an exception during the processing of a chunk, the CPM sends a notification to all
registered listeners. The notification includes the CAS and an exception. When the listener
notification is completed, the CPM also sends separate notifications, containing the CAS, to the
Artifact Producer and the SequencedQueue. The intent isto stop adding new chunks to the Work
Queue that belong to an “invalid” document and al so to deal with chunks that are en-route, being
processed by the processing threads.

In response to the notification, the Artifact Producer will drop and release back to the CAS

Pool all CASesthat belong to an “invalid” document. Currently, there is no support in the
CollectionReader's API to tell it to stop generating chunks. The CollectionReader keeps producing
the chunks but the Artifact Producer immediately drops/rel eases them to the CAS Pool. Before the
CASisreleased back to the CAS Pool, the Artifact Producer sends notification to all registered
listeners. This notification includes the CAS and an exception — SkipCasException.

In response to the notification of an exception involving a chunk, the SequencedQueue retrieves
from the CAS the metadata and addsit to itslocal cache of “invaid” documents. All chunks de-
gueued from the OutputQueue and belonging to “invalid” documents will be dropped and released
back to the CAS Pool. Before dropping the CAS, the CPM sends notification to all registered
listeners. The notification includes the CAS and SkipCasException.

The <checkpoi nt > element is an optional element. It specifies a CPE checkpoint file, checkpoint
frequency, and strategy for checkpoints (time or count based). At checkpoint time, the CPM saves
status information and statistics to the checkpoint file. The checkpoint file is specified in thefi | e
attribute, which has the same form asthe hr ef attribute of the <i ncl ude> element described in
Section 3.3, “Imports’ [39]. Thet i me attribute indicates that a checkpoint should be taken

every [Nunber] seconds, and the bat ch attribute indicates that a checkpoint should be taken
every [Nunber] batches.

The<ti nmer | npl > element isoptional. It is used to identify a custom timer plug-in classto
generate time stamps during the CPM execution. The value of the element is a Java class name.

The <depl oyAs> element indicates the type of CPM deployment. Valid contents for this element
include:

vinciService
Vinci service exposing APIsfor stop, pause, resume, and getStats

interactive
provide command line menus (start, stop, pause, resume)

immediate
run the CPM without menus or a service AP

CPE Descriptor Reference UIMA Version 3.1.0

Resource Manager Configuration

single-threaded
run the CPM in a single threaded mode. In this mode, the Collection Reader, the Processing
Pipeline, and the CAS Consumer Pipeline are al running in one thread without the work queue
and the output queue.

3.8. Resource Manager Configuration

External resource bindings for the CPE may optionally be specified in an element:

<r esour ceManager Confi guration href="..."/>

For an introduction to external resources, refer to UIMA Tutorial and Developers Guides
Section 1.5.4, “ Accessing External Resources’.

Inther esour ceManager Conf i gur at i on element, the value of the href attribute refersto
another file that contains definitions and bindings for the external resources used by the CPE. The
format of thisfile isthe same asthe XML snippet Section 2.4.2.4, “ External Resource Bindings’

. For example, in a CPE containing an aggregate analysis engine with two annotators, and a

CAS Consumer, the following resource manager configuration file would bind external resource
dependenciesin all three components to the same physical resource:

<r esour ceManager Conf i gur ati on>
<!-- Declare Resource -->

<ext er nal Resour ces>
<ext er nal Resour ce>
<nanme>Exanpl eResour ce</ name>
<fil eResour ceSpecifier>
<fileUrl>file: MyResourceFile.dat</fileUrl>
</fil eResourceSpecifier>
</ ext er nal Resour ce>
</ ext er nal Resour ces>

<!-- Bind component resource dependencies to Exanpl eResource -->

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>M/AE/ annot at or 1/ myResour ceKey</ key>
<r esour ceNane>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>

<ext er nal Resour ceBi ndi ng>
<key>M/AE/ annot at or 2/ soneResour ceKey</ key>
<r esour ceNanme>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>

<ext er nal Resour ceBi ndi ng>
<key>MyCasConsuner/ ot her Resour ceKey</ key>
<r esour ceName>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi ngs>

</ resour ceManager Confi gurati on>

In this example, My AE and MyCas Consuner are the names of the Analysis Engine and CAS
Consumer, as specified by the name attributes of the CPE's <casPr ocessor > elements.

UIMA Version 3.1.0 CPE Descriptor Reference 53

Example CPE Descriptor

annot at or 1 and annot at or 2 are the annotator keys specified within the Aggregate AE
Descriptor, and myResour ceKey, soneResour ceKey, and ot her Resour ceKey are the keys of
the resource dependencies declared in the individual annotator and CAS Consumer descriptors.

3.9. Example CPE Descriptor

<?xm version="1.0" encodi ng="UTF- 8" ?>
<cpeDescri pti on>
<col | ecti onReader >
<col |l ectionlterator>
<descri pt or >
<inport | ocation=
"../lcollection_reader/Fil eSystenCol |l ecti onReader. xm "/ >
</ descri pt or >
</col |l ectionlterator>
</ col | ecti onReader >
<casProcessors dropCasOnExcepti on="true" casPool Si ze="1"
processi nguni t Thr eadCount =" 1" >
<casProcessor depl oynent="int egrat ed"
nane="Aggregate TAE - Nane Recogni zer and Person Title Annotator">
<descri ptor>
<inport |ocation=
"../lanal ysi s_engi ne/ NamesAndPer sonTi t| es_TAE. xm "/ >
</ descri pt or >
<depl oyment Par anet er s/ >
<filter/>
<error Handl i ng>
<errorRateThreshol d acti on="term nate" val ue="100/ 1000"/ >
<maxConsecuti veRestarts action="term nate" val ue="30"/>
<timeout max="100000"/>
</ error Handl i ng>
<checkpoi nt batch="1"/>
</ casProcessor>
<casProcessor depl oynent="integrated" name="Annotation Printer">
<descri pt or >
<inmport |ocation="../cas_consumer/AnnotationPrinter.xm"/>
</ descri pt or>
<depl oynment Par anet er s/ >
<filter/>
<error Handl i ng>
<errorRat eThreshol d acti on="term nate" val ue="100/1000"/>
<maxConsecuti veRestarts action="termn nate" val ue="30"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt batch="1"/>
</ casProcessor >
</ casProcessor s>
<cpeConfi g>
<numroPr ocess>1</ numloPr ocess>
<depl oyAs>i medi at e</ depl oyAs>
<checkpoint file="" tinme="3000"/>
<timerlnpl/>
</ cpeConfi g>
</ cpeDescri pti on>

54 CPE Descriptor Reference UIMA Version 3.1.0

Chapter 4. CAS Reference

The CAS (Common Analysis System) is the part of the Unstructured Information Management
Architecture (UIMA) that is concerned with creating and handling the data that annotators
manipul ate.

Javauserstypically use the JCas (Javainterface to the CAS) when manipulating objectsin the
CAS. This chapter describes an alternative interface to the CAS which alows discovery and
specification of types and features at run time. It is recommended for use when the using code
cannot know ahead of time the type system it will be dealing with.

Use of the CAS as described hereis also recommended (or necessary) when components add to the
definitions of types of other components. This UIMA feature allows users to add features to atype
that was already defined elsewhere. When this feature is used in conjunction with the JCas, it can
lead to problems with class loading. Thisis because different JCas representations of a single type
are generated by the different components, and only one of them is loaded (unless you are using
Pear descriptors). Note: we do not recommend that you add features to pre-existing types. A type
should be defined in one place only, and then there is no problem with using the JCas. However,

if you do use this feature, do not use the JCas. Similarly, if you distribute your components for
inclusion in somebody else's UIMA application, and you're not sure that they won't add featuresto
your types, do not use the JCas for the same reasons.

4.1. Javadocs

The subdirectory docs/ api contains the documentation details of all the classes, methods, and
constants for the APIs discussed here. Please refer to thisfor details on the methods, classes and
constants, specifically in the packagesor g. apache. ui ma. cas. *.

4.2. CAS Overview

There are three* main partsto the CAS: the type system, data creation and manipulation, and
indexing. We will start with a brief description of these components.

4.2.1. The Type System

The type system specifies what kind of data you will be able to manipulate in your annotators.

The type system defines two kinds of entities, types and features. Types are arranged in asingle
inheritance tree and define the kinds of entities (objects) you can manipulate in the CAS. Features
optionally specify slots or fields within atype. The correspondence to Javaisto equate a CAS Type
to aJava Class, and the CAS Features to fields within the type. A critical differenceisthat CAS
types have no methods; they are just data structures with named slots (features). These features can
have as values primitive things like integers, floating point numbers, and strings, and they also can
hold references to other instances of objectsin the CAS. We call instances of the data structures
declared by the type system “feature structures’ (not to be confused with “features’). Feature
structures are similar to the many variants of record structures found in computer sci ence.

Each CAS Type defines a supertype; it is a subtype of that supertype. This means that any features
that the supertype defines are features of the subtype; in other words, it inherits its supertype's
features. Only single inheritance is supported; atype's feature set is the union of all of the features

1A fourth part, the Subject of Analysis, is discussed in UIMA Tutorial and Developers Guides Chapter 5, Annotations, Artifacts, and Sofas.
2 The name “feature structure’ comes from terminology used in linguistics.

CAS Reference 55

Creating/Accessing/Changing data

in its supertype hierarchy. Thereis abuilt-in type called uima.cas. TOP, thisis the top, root node of
the inheritance tree. It defines no features.

The values that can be stored in features are either built-in primitive values or references to other
feature structures. The primitive values are bool ean, byt e, short (16 bit integers), i nt eger

(32 bit), | ong (64 bit), f | oat (32 bit), doubl e (64 bit floats) and strings; the official names of
these are ui ma. cas. Bool ean, ui ma. cas. Byt e, ui ma. cas. Short, ui ma. cas. | nt eger,

ui ma. cas. Long, ui ma. cas. Fl oat , ui ma. cas. Doubl e and ui ma. cas. Stri ng . The strings
are Java strings, and characters are Java characters. Technically, this means that characters are
UTF-16 code points, which is not quite the same as a Unicode character. This distinction should
make no difference for almost al applications. The CAS also defines other basic built-in types

for arrays of these, plus arrays of referencesto other objects, called ui ma. cas. I nt eger Array ,
ui ma. cas. Fl oat Array, ui ma. cas. Stri ngArray, ui ma. cas. FSArr ay, €etc.

The CAS aso defines abuilt-in type called ui ma. t cas. Annot at i on which inherits from
ui ma. cas. Annot at i onBase whichin turn inherits from ui ma. cas. TOP. There are two features
defined by thistype, called begi n and end, both of which are integer valued.

4.2.2. Creating, accessing and manipulating data

Creating and accessing data in the CAS requires knowledge about the types and features defined

in the type system. The ideais similar to other data access APIs, such asthe XML DOM or SAX
APIs, or database access APIs such as JDBC. Contrary to those APIs, however, the CAS does not
use the names of type system entities directly in the APIs. Rather, you use the type system to access
type and feature entities by name, then use these entities in the data manipulation APIs. This can be
compared to the Javareflection APIs; the type system is comparable to the Java class loader, and
the type and feature objectsto thej ava. | ang. d ass andj ava. | ang. refl ect. Fi el d classes.

Why does it have to be this complicated? Y ou wouldn't normally use reflection to create a Java
object, either. As mentioned earlier, the JCas provides the more straightforward method to
manipulate CAS data. The CAS access methods described here need only be used for generic types
of applications that need to be able to handle any kind of data (e.g., generic tooling) or when the
JCas may not be used for other reasons. The generic kinds of applications are exactly the ones
where you would use the reflection APl in Java as well.

4.2.3. Creating and using indexes

Each view of a CAS provides a set of indexes for that view. Instances of Types (that is, Feature
Structures) can be added to aview'sindexes. These indexes provide away for annotators to locate
existing datain the CAS, using a specific index (or the method get Al | | ndexedFS of the object
FSI ndexReposi t or y) to retrieve the Feature Structures that were previously created. If you want
the data you Newly created Feature Structures are not automatically added to the indexes; you
choose which Feature Structures to add and use one of several APIsto add them.

Indexes are named and are associated with a CAS Type; they are used to index instances of that
CAS type (including instances of that type's subtypes). If you are using multiple views (see UIMA
Tutorial and Developers Guides Chapter 6, Multiple CAS Views of an Artifact), each view contains
a separate instantiation of all of the indexes. To access an index, you minimally need to know its
name. A CAS view provides an index repository which you can query for indexes for that view.
Once you have a handle to an index, you can get information about the feature structuresin the
index, the size of theindex, aswell as an iterator over the feature structures.

There are three kinds of indexes:

56

CAS Reference UIMA Version 3.1.0

Creating and using indexes

* bag - no ordering

» set - uses a user-specfied set of keys to define equality; holds one instance of the set of equal
items.

* sorted - uses a user-specified set of keysto define ordering.

For set indexes, the comparator keys are augmented with an implicit additional field - the type of
the feature structure. This means that an index over Annotations, having subtype Token, and a key
of the "begin" value, will behave asfollows:

* If you make two Tokens (or two Annotations), both having a begin value of 17, and add both
of them to the indexes, only one of them will be in the index.

* If you make 1 Token and 1 Annotation, both having a begin value of 17, and add both of
them to the indexes, both of them will be in the index (because the types are different).

Indexes are defined in the XML descriptor metadata for the application. Each CAS View has

its own, separate instantiation of indexes based on these definitions, kept in the view's index
repository. When you obtain an index, it is always from a particular CAS view's index repository.
When you index an item, it is always added to all indexes where it belongs, within just the view's
repository. Y ou can specify different repositories (associated with different CAS views) to use; a
given Feature Structure instance may be indexed in more than one CAS View (unlessit is a subtype
of AnnotationBase).

Indexes implement the Iterable interface, so you may use the Java enhanced for loop to iterate over
them.

Y ou can also get iterators from indexes; iterators allow you to enumerate the feature structuresin
an index. There are two kinds of iterators supported: the regular Javaiterator API, and a specific
FSiterator APl where the usual Javaiterator APIs (hasNext () and next ()) are augmented by

i svalid(),nmoveToNext () / noveToPrevi ous() (which does not return an element) and
get (). Finaly, thereisanoveTo(Feat ur eSt ruct ure) API, which, for sorted indexes, moves
the iteration point to the left-most (among otherwise "equal™) item in the index which compares
"equal” to the given FeatureStructure, using the index's defined comparator.

Which API style you useis up to you, but we do not recommend mixing the styles as the results are
sometimes unexpected. If you just want to iterate over an index from start to finish, either styleis
equally appropriate. If you also use noveTo(Feat ureStructure fs) and moveToPrevi ous(),
it is better to use the special FSiterator style.

Note: The reason to not mix these stylesis that you might be thinking that next()
followed by moveToPrevious() would always work. Thisis not true, because next()
returns the "current” element, and advances to the next position, which might be beyond
the last element. At that point, the iterator becomes "invalid", and moveT oNext and
moveToPrevious no longer move the iterator. But you can call these methods on the
iterator — moveToFirst(), moveToL ast(), or moveTo(FS) — to reset it.

Indexes are created by specifying them in the annotator's or aggregate's resource descriptor. An
index specification includes its name, the CA S type being indexed, the kind (bag, set or sorted) of
index itis, and an (optional) set of keys. The keys are used for set and sorted indexes, and specify
what values are used for ordering, or (for sets) what values are used to determine set equality.
When a CAS pipelineis created, all index specifications are combined; duplicate definitions
(having the same name) are allowed only if their definitions are the same.

Feature structure instances need to be explicitly added to the index repository by a method call.
Feature structures that are not indexed will not be visible to other annotators, (unless they are

UIMA Version 3.1.0 CAS Reference 57

Built-in CAS Types

located via being referenced by some other feature of another feature structure, which isindexed, or
through a chain of these).

The framework defines an unnamed bag index which indexes all types. The only access provided
for thisindex is the getAllIndexedFS(type) method on the index repository, which returns an
iterator over all indexed instances of the specified type (including its subtypes) for that CAS View.

The framework defines one standard, built-in annotation index, called Annotationlndex,
which indexesthe ui na. t cas. Annot at i on type: al feature structures of type
ui ma. t cas. Annot at i on or its subtypes are automatically indexed with this built-in index.

The ordering relation used by thisindex is to first order by the value of the “begin” features (in
ascending order) and then by the value of the “end” feature (in descending order), and then, finally,
by the Type Priority. This ordering insures that longer annotations starting at the same spot come
before shorter ones. For Subjects of Analysis other than Text, this may not be an appropriate index.

In addition to normal iterators, thereisasel ect API, documented in the Version 3 Users guide,
which provides additional capabilities for accessing Feature Structures via the indexes.

4.3. Built-in CAS Types

The CAS has two kinds of built-in types — primitive and non-primitive. The primitive types are:
* uima.cas.Boolean
* uima.cas.Byte
* uima.cas.Short
* uima.cas.Integer
* uima.cas.Long
* uima.cas.Float
* uima.cas.Double
* uima.cas.String

TheByte, Short, Integer, and Long areal signed integer types, of length 8, 16, 32, and 64
bits. The Doubl e typeis 64 bit floating point. The St ri ng type can be subtyped to create sets of
allowed values; see Section 2.3.4, “ String Subtypes’. These types can be used to specify the range
of a String-valued feature. They act like Strings, but have additional checking to insure the setting
of values into them conforms to one of the allowed values, or to null (whichisthe valueif it is not
set). Note that the other primitive types cannot be used as a supertype for another type definition;
only ui ma. cas. Stri ng can be sub-typed.

The non-primitive types exist in atype hierarchy; the top of the hierarchy isthe type
ui ma. cas. TOP. All other non-primitive types inherit from some supertype.

There are 9 built-in array types. These arrays have a size specified when they are created; the size is
fixed at creation time. They are named:

* uima.cas.BooleanArray

* uima.cas.ByteArray

* uima.cas.ShortArray

* uima.cas.IntegerArray

* uimacas.LongArray

* uima.cas.FloatArray

» uima.cas.DoubleArray

e uima.cas.StringArray

58

CAS Reference UIMA Version 3.1.0

Built-in CAS Types

* uima.cas.FSArray

Theui ma. cas. FSAr r ay typeisan array whose elements are arbitrary other feature structures
(instances of non-primitive types).

The JCas cover classes for the array types support the Iterable API, so you may write extended for
loops over instances of these. For example:

FSArray<MyType> nyArray = ...

for (MType fs : nyArray) {
some_net hod(fs);

}

There are 3 built-in types associated with the artifact being analyzed:
* uima.cas.AnnotationBase
e uimatcas. Annotation
» uimatcas.DocumentAnnotation

The Annot at i onBase type defines one system-used feature which specifies for an annotation the
subject of analysis (Sofa) to which it refers. The Annotation type extends from this and defines 2
features, taking ui ma. cas. | nt eger values, called begi n and end. The begi n feature typically
identifies the start of a span of text the annotation covers; the end feature identifies the end. The
values refer to character offsets; the starting index is 0. An annotation of the word “CAS” in atext
“CAS Reference” would have a start index of 0, and an end index of 3; the difference between end
and start is the length of the span the annotation refersto.

Annotations are always with respect to some Sofa (Subject of Analysis— see UIMA Tutoria and
Developers Guides Chapter 5, Annotations, Artifacts, and Sofas .

Note: Artifacts which are not text strings may have a different interpretation of the
meaning of begin and end, or may define their own kind of annotation, extending from
Annot at i onBase.

The Docunent Annot at i on type has one specia instance. It is a subtype of the Annotation type,
and the built-in definition defines one feature, | anguage, which isastring indicating the language
of the document in the CAS. The value of this language feature is used by the system to control
flow among annotators when the “ CapabilityL anguageFlow” mode is used, allowing the flow to
skip over annotators that don't process particular languages. Users may extend this type by adding
additional featuresto it, using the XML Descriptor element for defining atype.

Note: We do not recommend extending the Docunent Annot at i on type. If you do, you
must not use the JCas, for the reasons stated earlier.

Each CAS view has a different associated instance of the Docunent Annot at i on type. On the
CAS, use get Docunent at i onAnnot at i on() to accessthe Docunent Annot ati on.

There are a so built-in types supporting linked lists, similar to the ones available in Java and other
programming languages. Their use is constrained by the usual properties of linked lists: not very
space efficient, no (efficient) random access, but an easy choiceif you don't know how long your
list will be ahead of time. The implementation is type specific; there are different list building
objects for each of the primitive types, plus one for general feature structures. Here are the type
names:

* uima.cas.FloatList

» uima.cas.IntegerList

UIMA Version 3.1.0 CAS Reference 59

Accessing the type system

* uima.cas.StringList
* uimacas.FSList

* uima.cas.EmptyFloatList
* uima.cas.EmptylntegerList
 uima.cas.EmptyStringList
» uima.cas.EmptyFSList

* uima.cas.NonEmptyFloatL ist
 uima.cas.NonEmptylntegerList
* uima.cas.NonEmptyStringList
* uima.cas.NonEmptyFSList

For the primitivetypes Fl oat , | nt eger, St ri ng and Feat ur eSt r uct ur e, thereisabase type,
for instance, ui ma. cas. Fl oat Li st . For each of these, there are two subtypes, corresponding to
anon-empty element, and a marker that servesto indicate the end of the list, or an empty list. The
non-empty types define two features—head and t ai | . The head feature holds the particular value
for that part of thelist. Thetail refers to the next list object (either a non-empty one or the empty
version to indicate the end of thelist).

For JCas users, the new operator for the NonEmptyXyzList classes includes a 3 argument version
where you may specify the head and tail values as part of the constructor. The JCas cover classes
for these implement apush(i t em) method which creates a new non-empty node, sets the head
valuetoi t em and thetail to the nodeit is called on, and returns the new node. These classes also
implement Iterable, so you can use the enhanced Javaf or operator. The iterator stops when it
gets to the end of the list, determined by either the tail being null or the element being one of the
EmptyX XXList elements. Here's a StringList example:

StringList sl = jcas.enptyStringList();
sl = sl.push("2");
sl = sl.push("1");

for (String s : sl) {
sonmeMet hod(s); // some sanple use

}

There are no other built-in types. Users are free to define their own type systems, building upon
these types.

4.4. Accessing the type system

During annotator processing, or outside an annotator, access the type system by calling
CAS. get TypeSysten() .

However, CAS annotators implement an additional method, t ypeSyst em ni t (), whichiscalled
by the UIMA framework before the annotator's process method. This method, implemented by the
annotator writer, is passed a reference to the CAS's type system metadata. The method typically
uses the type system APIsto obtain type and feature objects corresponding to all the types and
features the annotator will be using in its process method. Thisinitialization step should not be
done during an annotator's initialize method since the type system can change after the initialize
method is called; it should not be done during the process method, since thisis presumably work
that isidentical for each incoming document, and so should be performed only when the type
system changes (which will be arare event). The UIMA framework guarantees it will call the

60

CAS Reference UIMA Version 3.1.0

TypeSystemPrinter example

typeSyst em ni t method of an annotator whenever the type system changes, before calling the
annotator's pr ocess() method.

Theinitialization done by t ypeSyst el ni t () isdone by the UIMA framework when you use the
JCas APIs; you only need to provide at ypeSyst eml ni t () method, as described here, when you
are not using the JCas approach.

4.4.1. TypeSystemPrinter example

Here is a code fragment that, given a CAS Type System, will print alist of all types.

/1l CGet all type nanes fromthe type system
/1 and print themto stdout.
private void |istTypesl(TypeSystemts) ({
for (Type t : ts) {
/1 print its nane.
Systemout. println(t.getNanme());
}
}

This method is passed the type system as a parameter. From the type system, we can get an iterator
over al the types. If you run this against a CAS created with no additional user-defined types, we
should see something like this on the console:

Types in the type system
ui ma. cas. Bool ean

ui ma. cas. Byte

ui ma. cas. Short

ui ma. cas. | nt eger

ui ma. cas. Long

ui ma. cas. ArrayBase

If the type system had user-defined types these would show up too. Note that some of these
types are not directly creatable — they are types used by the framework in the type hierarchy (e.g.
uima.cas.ArrayBase).

CAS type names include a name-space prefix. The components of atype name are separated by the
dot (.). A type name component must start with a Unicode letter, followed by an arbitrary sequence
of letters, digits and the underscore (). By convention, the last component of atype name starts
with an uppercase |etter, the rest start with alowercase |etter.

Listing the type namesis mildly useful, but it would be even better if we could see the inheritance
relation between the types. The following code prints the inheritance tree in indented format.

private static final int |NDENT = 2;
private void |istTypes2(TypeSystemts) ({
/1l CGet the root of the inheritance tree.
Type top = ts.get TopType();
/'l Recursively print the tree.
printlnheritanceTree(ts, top, 0);

}

private void printlnheritanceTree(TypeSystemts, Type type, int level) {
indent(level); // Print indentation.

UIMA Version 3.1.0 CAS Reference 61

Using CAS APIs: Feature Structures

System out. println(type. getNanme());
/1l CGet a vector of the i medi ate subtypes.
Vect or subTypes =
ts.getDirectl ySubsumedTypes(type);
++l evel ; // Increase the indentation |evel.
for (int i =0; i < subTypes.size(); i++) {
/1 Print the subtypes.
printlnheritanceTree(ts, (Type) subTypes.get(i), |evel);
}
}

/1 A sinple, inefficient indenter
private void indent(int level) {
int spaces = | evel * | NDENT;
for (int i = 0; i < spaces; i++) {
Systemout.print(" ");

}
}

This example shows that you can traverse the type hierarchy by starting
at the top with TypeSystem.getTopType and by retrieving subtypes with
TypeSystem get Di rect | ySubsunedTypes() .

The Javadocs also have APIs that allow you to access the features, as well as what the allowed
value typeisfor that feature. Here is sample code which prints out all the features of al the types,
together with the allowed value types (the feature “range”). Each feature has a“domain” which is
the type where it is defined, aswell asa“range’.

private void |istFeatures2(TypeSystemts) {
Iterator featurelterator = ts.getFeatures();
Feature f;
Systemout.println("Features in the type system");
while (featurelterator.hasNext()) {
f = (Feature) featurelterator.next();
System out . printl n(
f.get Short Name() + ": " +
f.getDomain() + " ->" + f.getRange());
}

Systemout. println();

}

We can ask afeature object for its domain (the type it is defined on) and its range (the type of
the value of the feature). The terminology derives from the fact that features can be viewed as
functions on subspaces of the object space.

4.4.2. Using the CAS APIs to create and modify feature
structures

Assume atype system declaration that defines two types. Entity and Person. Entity has no features
defined within it but inherits from uima.tcas.Annotation — so it has the begin and end features.
Person is, in turn, a subtype of Entity, and adds firstName and |astName features. CAS type
systems are declaratively specified using XML ; the format of this XML is described in Section 2.3,
“Type System Descriptors’.

<I-- Type System Definition -->
<t ypeSyst enDescri pti on>
<types>

62

CAS Reference UIMA Version 3.1.0

Using CAS APIs: Feature Structures

<t ypeDescri pti on>
<name>com xyz. proj . Enti t y</ nane>
<description />
<supert ypeName>ui ma. t cas. Annot at i on</ supert ypeNane>
</typeDescri ption>
<t ypeDescri pti on>
<name>Per son</ nane>
<description />
<supertypeNanme>com xyz. proj . Entity </supertypeNanme>
<f eat ures>
<f eat ureDescri pti on>
<nanme>f i r st Nane</ name>
<description />
<rangeTypeNanme>ui nma. cas. Stri ng</rangeTypeNane>
</ f eat ureDescri pti on>
<f eat ureDescri pti on>
<nane>| ast Nanme</ nane>
<description />
<rangeTypeNanme>ui ma. cas. Stri ng</rangeTypeNanme>
</ featureDescription>
</ features>
</typeDescri ption>
</types>
</ typeSyst enDescri pti on>

To be able to access types and features, we need to know their names. The CAS interface defines
constants that hold the names of built-in feature names, such as, e.g., CAS. TYPE_NAVE_| NTEGER.
It is good programming practice to create such constants for the types and features you define, for
your own use as well asfor others who will be using your annotators.

/** Entity type nane constant. */
public static final String ENTI TY_TYPE_NAME = "com xyz.proj.Entity";

/** Person type nane constant. */
public static final String PERSON_TYPE_NAME = "com Xxyz.proj.Person";

/** First nane feature nane constant. */
public static final String FI RST_NAVE FEAT_NAME = "firstNane";

/[** Last nanme feature nane constant. */
public static final String LAST_NAME_FEAT_NAME = "| ast Nane";

Next we define type and feature member variables; these will hold the values of the type and
feature objects needed by the CAS APIs, to be assigned during t ypeSyst em ni t () .

/'l Type system obj ect vari abl es
private Type entityType;

private Type personType;

private Feature firstNanmeFeat ure;
private Feature | astNameFeat ure;
private Type stringType;

The type system does not throw an exception if we ask for something that is not known, it smply
returns null; therefore the code checks for this and throws a proper exception. We require all these
types and features to be defined for the annotator to work. One might imagine situations where
certain computations are predicated on some type or feature being defined in the type system, but
that is not the case here.

/1l CGet a type object corresponding to a nane.

UIMA Version 3.1.0 CAS Reference 63

Creating feature structures

/1 1f it doesn't exist, throw an exception.
private Type initType(String typeNane)
throws Annotatorlnitializati onException {
Type type = ts.get Type(typeNane);
if (type == null) {
throw new Annotatorlnitializati onException(
Annotatorinitializati onException. TYPE_NOT_FOUND,
new bject[] { this.getd ass().getNane(), typeNane });
}

return type;

}

/1 W& add sinilar code for retrieving feature objects.
/1l Get a feature object froma name and a type object.
/1 1f it doesn't exist, throw an exception.
private Feature initFeature(String featNane, Type type)
throws Annotatorlnitializati onException {
Feature feat = type. get Feat ur eByBaseNane(feat Nane);
if (feat == null) {
throw new Annotatorlnitializati onException(
Annotatorlinitializati onExcepti on. FEATURE_NOT_FOUND,
new bject[] { this.getd ass().getNane(), featNane });
}

return feat;

}
Using these two functions, code for initializing the type system described above would be:

public void typeSystemn nit(TypeSystem aTypeSystem
t hrows Anal ysi sEngi neProcessException {
this.typeSystem = aTypeSystem
/1 Set type system nember vari abl es.
this.entityType = initType(ENTI TY_TYPE_NAME);
thi s. personType = initType(PERSON_TYPE_NAME) ;
this.firstNameFeature =
i ni t Feat ur e(Fl RST_NAME_FEAT_NAME, personType);
this. | ast NameFeature =
i ni t Feat ur e(LAST_NAME_FEAT_NAME, personType);
this.stringType = initType(CAS. TYPE_NAME_STRI NG ;
}

Note that we initialize the string type by using atype name constant from the CAS.

4.5. Creating feature structures

To create feature structures in JCas, we use the Java“new” operator. In the CAS, we use

one of several different APl methods on the CAS object, depending on which of the 10 basic
kinds of feature structures we are creating (a plain feature structure, or an instance of the built-
in primitive type arrays or FSArray). There areis also amethod to create an instance of a

ui ma. t cas. Annot at i on, setting the begin and end values.

Once afeature structure is created, it needs to be added to the CAS indexes (unlessit will be
accessed via some reference from another accessible feature structure). The CAS provides this API:
Assuming aCAS holds areferenceto a CAS, and token holds areference to a newly created feature
structure, here's the code to add that feature structure to al the relevant CAS indexes:

/1 Add the token to the index repository.
aCAS. addFsTol ndexes(t oken) ;

64 CAS Reference UIMA Version 3.1.0

Updating indexed feature structures

Thereisalso acorresponding r emoveFsFr om ndexes(t oken) method on CAS objects.

Asof version 2.4.1, there are two methods you can use on an index repository to efficiently bulk-
remove al instances of particular types of feature structures from a particular view. One of these,
aCas. get I ndexRepository().renoveAl | I ncl udi ngSubt ypes(aType) removesall
instances of a particular type, including instances which are subtypes of the specified type. The
other, aCas. get | ndexReposi tory().renoveAl | Excl udi ngSubt ypes(aType) remove all
instances of a particular type, only. In both cases, the removal is done from the particular view of
the CAS referenced by aCas.

4.5.1. Updating indexed feature structures

Version 2.7.0 added protection for indexes when feature structure key value features are updated.
By default this protection is automatic, but at some performance cost. Users may optimize this
further.

Protection is needed because some of the indexes (the Sorted and Set types) use comparators
defined to use values of the particular features; if these values need to be changed after the feature
structure is added to the indexes, the correct way to do thisisto:
1. completely remove theitem from all indexes whereit isindexed, in al views whereit is
indexed,
2. update the value of the features being used as keys,
3. add the item back to the indexes, in al views.

Note: It's OK to change feature values which are not used in determining sort ordering (or
set membership), without removing and re-adding back to the index.

The automatic protection checks for updates of features being used as keys, and if it finds an update
like this for afeature structure that isin the indexes, it removes the feature structure from the
indexes, does the update, and adds it back. It will do thisfor every feature update. Thisis obviously
not efficient when multiple features are being updated; in that case it would better to remove the
feature structure, do all the updatesto al the features needing updates, and then do asingle add-
back operation.

Thisis supported in user’s code by using the new method pr ot ect | ndexes availablein both the
CAS and JCas interface. Here's two ways of using this, one with atry / finally and the other with a
Runnable;

/1 an approach using try / finally
Aut oCl oseabl e ac = ny_cas. protectlndexes(); // my_cas is a CAS or a JCas

try {
arbitrary user code which updates features
whi ch may be "keys" in one or nore indexes
} finally {
ac. cl ose();
}

/1 This can nore conpactly be witten using the auto-close feature of try:

try (AutoC oseable ac = nmy_cas. protectl ndexes()) {
arbitrary user code which updates features
whi ch may be "keys" in one or nore indexes

}

/1 an approach using a Runnable, witten in Java 8 | anbda synt ax

UIMA Version 3.1.0 CAS Reference 65

Accessing or modifying Features

nmy_cas. prot ect I ndexes(() -> {
. arbitrary user code updating "key" features,
but no checked exceptions are permitted
1)

The pr ot ect | ndexes implementation only removes feature structures that have features being
updated which are used as keys in some index(es). At the end of the scope of the protectl ndexes, it
adds all of these back. It also skips removing feature structures from bag indexes, since these have
no keys.

Within apr ot ect | ndexes block, do not do any operations which depend on the indexes being
valid, such as creating and using an iterator. This is because the removed FSs are only added back
at the end of the protectl ndexes block.

The VM property - Dui ma. report _fs_updat e_corrupts_i ndex will generate alog entry
everytime the frameworks finds (and automatically surrounds with a remove - add-back) an
update to a feature which could corrupt the index. The log entries can be identified by scanning

for messages starting with Wil e FS was in the index, the feature -the message goes
on to identify the feature in question. Users can use these reports to find the places in their code
where they can either change the design to avoid updating these values after the item isindexed, or
surround the updates with their own pr ot ect | ndexes blocks.

Initially, the out-of-the-box defaults for the UIMA framework will run with an automatic (but
somewhat inefficient) protection. To improve upon this, users would:

» Turnonreporting using aglobal VM flag -
Dui na. report _fs_updat e_corrupts_i ndex. Thiswill cause a message to be logged
each time the automatic protection is being invoked, and allows the user to find the spots to
improve.

 Improve each spot, perhaps by surrounding the update code with a protectIndexes block, or
by rearranging code to reduce updating feature values used as index keys.

» Oncethe code is no longer generating any reports, you can turn off the
automatic protection for production runs using the VM global property -
Dui na. di sabl e_aut o_pr ot ect _i ndexes, and rely on the protectlndexes blocks. If
protection is disabled, then the corruption detection is skipped, making the production runs
perhaps a bit faster, although thisis not significant in most cases.

 For automated build systems, there’'sa VM parameter, -
Dui ma. excepti on_when_fs_updat e_corr upt s_i ndex, which will throw an exception
if any automatic recovery situation is encountered. Y ou can use thisin build/test scenarios to
insure (after adding all needed protectindexes blocks) that the code remains safe for turning
off the checking in production runs.

4.6. Accessing or modifying features of feature
structures

Values of individual features for a feature structure can be set or referenced, using a set of
methods that depend on the type of value that feature is declared to have. There are methods

on FeatureStructure for this: getBooleanValue, getByteVaue, getShortValue, getintValue,
getLongValue, getFoatValue, getDoubleValue, getStringValue, and getFeatureVaue (which
means to get avalue which in turn is areference to afeature structure). There are corresponding

66

CAS Reference UIMA Version 3.1.0

Indexes and Iterators

“setter” methods, as well. These methods on the feature structure object take as arguments the
feature object retrieved earlier in the typeSystemlnit method.

Using the previous example, with the type system initialized with type personType and feature
lastNameFeature, here's a sample code fragment that gets and sets that feature:

/'l Assume aPerson is a variable holding an object of type Person
/'l get the | ast NanmeFeature value fromthe feature structure

String | ast Nane = aPerson. get Stri ngVal ue(l ast NaneFeat ure);

/'l set the | astNaneFeature val ue

aPer son. set St ri ngVal ue(| ast NaneFeat ure, newStri ngVal ueFor Last Nane) ;

The getters and setters for each of the primitive types are defined in the Javadocs as methods of the
FeatureStructure interface.

4.7. Indexes and lterators

Each CAS can have many indexes associated with it; each CAS View contains a complete

set of instantiations of the indexes. Each index is represented by an instance of the type
org.apache.uima.cas.FSIndex. Y ou use the object org.apache.uima.cas.FSIndexRepository,
accessible viaamethod on a CAS object, to retrieve instances of indexes. There are methods that

let you select the index by name, by type, or by both name and type. Since each index is already
associated with atype, passing both a name and atypeisvalid only if the type passed in is the same
type or a subtype of the one declared in the index specification for the named index. If you passin a
subtype, the returned FSIndex object refers to an index that will return only items belonging to that
subtype (or subtypes of that subtype).

The returned FSIndex objects are used, in turn, to create iterators. There is aso a method on the
Index Repository, get Al | | ndexedFS, which will return an iterator over all indexed Feature
Structures (for that CAS View), in no particular order. The iterators created can be used like
common Java iterators, to sequentially retrieve items indexed. If the index represents a sorted
index, the items are returned in a sorted order, where the sort order is specified in the XML index
definition. This XML is part of the Component Descriptor, see Section 2.4.1.5, “Index Definition”.

In UIMA V3, Feature structures may be added to or removed from indexes while iterating over
them. If this happens, any iterators already created will continue to operate over the before-
modification version of the index, unless or until the iterator is re-synchronized with the current
value of the index via one of the following specific 3 iterator API calls: moveToFirst, moveTolLast,
or moveTo(FeatureStructure). ConcurrentM odificationException is no longer thrown in UIMA v3.

Feature structures being iterated over may have features which are used as the "keys" of an

index, updated. If thisis done, UIMA will protect the indexes (to prevent index corruption) by
automatically removing the Feature Structure from the indexes, updating the field, and adding the
FS back to the index (possibly in a new position). This automatic remove / add-back operation no
longer makes the iterator throw a ConcurrentM odificationException (asit did in UIMA Version
2) if theiterator isincremented or decremented; existing iterators will continue to operate asif no
index modification occurred.

4.7.1.

Built-in Indexes

An unnamed built-in bag index exists which holds all feature structures which are indexed. The
only accessto thisindex is the method getAlllndexedFS(Type) which returns an iterator over al
indexed Feature Structures.

UIMA Version 3.1.0 CAS Reference 67

Adding Feature Structures to the Indexes

The CAS aso contains a built-in index for the type ui ma. t cas. Annot at i on, which sorts
annotations in the order in which they appear in the document. Annotations are sorted first by
increasing begi n position. Ties are then broken by decreasing end position (so that longer
annotations come first). Annotations that match in both their begi n and end features are sorted
using the Type Priority, if any are defined (see Section 2.4.1.4, “ Type Priority Definition”)

4.7.2. Adding Feature Structures to the Indexes

Feature Structures are added to the indexes by various APIs. These add the Feature Structure to
all indexes that are defined for the type of that FeatureStructure (or any of its supertypes), in a
particular view. Note that you should not add a Feature Structure to the indexes until you have set
valuesfor al of the features that may be used as sort keysin an index.

There are multiple APIs for adding FSs to the index.

* (preferred) myFeatureStructure.addTol ndexes(). This adds the feature structure instance to
the view in which it was originally created.

 (preferred) myFeatureStructure.addTolndexes(JCas or CAS). This adds the feature structure
instance to the view represented by the argument.

 (older form) casView.addFsT ol ndexes(myFeatureStructure) or
jcasView.addFsT ol ndexes(myFeatureStructure). This adds the feature structure instance to
the view represented by the cas (or jcas).

* (older form) fslndexRepositoryView.addFsT ol ndexes(myFeatureStructure). This adds the
feature structure instance to the view represented by the fslndexRepository instance.

4.7.3.

lterators over UIMA Indexes

Iterators are objects of classor g. apache. ui ma. cas. FSI t er at or. This class extends
java.util.lterator andimplementsthe normal Javaiterator methods, plus additional ones that
allow moving both forwards and backwards.

UIMA Indexesimplement iterable, so you can use the index directly in a Java extended for loop.

4.7.4.

Special iterators for Annotation types

Note: we recommend using the UIMA V3 select framework, instead of the following. It
implements all of the following capabilities, and more, in a uniform manner.

The built-in index over theui ma. t cas. Annot at i on type named “Annot at i onl ndex” has
additional capabilities. To use them, you first get areference to this built-in index using either the
get Annot at i onl ndex method on a CAS View object, or by asking the FSI ndexReposi t ory
object for an index having the particular name “ Annotationlndex”, for example:

Annot ati onl ndex idx = aCAS. get Annot ati onl ndex();
/1 or you can iterate over a specific subtype of Annotation:
Annot ati onl ndex i dx = aCAS. get Annot at i onl ndex(aType) ;

This object can be used to produce several additional kinds of iterators. It can produce
unambiguous iterators; these skip over elements until it finds one where the start position of the
next annotation is equal to or greater than the end position of the previously returned annotation.

68

CAS Reference UIMA Version 3.1.0

Constraints and Filtered iterators

It can also produce several kinds of subiterators; these are iterators whose annotations fall within
the span of another annotation. This kind of iterator can aso have the unambiguous property, if
desired. It also can be “strict” or not; strict means that the returned annotation lies completely
within the span of the controlling annotation. Non-strict only implies that the beginning of the
returned annotation falls within the span of the controlling annotation.

There is also a method which produces an Annot at i onTr ee object, which contains nodes
representing the results of doing a strict, unambiguous subiterator over the span of some controlling
annotation. For more details, please refer to the Javadocs for the or g. apache. ui ma. cas. t ext
package.

4.7.5. Constraints and Filtered iterators

Note: for new code, consider using the select framework plus Streams, instead of the following.

Thereisaset of API callsthat build constraint objects. These objects can be used directly to test

if aparticular feature structure matches (satisfies) the constraint, or they can be passed to the
createFilterediterator method to create an iterator that skips over instances which fail to satisfy the
constraint.

It is possible to specify afeature value located by following a chain of references starting from the
feature structure being tested. Here's a scenario to explore this concept. Let's suppose you have the
following type system (namespaces are omitted for clarity):

Token, having afeature PartOf Speech which holds a reference to another type
(POS)

POS (atype with many subtypes, each representing a different part of speech)
Noun (a subtype of POS)

Proper Name (a subtype of Noun), having a feature Class which holds an integer
value encoding some information about the proper noun.

If you want to filter Token instances, such that only those tokens get through which are proper
names of class 3 (for example), you would need atest that started with a Token instance, followed
its PartOf Speech reference to another instance (the ProperName instance) and then tested the Class
feature of that instance for avalue equal to 3.

To support this, the filtering approach has components that specify tests, and components that
specify “paths’. The tests that can be done include testing references to type instances to seeif they
are instances of some type or its subtypes; thisis done with a FSTypeConstraint constraint. Other
tests check for equality or, for numeric values, ranges.

Each test may be combined with a path — to get to the value to test. Tests that start from a
feature structure instance can be combined with and and or connectors. The Javadocs for these
arein the package org.apache.uima.cas in the classes that end in Constraint, plus the classes
ConstraintFactory, FeaturePath and CAS. Here's an example; assume the variable cas holds a
reference to a CAS instance.

/Il Start by getting the constraint factory fromthe CAS.
Constrai nt Factory cf = cas. getConstraintFactory();

UIMA Version 3.1.0 CAS Reference 69

CAS API's Javadocs

/! To specify a path to an itemto test, you start by
/1 creating an enpty path.
Feat urePath path = cas. creat eFeaturePath();

/1 Add PCS feature to path, creating one-el enment path.
pat h. addFeat ur e(posFeat) ;

/1l You can extend the chain arbitrarily by addi ng additi onal
/| features.

/1l Create a new type constraint.

/1l Type constraints will check that structures

/1 they match agai nst have a type at |east as specific

/1 as the type specified in the constraint.

FSTypeConstrai nt nounConstraint = cf.createTypeConstraint();

/1 Set the type (by default it is TOP).

/1l This succeeds if the type being tested by this constraint
/1 is nounType or a subtype of nounType.

nounConstrai nt. add(nounType) ;

/| Enmbed the noun constraint under the pos path.
/1 This neans, associate the test with the path, so it tests the
/'l proper val ue.

/1 The result is a test which will

/1 match a feature structure that has a posFeat defined

/1 which has a value which is an instance of a nounType or

/1 one of its subtypes.

FSMat chConstrai nt enbeddedNoun = cf.enbedConstraint(path, nounConstraint);

/! Create a type constraint for token (or a subtype of it)
FSTypeConstrai nt tokenConstraint = cf.createTypeConstraint();

/1 Set the type.
t okenConstrai nt . add(t okenType) ;

/1l Create the final constraint by conjoining the two constraints.
FSMat chConst rai nt nounTokenCons = cf.and(nounConstraint, tokenConstraint);

// Create a filtered iterator fromsone annotation iterator.
FSlterator it = cas.createFilteredlterator(annotlt, nounTokenCons);

4.8. The CAS API's — a guide to the Javadocs

The CAS APIs are organized into 3 Java packages. cas, cas.impl, and cas.text. Most of the APIs
described here are in the cas package. The cas.impl package contains classes used in serializing
and deserializing (reading and writing external representations) the CAS in various formats, for
transporting the CAS among local and remote annotators, or for storing the CAS in permanent
storage. The cas.text contains the APIs that extend the CAS to support artifact (including “text”)
analysis.

4.8.1. APIs in the CAS package

The main objects implementing the APIs discussed here are shown in the diagram below. The
hierarchy represents that there is away to get from an upper object to an instance of the lower
object, usually by using a method on the upper object; thisis not an inheritance hierarchy.

70 CAS Reference UIMA Version 3.1.0

Type Merging

_

[TypeSystem] [FSIndexRepository]

I é
1 1
{ Type] [Feature } { FSindex, }
Annotationlndex

FSlterator]

FeatureStructure }

Figure 4.1. CAS Object hierarchy

The main Interface isthe CASinterface. This has most of the functionality of the CAS, except
for the type system metadata access, and the indexing access. JCas and CAS are alternative
representations and APl approaches to the CAS; each has a method to get the other. You can
mix JCas and CAS APIsin your application as needed. To use the JCas APIs, you have to create
the Java classes that correspond to the CAS types, and include them in the Java class path of the
application. If you have a CAS object, you can get a JCas object by using the getJCas() method
call onthe CAS object; likewise, you can get the CAS object from a JCas by using the getCAS()
method call on the JCas object. Thereis aso alow level CASinterface that is not part of the
official API, and isintended for internal use only —it is not documented here.

The type system metadata APIs are found in the TypeSystem interface. The objects defining each
type and feature are defined by the interfaces Type and Feature. The Type interface has methods to
see what types subsume other types, to iterate over the types available, and to extract information
about the types, including what features it has. The Feature interface has methods that get what type
it belongs to, its name, and its range (the kind of valuesit can hold).

The FSIndexRepository gives you access to methods to get instances of indexes, and also provides
accessto the iterator over all indexed feature structures: get Al | | ndexedFS(aType) . The
FSIndex and Annotationlndex objects give you methods to create instances of iterators.

Iterators and the CAS methods that create new feature structures return FeatureStructure objects.
These objects can be used to set and get the values of defined features within them.

4.9. Type Merging

When annotators are combined in an aggregate, their defined type systems are merged. Thisis
designed to support independent devel opment of annotator components. The merge resultsin a
single defined type system for CA Ses that flow through a particular set of annotators.

The basic operation of atype system merge isto iterate through all the defined types, and if two
annotators define the same fully qualified type name, to take the features defined for those types

UIMA Version 3.1.0 CAS Reference 71

Limited multi-thread access to read-only CASs

and form alogical union of those features. This operation requires that same-named features have
the same range type names. The resulting type system has features comprising the union of al
features over al the various definitions for this type in different annotators.

Feature merging checks that for all features having the same namein atype, that the rangetypeis
identical; otherwise an error is signaled.

Types are combined for merging when their fully qualified names are the same. Two different
definitions can be merged even if their supertype definitions do not match, if one supertype
subsumes the other supertype; otherwise an error is signaled. Likewise, two types with the same
name can be merged only if their features can be merged.

4.10.

Limited multi-thread access to read-only CASs

Some applications may find it useful to scale up pipelines and run these in parallel.

Generaly, CASs are not threadsafe, and only one thread at atime may operate on it. In many
scenarios, a CAS may beinitiaized and then filled with Feature Structures, and after some point,
no more updates to that particular CAS will be done.

If aCASisno longer going to be changed, it is possible to access it on multiple threadsin a
read-only mode, simultaneously, with some limitations. Limitations arise because some UIMA
Framework activities may update internal CAS data structures.

Operational datais updated while running a pipeline when a PEAR is entered or exited, because
PEARSs establish new class loaders and can potentially switch the JCas classes being used (This
happens because the class |oaders might define different JCas cover classes implementing the same
UIMA type). Because of this, you cannot have multiple pipelines accessing a CAS in read-only
mode if one or more of those pipelines contains a PEAR. There are other edge cases where this
may happen as well; for example, if you are running a pipeline with an Extension Class L oader,
and have a callback routine loaded under a different class loader, UIMA will switch the JCas
classes when calling the callback.

72

CAS Reference UIMA Version 3.1.0

Chapter 5. JCas Reference

The CASisasystem for sharing data among annotators, consisting of data structures (definable
at run time), sets of indexes over these data, metadata describing these, subjects of anaysis, and
a high performance serialization/deserialization mechanism. JCas provides Java approach to
accessing CAS data, and is based on using generated, specific Java classes for each CAStype.

Annotators process one CAS per call to their process method. During processing, annotators can
retrieve feature structures from the passed in CAS, add new ones, modify existing ones, and use

and update CAS indexes. Of course, an annotator can also use plain Java Objects in addition; but
the datain the CASiswhat is shared among annotators within an application.

All the facilities present in the APIs for the CAS are available when using the JCas APIs; indeed,
you can use the getCas() method to get the corresponding CAS object from a JCas (and vice-versa).
The JCas APIs often have hel per methods that make using this interface more convenient for Java
developers.

The datain the CAS are typed objects having fields. JCas uses a set of generated Java classes (each
corresponding to a particular CAStype) with “getter” and “setter” methods for the features, plus a
constructor so new instances can be made. The Java classes stores the datain the class instance.

Users can modify the JCas generated Java classes by adding fields to them; this allows arbitrary
non-CAS data to also be represented within the JCas objects, as well; however, the non-CAS data
stored in the JCas aobject instances cannot be shared with annotators using the plain CAS, unless
specia provision is made - see the chapter in the v3 user's guide on storing arbitrary Java objectsin
the CAS.

The JCas class Java source files are generated from XML type system descriptions. The JCasGen
utility does the work of generating the corresponding Java Class Model for the CAStypes. There
are avariety of ways JCasGen can be run; these are described later. Y ou include the generated
classes with your UIMA component, and you can publish these classes for others who might want
to use your type system.

JCas classes are not required for al UIMA types. Those types which don't have corresponding JCas
classes use the nearest JCas class corresponding to atype in their superchain.

The specification of the type system in XML can be written using a conventional text editor, an
XML editor, or using the Eclipse plug-in that supports editing UIMA descriptors.

Changes to the type system are done by changing the XML and regenerating the corresponding
Java Class Models. Of course, once you've published your type system for othersto use, you should
be careful that any changes you make don't adversely impact the users. Additional features can be
added to existing types without breaking other code.

A separate Javaclass is generated for each type; this type implements the CAS FeatureStructure
interface, aswell as having the special getters and setters for the included features. The generated
Java classes have methods (getters and setters) for the fields as defined in the XML type
specification. Descriptor comments are reflected in the generated Java code as Java-doc style
comments.

5.1. Name Spaces

Full Type names consist of a“namespace”’ prefix dotted with a simple name. Namespaces are used
like packages to avoid collisions between types that are defined by different people at different
times. The namespace is used as the Java package name for generated Java files.

JCas Reference 73

Use of XML Description

Type names used in the CAS correspond to the generated Java classes directly. If the CAS
name is com.myCompany.myProject. ExampleClass, the generated Java classis in the package
com.myCompany.myProject, and the class is ExampleClass.

An exception to thisrule is the built-in types starting with ui ma. cas and ui na. t cas;
these names are mapped to Java packages named or g. apache. ui ma. j cas. cas and
org. apache. ui ma. j cas. tcas.

5.2. XML description element

Each XML type specification can have <description ... > tags. The description for atype will be
copied into the generated Java code, as a Javadoc style comment for the class. When writing these
descriptionsin the XML type specification file, you might want to use html tags, as allowed in
Javadocs.

If you use the Component Description Editor, you can write the html tags normally, for instance,
“<h1>My Title</h1>". The Component Descriptor Editor will take care of coverting the actual
descriptor source so that it hasthe leading “<” character written as* &It;”, to avoid confusing
the XML type specification. For example, <p> would be written in the source of the descriptor
as <p>. Any characters used in the Javadoc comment must of course be from the character

set allowed by the XML type specification. These specifications often start with the line <?xml
version="1.0" encoding="UTF-8" ?>, which means you can use any of the UTF-8 characters.

5.3. Mapping built-in CAS types to Java types

The built-in primitive CAS types map to Java types as follows:

ui ma. cas. Bool ean - bool ean

4

ui ma. cas. Byte byt e
ui ma. cas. Short - short

ui ma. cas. | nteger - int

ui ma. cas. Long - long
ui ma. cas. Fl oat - fl oat
ui ma. cas. Doubl e - doubl e

uima.cas. String - String

5.4. Augmenting the generated Java Code

The Java Class Models generated for each type can be augmented by the user. Typical
augmentations include adding additional (non-CAS) fields and methods, and import statements
that might be needed to support these. Commonly added methods include additional constructors
(having different parameter signatures), and implementations of toString().

To augment the code, just edit the generated Java source code for the class named the same as the
CAS type. Here's an example of an additional method you might add; the various getter methods
areretrieving values from the instance:

public String toString() { // for debuggi ng
return "XsgParse "

74

JCas Reference UIMA Version 3.1.0

K eeping hand-coded augmentations when regenerating

+ getslotNane() + "

+ get headWosr d() . get Cover edText ()

" segNo: " + getseqNo()

", cAddr: " + id

", size left mods: " + getl Mdds().size()
", size right nods: " + getrMods().size();

+ + + +

5.4.1. Keeping hand-coded augmentations when
regenerating

If the type system specification changes, you have to re-run the JCasGen generator. Thiswill
produce updated Java for the Class Models that capture the changed specification. If you have
previously augmented the source for these Java Class Models, your changes must be merged with
the newly (re)generated Java source code for the Class Models. This can be done by hand, or you
can run the version of JCasGen that is integrated with Eclipse, and use automatic merging that is
done using Eclipse's EMF plug-in. Y ou can obtain Eclipse and the needed EMF plug-in from http://
www.eclipse.org/.

If you run the generator version that works without using Eclipse, it will not merge Java source
changes you may have previously made; if you want them retained, you'll have to do the merging
by hand.

The Java source merging will keep additional constructors, additional fields, and any changes you
may have made to the readObject method (see below). Merging will not delete classes in the target
corresponding to deleted CAS types, which no longer are in the source — you should delete these by
hand.

War ning: The merging supports Java 1.4 syntactic constructs only. JCasGen generates
Java 1.4 code, so aslong as any code you change here also sticksto only Java 1.4
constructs, the merge will work. If you use Java 5 or later specific syntax or constructs, the
merge operation will likely fail to merge properly.

5.4.2. Additional Constructors

Any additional constructors that you add must include the JCas argument. The first line of your
constructor is required to be

this(jcas); /1 run the standard constructor

where jcasisthe passed in JCas reference. If the type you're defining extends

ui ma. t cas. Annot at i on, JCasGen will automatically add a constructor which takes 2 additional
parameters — the begin and end Java int values, and set the ui ma. t cas. Annot at i on begi n and
end fields.

Here's an example: If you're defining a type MyType which has a feature parent, you might make
an additional constructor which has an additional argument of parent:

M/ Type(JCas jcas, MyType parent) {
this(jcas); /'l run the standard constructor
set Parent (parent); // set the parent field fromthe paraneter

}

UIMA Version 3.1.0 JCas Reference 75

http://www.eclipse.org/
http://www.eclipse.org/

Modifying generated items

5.4.2.1. Using readObject

Fields defined by augmenting the Java Class Model to include additional fields represent data that
exist for thisclassin Java, inalocal VM (Java Virtual Machine), but do not exist in the CAS when
it is passed to other environments (for example, passing to aremote annotator).

A problem can arise when new instances are created, perhaps by the underlying system when it
iterates over an index, which is: how to insure that any additional non-CAS fields are properly
initialized. To alow for arbitrary initialization at instance creation time, an initialization method
in the Java Class Model, called readObject is used. The generated default for this method is to do
nothing, but it is one of the methods that you can modify —to do whatever initialization might be
needed. It is called with O parameters, during the constructor for the object, after the basic object
fields have been set up. It can refer to fieldsin the CAS using the getters and setters, and other
fieldsin the Java object instance being initialized.

A pre-existing CAS feature structure could exist if a CAS was being passed to this annotator;

in this case the JCas system calls the readObject method when creating the corresponding Java
instance for the first time for the CA S feature structure. This can happen at two points: when a new
object is being returned from an iterator over a CAS index, or a getter method is getting afield for
the first time whose value is a feature structure.

5.4.3.

Modifying generated items

The following modifications, if made in generated items, will be preserved when regenerating.

The public/private etc. flags associated with methods (getters and setters). Y ou can change the
default (“public”) if needed.

“final” or “abstract” can be added to the type itself, with the usual semantics.

5.5. Merging types

Type definitions are merged by the framework from all the components being run together.

5.5.1. Aggregate AEs and CPEs as sources of types

When running aggregate AEs (Analysis Engines), or a set of AEsin a collection processing engine,
the UIMA framework will build a merged type system (Note: this “merge’ is merging types, not

to be confused with merging Java source code, discussed above). This merged type system has all
the types of every component used in the application. In addition, application code can use UIMA
Framework APIsto read and merge type descriptions, manually.

In most cases, each type system can have its own Java Class Models generated individually,
perhaps at an earlier time, and the resulting classfiles (or .jar files containing these class files) can
be put in the class path to enable JCas.

However, it is possible that there may be multiple definitions of the same CA S type, each of which
might have different features defined. In this case, the UIMA framework will create a merged

type by accumulating all the defined features for a particular type into that type's type definition.
However, the JCas classes for these types are not automatically merged, which can create some
issues for JCas users, as discussed in the next section.

76

JCas Reference UIMA Version 3.1.0

JCasGen support for type merging

5.5.2. JCasGen support for type merging

When there are multiple definitions of the same CAS type with different features defined, then
JCasGen can be re-run on the merged type system, to create one set of JCas Class definitions for
the merged types, which can then be shared by all the components. Directions for running JCasGen
can be found in UIMA Tools Guide and Reference Chapter 8, JCasGen User's Guide. Thisis
typically done by the person who is assembling the Aggregate Analysis Engine or Collection
Processing Engine. The resulting merged Java Class Model will then contain get and set methods
for the complete set of features. These Java classes must then be made available in the class path,
replacing the pre-merge versions of the classes.

If hand-modifications were done to the pre-merge versions of the classes, these must be applied to
the merged versions, as described in section Section 5.4.1, “Keeping hand-coded augmentations
when regenerating” [75], above. If just one of the pre-merge versions had hand-modifications,

the source for this hand-modified version can be put into the file system where the generated output
will go, and the -merge option for JCasGen will automatically merge the hand-modifications with
the generated code. If both pre-merged versions had hand-moadifications, then these modifications
must be manually merged.

An adternative to thisis packaging the components as individual PEAR files, each with their own
version of the JCas generated Classes. The Framework (as of release 2.2) can run PEAR filesusing
the pear file descriptor, and supply each component with its particular version of the JCas generated
class.

5.5.3. Impact of Type Merging on Composability of
Annotators

The recommended approach in UIMA isto build and maintain type systems as separate
components, which are imported by Annotators. Using this approach, Type Merging does not occur
because the Type System and its JCas classes are centrally managed and shared by the annotators.

If you do choose to create a JCas Annotator that relies on Type Merging (meaning that your
annotator redefines a Type that is already in use elsewhere, and adds its own features), this can
negatively impact the reusability of your annotator, unless your component is used as a PEAR file.

If not using PEAR file packaging isolation capability, whenever anyone wants to combine your
annotator with another annotator that uses a different version of the same Type, they will need to be
aware of all of the issues described in the previous section. They will need to have the know-how

to re-run JCasGen and appropriately set up their classpath to include the merged Java classes and

to not include the pre-merge classes. (To enable this, you should package these classes separately
from other .jar files for your annotator, so that they can be more easily excluded.) And, if you

have done hand-modifications to your JCas classes, the person assembling your annotator will

need to properly merge those changes. These issues significantly complicate the task of combining
annotators, and will cause your annotator not to be as easily reusable as other UIMA annotators.

5.5.4. Adding Features to DocumentAnnotation

Thereisone built-in type, ui ma. t cas. Docunent Annot at i on, to which applications
can add additional features. (All other built-in types are "feature-final" and you

cannot add additional features to them.) Frequently, additional features are added to

ui ma. t cas. Docunent Annot at i on to provide a place to store document-level metadata.

For the same reasons mentioned in the previous section, adding features to DocumentAnnotation is
not recommended if you are using JCas. Instead, it is recommended that you define your own type

UIMA Version 3.1.0 JCas Reference 77

Using JCas within an Annotator

for storing your document-level metadata. Y ou can create an instance of this type and add it to the
indexes in the usual way. Y ou can then retrieve this instance using the iterator returned from the
methodget Al | | ndexedFS(t ype) on aninstance of a JFSIndexRepository object. (As of UIMA
v2.1, you do not have to declare a custom index in your descriptor to get this to work).

If you do choose to add features to DocumentAnnotation, there are additional issues to be aware of.
The UIMA SDK provides the JCas cover class for the built-in definition of DocumentAnnotation,
in the separate jar file ui ma- docunrent - annot ati on. j ar . If you add additional features to
DocumentAnnotation, you must remove this jar file from your classpath, because you will not want
to use the default JCas cover class. Y ou will need to re-run JCasGen as described in Section 5.5.2,
“JCasGen support for type merging” [77]. JCasGen will generate a new cover class for
DocumentAnnotation, which you must place in your classpath in lieu of the version in ui ma-
docunent - annot ati on.jar.

Also, thisisthe reason why the method JCas. get Docunent Annot at i onFs() returns

type TOP, rather than type Docunment Annot at i on. Because the Docunent Annot at i on

class can be replaced by users, it is not part of ui ma- cor e. j ar and so the core UIMA

framework cannot have any referencesto it. In your code, you may “cast” the result of

JCas. get Docunent Annot at i onFs() totype Docunent Annot at i on, which must be available
on the classpath either viaui ma- docunent - annot at i on. j ar or by including a custom version
that you have generated using JCasGen.

5.6. Using JCas within an Annotator

To use JCas within an annotator, you must include the generated Java classes output from JCasGen
in the class path.

An annotator written using JCas is built by defining a class for the annotator that extends
JCasAnnotator_ImplBase. The process method for this annotator is written

public void process(JCas jcas)
t hrows Anal ysi sEngi neProcessExcepti on {
. I/ body of annotator goes here

}

The process method is passed the JCas instance to use as a parameter.

The JCas reference is used throughout the annotator to refer to the particular JCas instance being
worked on. In pooled or multi-threaded implementations, there will be a separate JCas for each
thread being (simultaneously) worked on.

Y ou can do several kinds of operations using the JCas APIs: create new feature structures
(instances of CAS types) (using the new operator), access existing feature structures passed to
your annotator in the JCas (for example, by using the next method of an iterator over the feature
structures), get and set the fields of a particular instance of afeature structure, and add and remove
feature structure instances from the CAS indexes. To support iteration, there are also functions to
get and use indexes and iterators over the instancesin a JCas.

5.6.1. Creating new instances using the Java “new”
operator

The new operator creates new instances of JCas types. It takes at least one parameter, the JCas
instance in which the typeis to be created. For example, if there was a type Meeting defined, you
can create anew instance of it using:

78 JCas Reference UIMA Version 3.1.0

Getters and Setters

Meeting m = new Meeting(jcas);

Other variations of constructors can be added in custom code; the single parameter version isthe
one automatically generated by JCasGen. For types that are subtypes of Annotation, JCasGen aso
generates an additional constructor with additional “begin” and “end” arguments.

5.6.2.

Getters and Setters

If the CAS type Meeting had fields location and time, you could get or set these by using getter
or setter methods. These methods have names formed by splicing together the word “ get” or * set”
followed by the field name, with the first letter of the field name capitalized. For instance

get Locati on()

The getter forms take no parameters and return the value of the field; the setter forms take one
parameter, the value to set into the field, and return void.

There are built-in CAS types for arrays of integers, strings, floats, and feature structures. For fields
whose values are these types of arrays, there is an alternate form of getters and setters that take an
additional parameter, written as the first parameter, which isthe index in the array of an item to get
or set.

5.6.3.

Obtaining references to Indexes

The only way to access instances (not otherwise referenced from other instances) passed in to your
annotator in its JCas isto use an iterator over some index. Indexesin the CAS are specified in the
annotator descriptor. Indexes have a name; text annotators have a built-in, standard index over all
annotations.

To get an index, first get the JFSIndexRepository from the JCas using the method
jcas.getJFSIndexRepository(). Here are the calls to get indexes:

JFSI ndexRepository ir = jcas. getJFSI ndexRepository();

ir.getlndex(name-of-index) // get the index by its name, a string
i r.getlndex(name-of-index, Foo.type) // filtered by specific type

i r.get Annot ati onl ndex() /] get Annotationl ndex
j cas. get Annot at i onl ndex() /1 get directly fromjcas
i r.get Annot at i onl ndex(Foo. t ype) /Il filtered by specific type

jcas.getAnnotationl ndex(Foo.class) // better

For convenience, the getAnnotationindex method is available directly on the JCas object instance;
the implementation merely forwards to the associated index repository.

Filtering types have to be a subtype of the type specified for thisindex in itsindex specification.
They can be written as either Foo.type or if you have an instance of Foo, you can write

f ool nst ance. get d ass()

Foo is (of course) an example of the name of the type.

UIMA Version 3.1.0 JCas Reference 79

Updating Indexes

5.6.4. Adding (and removing) instances to (from) indexes

CAS indexes are maintained automatically by the CAS. But you must add any instances of feature
structures you want the index to find, to the indexes by using the call:

myl nst ance. addTol ndexes() ;

Do this after setting all features in the instance which could be used in indexing, for example, in
determining the sorting order. See Section 4.5.1, “Updating indexed feature structures’ [65] for
details on updating indexed feature structures.

When writing a Multi-View component, you may need to index instances in multiple CAS views.
The methods above use the indexes associated with the current JCas object. Thereis avariation of
theaddTol ndexes / renoveFrom ndexes methods which takes one argument: areferenceto a
JCas object holding the view in which you want to index this instance.

nmyl nst ance. addTol ndexes(anot her JCas)
nmyl nst ance. r enoveFr om ndexes(anot her JCas)

You can also explicitly add instances to other views using the addFsT ol ndexes method on other
JCas (or CAS) objects. For instance, if you had 2 other CAS views (myViewl and myView?2), in
which you wanted to index mylnstance, you could write:

nmyl nst ance. addTol ndexes(); //addTol ndexes used with the new operat or
nmyVi ewl. addFsTol ndexes(nyl nstance); // index nylnstance in nyViewl
nmyVi ew2. addFsTol ndexes(nyl nstance); // index nylnstance in nyVi ew2

Therules for determining which index to use with a particular JCas object are designed to behave
the way most would think they should; if you need specific behavior, you can aways explicitly
designate which view the index adding and removing operations should work on.

Therules are: If theinstance is a subtype of AnnotationBase, then the view is the view associated
with the annotation as specified in the feature holding the view reference in AnnotationBase.
Otherwise, if the instance was created using the "new" operator, then the view is the view passed
to the instance's constructor. Otherwise, if the instance was created by getting afeature value
from some other instance, whose range type is afeature structure, then the view is the same asthe
referring instance. Otherwise, if the instance was created by any of the Feature Structure Iterator
operations over some index, then it is the view associated with the index.

Asof release 2.4.1, there are two efficient bulk-remove methods to remove all instances of a
given type, or al instances of a given type and its subtypes. These are invoked on an instance of
an IndexRepository, for a particular view. For example, to remove all instances of Token from a
particular JCas instance:

j cas. renoveAl | I ncl udi ngSubt ypes(Token. type) or
j cas. renoveAl | I ncl udi ngSubt ypes(aTokenl nst ance. get Typel ndex|I D()) or
j cas. get Fsl ndexRepository().

removeAl | | ncl udi ngSubt ypes(j cas. get CasType(Token. type))

5.6.5.

Using Iterators

This chapter describes obtaining and using iterators. However, it is recommended that instead you
use the select framework, described in a chapter in the version 3 user's guide.

80

JCas Reference UIMA Version 3.1.0

Class Loadersin UIMA

Once you have an index obtained from the JCas, you can get an iterator from the index; hereisan
example:

FSI ndexRepository ir = jcas. get FSI ndexRepository();
FSI ndex myl ndex = ir.getlndex("nyl ndexName");
FSlterator nylterator = nylndex.iterator();

JFSI ndexRepository ir = jcas. get JFSI ndexRepository();
FSI ndex mylndex = ir.getlndex("nyl ndexNanme", Foo.type); // filtered
FSlterator nylterator = nylndex.iterator();

Iterators work like normal Javaiterators, but are augmented to support additional capabilities.
Iterators are described in the CAS Reference, Section 4.7, “Indexes and Iterators”.

5.6.6. Class Loaders in UIMA

The basic concept of a UIMA application includes assembling engines into a flow. The application
made up of these Engines are run within the UIMA Framework, either by the Collection Processing
Manager, or by using more basic UIMA Framework APIs.

The UIMA Framework exists within a JVM (Java Virtual Machine). A VM has the capability to
load multiple applications, in away where each one isisolated from the others, by using a separate
class loader for each application. For instance, one set of UIMA Framework Classes could be
shared by multiple sets of application - specific classes, even if these application-specific classes
had the same names but were different versions.

5.6.6.1. Use of Class Loaders is optional

The UIMA framework will use a specific ClassL oader, based on how ResourceManager instances
are used. Specific ClassLoaders are only created if you specify an ExtensionClassPath as part

of the ResourceManager. If you do not need to support multiple applications within one UIMA
framework within a VM, don't specify an ExtensionClassPath; in this case, the classloader used
will be the one used to load the UIMA framework - usually the overall application class loader.

Of course, you should not run multiple UIMA applications together, in thisway, if they have
different class definitions for the same class name. This includes the JCas “ cover” classes. This
case might arise, for instance, if both applications extended ui ma. t cas. Docunent Annot at i on
in differing, incompatible ways. Each application would need its own definition of this class, but
only one could be loaded (unless you specify ExtensionClassPath in the ResourceManager which
will cause the UIMA application to load its private versions of its classes, from its classpath).

5.6.7. Issues accessing JCas objects outside of UIMA
Engine Components

If you are using the ExtensionClassPaths, the JCas cover classes are |loaded under a class loader
created by the ResourceManager part of the UIMA Framework. If you reference the same JCas
classes outside of any UIMA component, for instance, in top level application code, the JCas
classes used by that top level application code also must be in the class path for the application
code.

Alternatively, you could do all the JCas processing inside a UIMA component (and do no
processing using JCas outside of the UIMA pipeline).

UIMA Version 3.1.0 JCas Reference 81

Setting up Classpath for JCas

5.7. Setting up Classpath for JCas

The JCas Java classes generated by JCasGen are typically compiled and put into aJJAR file, which,
inturn, is put into the application’s class path.

This JAR file must be generated from the application's merged type system. Thisis most
conveniently done by opening the top level descriptor used by the application in the Component
Descriptor Editor tool, and pressing the Run-JCasGen button on the Type System Definition page.

5.8. PEAR isolation

Asof version 2.2, the framework supports component descriptors which are PEAR descriptors.
These descriptors define components plus include information on the class path needed to run
them. The framework uses the class path information to set up alocalized class path, just for code
running within the PEAR context. This allows PEAR files requiring different versions of common
code to work well together, even if the class names in the different versions have the same names.

The mechanism used to switch the class |oaders when entering a PEA R-packaged annotator

in aflow depends on the framework knowing if JCas is being used within that annotator code.

The framework will know thisif the particular view being passed has had a previous call to
getJCas(), or if the particular annotator is marked as a JCas-using one (by having it extend the class
JCasAnnot at or _| npl Base) .

82

JCas Reference UIMA Version 3.1.0

Chapter 6. PEAR Reference

A PEAR (Processing Engine ARchive) file is a standard package for UIMA components. This
chapter describes the PEAR 1.0 structure and specification.

The PEAR package can be used for distribution and reuse by other components or applications.
It also alows applications and tools to manage UIMA components automatically for verification,
deployment, invocation, testing, etc.

Currently, thereis an Eclipse plugin and acommand line tool available to create PEAR packages
for standard UIMA components. Please refer to UIMA Tools Guide and Reference Chapter 9,
PEAR Packager User's Guide for more information about these tools.

PEARs distributed to new targets can be installed at those targets. UIMA includes atool for
installing PEARS; see UIMA Tools Guide and Reference Chapter 11, PEAR Installer User's Guide
for more information about installing PEARS.

Aninstalled PEAR can be used as a component within a UIMA pipeline, by specifying the pear
descriptor that is created when installing the pear. See Section 6.3, “PEAR package descriptor”.

6.1. Packaging a UIMA component

For the purpose of describing the process of creating a PEAR file and itsinternal structure, this
section describes the steps used to package a UIMA component as avalid PEAR file. The PEAR
packaging process consists of the following steps:

e Section 6.1.1, “Creating the PEAR structure” [83]
» Section 6.1.2, “Populating the PEAR structure” [84]
» Section 6.1.3, “ Creating the installation descriptor” [85]

» Section 6.1.5, “Packaging the PEAR structure into onefile” [91]

6.1.1. Creating the PEAR structure

Thefirst step in the PEAR creation processis to create a PEAR structure. The PEAR structureisa
structured tree of folders and files, including the following elements:

* Required Elements:

* The metadata folder which contains the PEAR installation descriptor and properties
files.

¢ Theingtallation descriptor (metadata/install.xml)

* A UIMA analysis engine descriptor and its required code, delegates (if any), and
resources

» Optiona Elements:

« The desc folder to contain descriptor files of analysis engines, delegates analysis
engines (al levels), and other components (Collection Readers, CAS Consumers, €etc).

* The src folder to contain the source code

PEAR Reference 83

Populating the PEAR structure

« Thebin folder to contain executables, scripts, classfiles, dlls, shared libraries, etc.
¢ Thelib folder to contain jar files.

« The doc folder containing documentation materials, preferably accessible through an
index.html.

« The datafolder to contain datafiles (e.g. for testing).
* The conf folder to contain configuration files.
» Theresources folder to contain other resources and dependencies.

* Other user-defined folders or files are allowed, but should be avoided.

Root

i

desc
SIC

b

5

oc

conf
data

i

resources

Figure 6.1. The PEAR Structure

6.1.2. Populating the PEAR structure

After creating the PEAR structure, the component's descriptor files, code files, resourcesfiles, and
any other files and folders are copied into the corresponding folders of the PEAR structure. The
developer should make sure that the code would work with this layout of files and folders, and that
there are no broken links. Although it is strongly discouraged, the optional elements of the PEAR
structure can be replaced by other user defined files and folder, if required for the component to
work properly.

Note: The PEAR structure must be self-contained. For example, this means that the
component must run properly independently from the PEAR root folder location. If the
devel oper needs to use an absolute path in configuration or descriptor files, then he/she
should put these filesin the “conf” or “desc” and replace the path of the PEAR root folder

84 PEAR Reference UIMA Version 3.1.0

Creating the install ation descriptor

with the string “$main_root” . The tools that deploy and use PEAR files should localize the
filesin the “conf” and “desc” folders by replacing the string “ $main_root” with the local
absolute path of the PEAR root folder. The “$main_root” macro can also be used in the
Installation descriptor (install.xml)

Currently there are three types of component packages depending on their deployment:

6.1.2.1. Standard Type

A component package with the standard type must be avalid Analysis Engine, and all the required
filesto deploy it locally must be included in the PEAR package.

6.1.2.2. Service Type

A component package with the service type must be deployable locally as a supported UIMA
service (e.g. Vinci). In this case, al the required files to deploy it locally must be included in the
PEAR package.

6.1.2.3. Network Type

A component package with the network typeis not deployed locally but rather in the “remote”
environment. It's accessed as a network AE (e.g. Vinci Service). The component owner has the
responsibility to start the service and make sure it's up and running before it's used by others (like
awebmaster that makes sure the web site is up and running). In this case, the PEAR package does
not have to contain files required for deployment, but must contain the network AE descriptor
(see UIMA Tutorial and Developers Guides Section 1.1.4, “ Creating the XML Descriptor”) and
the <DESC> tag in the installation descriptor must point to the network AE descriptor. For more
information about Network Analysis Engines, please refer to UIMA Tutorial and Developers
Guides Section 3.6, “Working with Remote Services’ .

6.1.3. Creating the installation descriptor

The installation descriptor isan xml file called install. xml under the metadata folder of the PEAR
structure. It'salso called InsD. The InsD XML file should be created in the UTF-8 file encoding.
The InsD should contain the following sections:

» <0OS>: This section is used to specify supported operating systems

» <TOOLKITS>: Thissection is used to specify toolkits, such as JDK, needed by the
component.

» <SUBMITTED_COMPONENT>: Thisisthe most important section in the Installation
Descriptor. It's used to specify required information about the component. See Section 6.1.4,
“Installation Descriptor: template” [85] for detailed information about this section.

* <INSTALLATION>: Thissection isexplained in section Section 6.2, “Installing a PEAR
package” [92] .

6.1.4. Documented template for the installation
descriptor:

The following is a sample “documented template” which describes content of the installation
descriptor install.xml:

<? xm version="1.0" encodi ng="UTF-8""?>

UIMA Version 3.1.0 PEAR Reference 85

Installation Descriptor: template

<l-- Installation Descriptor Tenplate -->
<COVPONENT_| NSTALLATI ON_DESCRI PTOR>
<I-- Specifications of OS names, including version, etc. -->
<0S>
<NAME>0OS_Nane_ 1</ NAME>
<NAME>CS_Nane_2</ NAME>
</ OS>
<l-- Specifications of required standard toolkits -->
<TOOLKI TS>
<JDK_VERSI ON>JDK_Ver si on</ JDK_VERSI ON>
</ TOOLKI TS>
<I-- There are 2 types of variables that are used in the |InsD:

a) $main_root , which will be substituted with the real path to the
mai n conponent root directory after installing the

mai n (submitted) conponent

b) $conponent _i d$root, which will be substituted with the real path
to the root directory of a given del egate conmponent after

installing the given del egate component -->

<l-- Specification of submitted conponent (AE) -->
<I-- Note: submtted_conponent_id is assigned by devel oper; -->
<I-- XML descriptor file name is set by devel oper. -->
<I-- Inportant: ID elenent should be the first in the -->
<I-- SUBM TTED_COMPONENT secti on. -->
<I-- Submitted conponent may include optional specification -->
<I-- of Collection Reader that can be used for testing the -->
<l-- subnmitted conponent. -->
<I-- Submitted conponent may include optional specification -->
<l-- of CAS Consuner that can be used for testing the -->
<l-- submtted conponent. -->
<SUBM TTED_COVPONENT>

<| D>submi tt ed_conponent _i d</ | D>

<NAME>Subni tt ed conmponent nane</ NAME>

<DESC>$nmi n_r oot / desc/ Conponent Descr i pt or . xm </ DESC>

<!'-- depl oynent options: oo

<l-- a) "standard" is deploying AE locally coD

<l-- b) "service" is deploying AE locally as a service, -->

<l-- usi ng specified command (script) -->

<I-- ¢) "network"” is deploying a pure network AE, which -->

<I-- is runni ng sonewhere on the network -->

<DEPLOYMENT>st andard | service | network</ DEPLOYMENT>

<l-- Specifications for "service" deploynent option only -->

<SERVI CE_COMVAND>$mai n_r oot / bi n/ st art Ser vi ce. bat </ SERVI CE_ COWAND>

<SERVI CE_WORKI NG _DI R>$mai n_r oot </ SERVI CE_WORKI NG _DI R>
<SERVI CE_COMVAND ARGS>

<ARGUMENT>
<VALUE>1st _par anet er _val ue</ VALUE>
<COMMENTS>1st paraneter descripti on</ COMENTS>
</ ARGUMENT>

<ARGUVMENT>
<VALUE>2nd_par anet er _val ue</ VALUE>
<COMMENTS>2nd par anet er descri pti on</ COMENTS>
</ ARGUVENT>

</ SERVI CE_COVMAND_ARGS>

86

PEAR Reference

UIMA Version 3.1.0

Installation Descriptor: template

<I-- Specifications for "network" depl oynment option only -->

<NETWORK_PARANMETERS>
<VNS_SPECS VNS _HOST="vns_host | P* VNS _PORT="vns_port_No" />
</ NETWORK_PARAMETERS>

<l-- Ceneral specifications -->
<COMMENTS>Mai n conponent descri pti on</ COMENTS>

<COLLECTI ON_READER>
<COLLECTI ON_| TERATOR _DESC>
$mai n_r oot/ desc/ Col | | t er Descri pt or. xmi
</ COLLECTI ON_| TERATOR DESC>

<CAS_| NI TI ALl ZER_DESC>
$mai n_r oot/ desc/ CASI ni tial i zer Descri ptor. xmi
</ CAS_I| NI Tl ALl ZER_DESC>
</ COLLECT!| ON_READER>

<CAS_CONSUMER>
<DESC>$mai n_r oot / desc/ CASConsuner Descri pt or. xm </ DESC>
</ CAS_CONSUVMVER>

</ SUBM TTED_COVPONENT>

<I-- Specifications of the conponent installation process -->

<| NSTALLATI ON>
<I-- List of delegate conponents that should be installed together -->
<l-- with the main subnmitted conponent (for aggregate conponents) -->
<l-- Inportant: |ID element should be the first in each -->
<I-- DELEGATE_COVPONENT secti on. -->

<DELEGATE_COMPONENT>

<I D>first_del egat e_conponent _i d</| D>

<NAME>Nane of first required separate conmponent </ NAME>
</ DELEGATE_COVPONENT>

<DELEGATE_COVPONENT>
<| D>second_del egat e_conponent _i d</ | D>
<NAME>Nanme of second required separate conponent </ NAVE>
</ DELEGATE_COWVPONENT>

<I-- Specifications of |ocal path names that should be replaced -->
<l-- with real path names after the main conponent as well as -->
<I-- all required delegate (library) conponents are installed. -->
<l-- <FILE> and <REPLACE_ W TH> val ues may use the $main_root or -->
<l-- one of the $conponent_i d$root vari abl es. -->
<l-- Inportant: ACTION el ement should be the first in each -->
<I-- PRCCESS sect i on. -->
<PROCESS>

<ACTI ON>f i nd_and_r epl ace_pat h</ ACTI ON\>

<PARAMETERS>

<FI LE>$mai n_r oot / desc/ Conponent Descri pt or. xm </ FI LE>
<FI ND_STRI NG>. . / resour ces/ di ct/ </ FI ND_STRI NG
<REPLACE_W TH>$mai n_r oot / r esour ces/ di ct / </ REPLACE_W TH>
<COMMENTS>Speci fy actual dictionary |ocation in XM. conponent
descri pt or

</ COWWENTS>

</ PARAMETERS>

</ PROCESS>

UIMA Version 3.1.0 PEAR Reference

Installation Descriptor: template

<PROCESS>
<ACTI ON>f i nd_and_r epl ace_pat h</ ACTI ON>
<PARAMETERS>
<FI LE>$mai n_r oot / desc/ Del egat eConponent Descri pt or . xm </ FI LE>
<FI ND_STRI NG
| ocal _root _directory_for_1st_del egat e_conponent/resources/dict/
</ FI ND_STRI NG
<REPLACE_W TH>
$first_del egat e_conponent _i d$r oot/ resources/ dict/
</ REPLACE_W TH>
<COWMENTS>
Specify actual dictionary location in the descriptor of the 1st
del egat e conponent
</ COMMENTS>
</ PARAMETERS>
</ PROCESS>

<I-- Specifications of environment variables that shoul d be set prior
to running the main conponent and all other reused conmponents.
<VAR VALUE> val ues may use the $mai n_root or one of the

$conponent _i d$root variables. -->
<PROCESS>
<ACTI ON>set _env_vari abl e</ ACTI ON>
<PARAMETERS>

<VAR_NAME>env_vari abl e_name</ VAR _NAVE>
<VAR_VALUE>env_vari abl e_val ue</ VAR VALUE>
<COMMENTS>Set envi ronment vari abl e val ue</ COMWENTS>
</ PARAVETERS>
</ PROCESS>

</ | NSTALLATI ON>
</ COMPONENT_| NSTALLATI ON_DESCRI PTOR>

6.1.4.1. The SUBMITTED_COMPONENT section

The SUBMITTED _COMPONENT section of the installation descriptor (install.xml) is used to
specify required information about the UIMA component. Before explaining the details, let's clarify
the concept of component 1D and “macros’ used in the installation descriptor. The component ID
element should be the first element in the SUBMITTED_COMPONENT section.

The component id is a string that uniquely identifies the component. It should use the JAVA
naming convention (e.g. com.company_name.project_name.etc.mycomponent).

Macros are variables such as $main_root, used to represent a string such as the full path of a certain
directory.

The values of these macros are defined by the PEAR installation process, when the PEAR is
installed, and represent the values local to that particular installation. The values are stored in the
met adat a/ PEAR. properti es filethat is generated during PEAR installation. The tools and
applications that use and deploy PEAR files replace these macros with the corresponding valuesin
the local environment as part of the deployment process in the files included in the conf and desc
folders.

Currently, there are two types of macros:

* $main_root, which represents the local absolute path of the main component root directory
after deployment.

PEAR Reference UIMA Version 3.1.0

Installation Descriptor: template

» $component_id$root, which represents the local absolute path to the root directory of the
component which has component_id as component ID. This component could be, for
instance, a delegate component.

For example, if some part of adescriptor needs to have a path to the data subdirectory of the
PEAR, you write $mai n_r oot / dat a. If your PEAR refers to a del egate component having
theID “ny. conp. Di cti onary”, and you need to specify a path to one of this component's
subdirectories, e.g. r esour ce/ di ct, you write $ny. conp. Di cti onary$r oot/ r esour ces/
dict.

6.1.4.2. The ID, NAME, and DESC tags

These tags are used to specify the component ID, Name, and descriptor path using the
corresponding tags as follows:

<SUBM TTED_COVPONENT>
<| D>submi tt ed_conponent _i d</ | D>
<NAME>Subni tted conponent name</ NAVE>
<DESC>$nai n_r oot / desc/ Conponent Descr i pt or . xm </ DESC>

6.1.4.3. Tags related to deployment types

As mentioned before, there are currently three types of PEAR packages, depending on the
following deployment types

Standard Type

A component package with the standard type must be avalid UIMA Analysis Engine, and al the
required files to deploy it must be included in the PEAR package. This deployment type should be

specified asfollows:

<DEPLOYMENT>st andar d</ DEPLOYNMENT>

Service Type

A component package with the service type must be deployable locally as a supported UIMA
service (e.g. Vinci). Theinstallation descriptor must include the path for the executable or script
to start the service including its arguments, and the working directory from where to launch it,
following this template:

<DEPLOYMENT>ser vi ce</ DEPLOYMENT>
<SERVI CE_COWWAND>$mai n_r oot / bi n/ st art Ser vi ce. bat </ SERVI CE_ COWWAND>
<SERVI CE_WORKI NG_DI R>$mai n_r oot </ SERVI CE_WORKI NG _DI R>
<SERVI CE_COMVAND_ARGS>
<ARGUMENT>
<VALUE>1st _par anet er _val ue</ VALUE>
<COMMENTS>1st paraneter descri pti on</ COMENTS>
</ ARGUVENT>
<ARGUMENT>
<VALUE>2nd_par anet er _val ue</ VALUE>
<COWMENTS>2nd par anmet er descri pti on</ COWENTS>
</ ARGUMENT>
</ SERVI CE_COVWAND_ARGS>

UIMA Version 3.1.0 PEAR Reference

89

Installation Descriptor: template

Network Type

A component package with the network typeis not deployed locally, but rather in a*remote”
environment. It's accessed as a network AE (e.g. Vinci Service). In this case, the PEAR package
does not have to contain files required for deployment, but must contain the network AE descriptor.
The <DESC> tag in the installation descriptor (See section 2.3.2.1) must point to the network AE
descriptor. Here is atemplate in the case of Vinci services:

<DEPLOYMENT>net wor k</ DEPL OYMENT>
<NETWORK_PARAMETERS>

<VNS_SPECS VNS _HOST="vns_host | P* VNS _PORT="vns_port_No" />
</ NETWORK_PARAMETERS>

6.1.4.4. The Collection Reader and CAS Consumer tags

These sections of the installation descriptor are used by any specific Collection Reader or CAS
Consumer to be used with the packaged analysis engine.

6.1.4.5. The INSTALLATION section

The <INSTALLATION> section specifies the external dependencies of the component and the
operations that should be performed during the PEAR package installation.

The component dependencies are specified in the <DELEGATE_COMPONENT> sub-sections, as
shown in the installation descriptor template above.

Important: The ID element should be the first element in each <DELEGATE_COMPONENT>
sub-section.

The <INSTALLATION> section may specify the following operations:
 Setting environment variables that are required to run the installed component.

Thisis also how you specify additional classpaths for a Java component - by

specifying the setting of an environmental variable named CLASSPATH. The

bui | dConmponent C asspat h method of the PackageBrowser class builds a classpath
string from what it finds in the CLASSPATH specification here, plus adds a classpath
entry for all Jarsinthel i b directory. Because of this, thereis no need to specify Class
Path entries for Jarsin thelib directory, when using the Eclipse plugin pear packager or the
Maven Pear Packager.

When specifying the value of the CLASSPATH environment variable,
use the semicolon ;" as the separator character, regardless of the target
Operating System conventions. This delimiter will be replaced with the
right one for the Operating System during PEAR installation.

If your component needs to set the UIMA datapath you must specify the necessary datapath
setting using an environment variable with the key ui ma. dat apat h. When such akey is
specified the get Conponent Dat aPat h method of the PackageBrowser class will return the
specified datapath settings for your component.

Warning: Do not put UIMA Framework Jarsinto the lib directory of your PEAR,;
doing so will cause system failures due to class loading issues.

» Note that you can use “macros’, like $main_root or $component_id$root in the
VAR_VALUE element of the <PARAMETERS> sub-section.

PEAR Reference UIMA Version 3.1.0

Packaging the PEAR structure into onefile

» Finding and replacing string expressions in files.

» Note that you can use the “macros’ in the FILE and REPLACE_WITH elements of the
<PARAMETERS> sub-section.

Important: the ACTION element always should be the 1st element in each <PROCESS> sub-
section.

By default, the PEAR Installer will try to process every filein the desc and conf directories of the
PEAR package in order to find the “macros’ and replace them with actual path expressions. In
addition to this, the installer will process the files specified in the <INSTALLATION> section.

Important: all XML files which are going to be processed should be created using UTF-8 or
UTF-16 file encoding. All other text files which are going to be processed should be created using
the ASCII file encoding.

6.1.5.

Packaging the PEAR structure into one file

The last step of the PEAR processisto simply zip the content of the PEAR root folder (not
including theroot folder itself) to a PEAR file with the extension “.pear”.

To do thisyou can either use the PEAR packaging tools that are described in “UIMA Tools Guide
and Reference Chapter 9, PEAR Packager User's Guide” or you can use the PEAR packaging AP
that is shown below.

To use the PEAR packaging APl you first have to create the necessary information for the PEAR
package:

/| define PEAR data

String conponent| D = "Annot Conponent | D*;

String mai nConponent Desc = "desc/ nai nConponent Descri ptor.xm";
String classpath ="$nai n_root/bin;";

String datapath ="$nmi n_root/resources;";

String mai nConponent Root = "/ hone/ user/devel op/ myAnnot";
String targetDir = "/hone/user/devel op";

Properties annotatorProperties = new Properties();

annot at or Properti es. set Property("sysPropertyl", "valuel");

To create a complete PEAR package in one step call:

PackageCr eat or . gener at ePear Package(
conponent | D, mai nConponent Desc, cl asspath, datapath,
mai nConponent Root, targetDir, annotatorProperties);

The created PEAR package has the file name <componentl D>.pear and is located in the
<targetDir>.

To create just the PEAR installation descriptor in the main component root directory call:

PackageCreator. createl nstal | Descri ptor(conmponent| D, mai nConponent Desc,
cl asspat h, datapath, mai nConponent Root, annotat or Properties);

To package a PEAR file with an existing installation descriptor call:

PackageCr eat or . cr eat ePear Package(conponent | D, nmai nConponent Root ,
targetDir);

UIMA Version 3.1.0 PEAR Reference 91

Installing a PEAR package

The created PEAR package has the file name <componentl D>.pear and is located in the
<targetDir>.

6.2. Installing a PEAR package

Theinstallation of a PEAR package can be done using the PEAR installer tool (see UIMA Tools
Guide and Reference Chapter 11, PEAR Installer User's Guide, or by an application using the
PEAR APIs, directly.

During the PEAR installation the PEAR fileis extracted to the installation directory and the PEAR
macros in the descriptors are updated with the corresponding path. At the end of the installation
the PEAR verification is called to check if the installed PEAR package can be started successfully.
The PEAR verification use the classpath, datapath and the system property settings of the PEAR
package to verify the PEAR content. Necessary Javalibrary path settings for native libararies,
PATH variable settings or system environment variables cannot be recognized automatically and
the use must take care of that manually.

Note: By default the PEAR packages are not installed directly to the specified installation
directory. For each PEAR a subdirectory with the name of the PEAR'sID is created where
the PEAR package isinstalled to. If the PEAR installation directory aready exists, the old
content is automatically deleted before the new content isinstalled.

6.2.1. Installing a PEAR file using the PEAR APIs
The example below shows how to use the PEAR APIsto install a PEAR package and access the
installed PEAR package data. For more details about the PackageBrowser API, please refer to the
Javadocs for the org.apache.uima.pear.tool s package.

File installIDir = new Fil e("/hone/ user/ui mnaApp/i nstal |l edPears");
File pearFile = new Fil e("/hone/user/ ui maApp/t est pear.pear");
bool ean doVerification = true;
try {
/1 install PEAR package
PackageBr owser instPear = Packagel nstaller.install Package(
installDir, pearFile, doVerification);
/1 retrieve installed PEAR data
/'l PEAR package cl asspath
String classpath = instPear. buil dConponent Cl assPat h() ;
/| PEAR package datapath
String datapath = instPear.get Conponent Dat aPat h() ;
/| PEAR package mmin conponent descri ptor
String mai nConponent Descri ptor = instPear
.getlnstallati onDescriptor().getMai nConmponent Desc();
/!l PEAR package conponent |ID
String mai nConponent| D = i nst Pear
.getlnstall ati onDescri ptor().getMai nConponent|d();
/| PEAR package pear descri ptor
String pearDescPath = instPear.get Conponent Pear DescPat h() ;
/1 print out settings
System out . println("PEAR package class path: " + classpath);
System out . printl n("PEAR package datapath: " + datapath);
System out . printl n("PEAR package mai nConponent Descri ptor:
+ mai nConponent Descri ptor);
System out . printl n("PEAR package mai nConponent | D:
92 PEAR Reference UIMA Version 3.1.0

PEAR package descriptor

+ mai nConponent | D) ;
System out . printl n("PEAR package specifier path: " + pearDescPath);

} catch (Packagel nstall er Exception ex) {
/'l catch Packagel nstal |l erException - PEAR installation failed
ex. printStackTrace();
Systemout.println("PEAR installation failed");
} catch (1 CException ex) {
ex. print StackTrace();
Systemout.println("Error retrieving installed PEAR settings");

}

To run aPEAR package after it was installed using the PEAR API see the example below. It use
the generated PEAR specifier that was automatically created during the PEAR installation. For
more details about the APIs please refer to the Javadocs.

File installDir = new Fil e("/home/ user/ui maApp/install edPears");
File pearFile = new Fil e("/hone/user/ ui maApp/testpear.pear");
bool ean doVerification = true;

try {

/1 Install PEAR package
PackageBr owser instPear = Packagel nstaller.install Package(
install Dir, pearFile, doVerification);

/1l Create a default resouce manager
Resour ceManager rsrcMgr = U MAFramewor k. newDef aul t Resour ceManager () ;

/! Create analysis engine fromthe installed PEAR package using
/1 the created PEAR specifier
XM.I nput Source in =
new XM.I nput Sour ce(i nst Pear . get Conponent Pear DescPat h()) ;
Resour ceSpeci fier specifier =
Ul MAFr anewor k. get XM_Par ser () . par seResour ceSpeci fier(in);
Anal ysi sEngi ne ae =
Ul MAFr anewor k. pr oduceAnal ysi sengi ne(specifier, rsrcMgr, null);

/|l Create a CAS with a sanpl e docunment text
CAS cas = ae. newCAS();

cas. set Docunment Text (" Sanpl e text to process");
cas. set Docunent Language("en");

/1 Process the sanpl e docunment
ae. process(cas);
} catch (Exception ex) {
ex. print StackTrace();
}

6.3. PEAR package descriptor

To run aninstalled PEAR package directly in the UIMA framework the pear Speci fi er XML
descriptor can be used. Typically during the PEAR installation such an specifier is automatically
generated and contains al the necessary information to run the installed PEAR package. Settings
for system environment variables, system PATH settings or Java library path settings cannot be
recognized automatically and must be set manually when the VM s started.

Note: The PEAR may contain specifications for "environment variables' and their
settings. When such a PEAR isrun directly in the UIMA framework, those settings (except

UIMA Version 3.1.0 PEAR Reference

93

PEAR package descriptor

for Classpath and Data Path) are converted to Java System properties, and set to the
specified values. Java cannot set true environmental variables; if such a setting is needed,
the application would need to arrange to do this prior to invoking Java.

The generated PEAR descriptor is located in the component root directory of the installed PEAR
package and has a filename like <componentID>_pear.xml.

The PEAR package descriptor looks like:

<?xm version="1.0" encodi ng="UTF-8"?>
<pear Speci fi er xm ns="http://ui ma. apache. or g/ resour ceSpeci fier">
<pear Pat h>/ honme/ user/ ui maApp/ i nst al | edPear s/ t est pear </ pear Pat h>
<par anet er s> <!-- optional -->
<paraneter> <!-- any nunber, repeated -->
<name>nane- of - t he- par anet er </ nane>
<val ue>stri ng-val ue</ val ue>
</ par anet er >
</ par anet er s>
</ pear Speci fi er>

The pear Pat h setting in the descriptor must point to the component root directory of the installed
PEAR package.

Note: It isnot possibleto share resources between PEAR Analysis Enginesthat are
instantiated using the PEAR descriptor. The PEAR runtime created for each PEAR
descriptor hasits own specific ResourceManager (unless exactly the same Classpath and
Data Path are being used).

The optional par anet er s section, if used, specifies parameter values, which are used to
customize / override parameter values in the PEAR descriptor. External Settings overrides continue
to work for PEAR descriptors, and have precedence, if specified.

PEAR Reference UIMA Version 3.1.0

Chapter 7. XMI CAS Serialization Reference

Thisisthe specification for the mapping of the UIMA CAS into the XM
(XML Metadatalnterchangel) format. XMI isan OMG standard for expressing
object graphsin XML. The UIMA SDK provides support for XMI through

the classes or g. apache. ui ma. cas. i npl . Xmi CasSeri al i zer and

org. apache. ui ma. cas. i mpl . Xm CasDeseri al i zer.

7.1. XMI Tag

The outermost tag is <XMI> and must include a version number and XML namespace attribute:

<xm : XM xmi:version="2.0" xmns:xm ="http://ww. ong. org/ XM ">
<l-- CAS Contents here -->
</ xm : XM >

XML namespaces2 are used throughout. The “xmi” namespace prefix is used to identify elements
and attributes that are defined by the XM specification. The XMI document will also define one
namespace prefix for each CAS namespace, as described in the next section.

/.2. Feature Structures

UIMA Feature Structures are mapped to XML elements. The name of the element is formed from
the CAS type name, making use of XML namespaces as follows.

The CAS type namespace is converted to an XML namespace URI by the following rule: replace
al dots with slashes, prepend http:///, and append .ecore.

This mapping was chosen because it is the default mapping used by the Eclipse Modeling
Framework (EM F)3 to create namespace URIs from Java package names. The use of the http
scheme is a common convention, and does not imply any HTTP communication. The .ecore suffix
is due to the fact that the recommended type system definition for a namespace is an ECore model,
see UIMA Tutoria and Developers Guides Chapter 8, XMI and EMF Interoperability.

Consider the CAS type name “org.myproj.Foo”. The CAS namespace (“org.myorg.”) is converted
to the XML namespace URI is http:///org/myproj.ecore.

The XML element name is then formed by concatenating the XML namespace prefix (whichisan
arbitrary token, but typically we use the last component of the CAS namespace) with the type name
(excluding the namespace).

So the example “org.myproj.Foo” FeatureStructure is written to XM as:

<xXm : XM
xm : versi on="2. 0"
xm ns: xm ="http://ww. ong. org/ XM "
xm ns: myproj ="http:///org/ nyproj.ecore">

.<.rri/pr oj : Foo xm :id="1"/>

L For details on XMI see Grose et al. Mastering XMI. Java Programming with XMI, XML, and UML. John Wiley & Sons, Inc. 2002.
2http://www.w3.org/TR/xml-namesl]]
3 For details on EMF and Ecore see Budinsky et al. Eclipse Modeling Framework 2.0. Addison-Wesley. 2006.

XMI CAS Serialization Reference 95

Primitive Features

</ xm : XM >

The xmi:id attribute is only required if this object will be referred to from elsewhere in the XMl
document. If provided, the xmi:id must be unique for each feature.

All namespace prefixes (e.g. “myproj”) in this example must be bound to URIs using the “xmins...”
attribute, as defined by the XML namespaces specification.

7.3. Primitive Features

CAS features of primitive types (String, Boolean, Byte, Short, Integer, Long , Float, or Double) can
be mapped either to XML attributes or XML elements. For example, a CAS FeatureStructure of
type org.myproj.Foo, with features:

begi n 14
end 19
nyFeature = "bar"

could be mapped to:

<xm : XM xmni:version="2.0" xmns:xm ="http://ww. ong. org/ XM "
xm ns: myproj ="http:///org/ nyproj.ecore">

.<.rri/pr oj : Foo xm :id="1" begi n="14" end="19" nyFeature="bar"/>
</ xm XM >

or equivalently:

<xm : XM xmi:version="2.0" xm ns:xm ="http://ww. ong. org/ XM "
xm ns: myproj ="http:///org/ nyproj.ecore">

<nmyproj:Foo xm:id="1">
<begi n>14</ begi n>
<end>19</ end>
<nmyFeat ur e>bar </ nyFeat ur e>
</ nyproj : Foo>

</ xm : XM >

The attribute serialization is preferred for compactness, but either representation is allowable.
Mixing the two stylesis allowed; some features can be represented as attributes and others as
elements.

7.4. Reference Features

CASfeatures that are references to other feature structures (excluding arrays and lists, which are
handled separately) are serialized as ID references.

If we add to the previous CAS example a feature structure of type org.myproj.Baz, with feature
“myFoo” that is areference to the Foo object, the serialization would be;

<xm : XM xmi:version="2.0" xm ns:xm ="http://ww. ong. org/ XM "
xm ns: myproj ="http:///org/ nyproj.ecore">

96 XMI CAS Serialization Reference UIMA Version 3.1.0

Array and List Features

<nmyproj:Foo xm :id="1" begi n="14" end="19" nyFeature="bar"/>
<nyproj:Baz xm :id="2" nmyFoo="1"/>

</ xm : XM >

Aswith primitive-valued features, it is permitted to use an element rather than an attribute.
However, the syntax is dlightly different:

<nmyproj:Baz xm:id="2">
<nyFoo href="#1"/>
<mnyproj . Baz>

Note that in the attribute representation, a reference feature is indistinguishable from an integer-
valued feature, so the meaning cannot be determined without prior knowledge of the type system.
The element representation is unambiguous.

7.5. Array and List Features

For a CAS feature whose range type is one of the CAS array or list types, the XMI serialization
depends on the setting of the “ multipleReferencesAllowed” attribute for that feature in the UIMA
Type System Description (see Section 2.3.3, “ Features”).

An array or list with multipleReferencesAllowed = false (the default) is serialized as a“ multi-
valued” property in XMI. An array or list with multipleReferencesAllowed = true is seridlized asa
first-class object. Details are described below.

7.5.1. Arrays and Lists as Multi-Valued Properties

In XMI, amulti-valued property is the most natural XMI representation for most cases. Consider
the example where the FeatureStructure of type org.myproj.Baz has a feature mylntArray whose
valueistheinteger array {2,4,6}. This can be mapped to:

<nmyproj:Baz xm:id="3" nylntArray="2 4 6"/>
or equivalently:

<nyproj:Baz xm :id="3">
<nyl nt Array>2</ nyl nt Arr ay>
<nyl nt Array>4</ nyl nt Arr ay>
<myl nt Array>6</ nyl nt Arr ay>
</ nyproj : Baz>

Note that String arrays whose elements contain embedded spaces MUST use the latter mapping.

FSArray or FSList features are serialized in asimilar way. For example an FSArray feature that
contains references to the e ements with xmi:id's “13" and “42” could be seridized as:

<myproj:Baz xm:id="3" nyFsArray="13 42"/>
or:

<nyproj:Baz xm :id="3">
<nyFsArray href="#13"/>
<nyFsArray href="#42"/>

UIMA Version 3.1.0 XMI CAS Serialization Reference 97

Arrays and Lists as First-Class Objects

</ nyproj : Baz>

7.5.2. Arrays and Lists as First-Class Objects

The multi-valued-property representation described in the previous section does not allow multiple
referencesto an array or list object. Therefore, it cannot be used for features that are defined to
allow multiple references (i.e. features for which multipleReferencesAllowed = truein the Type
System Description).

When multipleReferencesAllowed is set to true, array and list features are serialized as references,
and the array or list objects are serialized as separate objects in the XMI. Consider again the
example where the FeatureStructure of type org.myproj.Baz has a feature mylntArray whose value
istheinteger array {2,4,6}. If mylntArray is defined with multipleReferencesAllowed=true, the
serialization will be asfollows:

<nmyproj:Baz xm :id="3" nylntArray="4"/>

or:

<nmyproj:Baz xm:id="3">
<nmylntArray href="#4"/>
</ nyproj: Baz>

with the array object serialized as

<cas:|IntegerArray xm:id="4" elements="2 4 6"/>

or:

<cas:|IntegerArray xm:id="4">
<el enent s>2</ el enent s>
<el enent s>4</ el enent s>
<el enment s>6</ el enent s>

</ cas: | nt eger Array>

Note that in this case, the XML element nameis formed from the CAS type name (e.g.

“ui ma. cas. | nt eger Array”) in the same way asfor other FeatureStructures. The elements of the
array are serialized either as a space-separated attribute named “ elements’ or as a series of child
elements named “ elements’.

List nodes are just standard FeatureStructures with “head” and “tail” features, and are serialized
using the normal FeatureStructure serialization. For example, an IntegerList with the values 2, 4,
and 6 would be serialized as the four objects:

<cas: NonEnptyl nt egerLi st xm :id="10" head="2" tail="11"/>
<cas: NonEnptyl ntegerLi st xm:id="11" head="4" tail="12"/>
<cas: NonEnptyl nt egerLi st xm :id="12" head="6" tail="13"/>
<cas: Enptyl ntegerList xm:id"13"/>

This representation of arrays allows multiple references to an array of list. It also allows afeature
with range type TOP to refer to an array or list. However, it is avery unnatura representation

in XMI and does not support interoperability with other XMI-based systems, so we instead
recommend using the multi-valued-property representation described in the previous section
whenever it is possible.

98

XMI CAS Serialization Reference UIMA Version 3.1.0

Null Array/List Elements

When afeature is specified in the descriptor without a multipleReferencesAllowed attribute, or
with the attribute specified asf al se, but the framework discovers multiple references during
serialization, it will issue a message to the log say that it discovered this (look for the phrase
"serialized in duplicate"). The serialization will continue, but the multiply-referenced items will be
serialized in duplicate.

7.5.3.

Null Array/List Elements

In UIMA, an element of an FSArray or FSList may be null. In XMI, multi-valued properties do
not permit null values. As aworkaround for this, we use adummy instance of the specia type
cas:NULL, which has xmi:id 0. For example, in the following example the “myFsArray” feature
refersto an FSArray whose second element is null:

<cas: NULL xmi :id="0"/>
<nyproj:Baz xm:id="3">
<nyFsArray href="#13"/>
<nyFsArray href="#0"/>
<nyFsArray href="#42"/>
</ nyproj : Baz>

7.6.

Subjects of Analysis (Sofas) and Views

A UIMA CAS contain one or more subjects of analysis (Sofas). These are serialized no differently
from any other feature structure. For example:

<?xm version="1.0"?>
<xm : XM xmi:version="2.0" xm ns:xm =http://ww. ong. or g/ XM
xm ns: cas="http:///ui ma/cas. ecore">
<cas: Sofa xmi :id="1" sofaNun¥"1"
text="the qui ck brown fox junps over the |azy dog."/>
</ xm : XM >

Each Sofa defines a separate View. Feature Structuresin the CAS can be members of one or more
views. (A Feature Structure that is a member of aview isindexed in its IndexRepository, but that is
an implementation detail.)

Inthe XMI serialization, views will be represented as first-class objects. Each View has an
(optional) “sofa’ feature, which references a sofa, and multi-valued reference to the members of the
View. For example:

<cas: Vi ew sofa="1" nenbers="3 7 21 39 61"/>

Here the integers 3, 7, 21, 39, and 61 refer to the xmi:id fields of the objects that are members of
this view.

7.7.

Linking an XMI Document to its Ecore Type

System

If the CAS Type System has been saved to an Ecorefile (as described in UIMA Tutorial and
Developers Guides Chapter 8, XMI and EMF Interoperability), it is possible to store alink from
an XMI document to that Ecore type system. Thisis done using an xsi:schemalocation attribute on
theroot XMI element.

UIMA Version 3.1.0 XMI CAS Serialization Reference 99

Delta CAS XMI| Format

The xsi:schemalocation attribute is a space-separated list that represents a mapping from
namespace URI (e.g. http:///org/myproj.ecore) to the physical URI of the .ecore file containing the
type system for that namespace. For example:

Xsi : schemalLocat i on=
"http:///org/ myproj.ecore file:/c:/typesystens/nyproj.ecore"

would indicate that the definition for the org.myproj CAS typesis contained in thefilec: /

t ypesyst ens/ nypr oj . ecor e. You can specify adifferent mapping for each of your CAS
namespaces, using a space separated list. For details see Budinsky et al. Eclipse Modeling
Framework.

7.8. Delta CAS XMI Format

The Delta CAS XMI serialization format is designed primarily to reduce the overhead serialization
when calling annotators configured as services. Only Feature Structures and Views that are new or
modified by the service are serialized and returned by the service.

Theclassesor g. apache. ui ma. cas. i npl . Xm CasSeri al i zer and

or g. apache. ui ma. cas. i npl . Xm CasDeseri al i zer support serialization of only the
modifications to the CAS. A caller is expected to set a marker to indicate the point from which
changes to the CAS are to be tracked.

A Delta CAS XMI document contains only the Feature Structures and Views that have been
added or modified. The new and modified Feature Structures are represented in exactly the format
asinacomplete CAS serialization. The cas: Vi ew element has been extended with three
additional attributes to represent modifications to View membership. These new attributes are
added_nenber s, del et ed_nenber s andr ei ndexed_nenber s. For example:

<cas: Vi ew sof a="1" added_nmenbers="63 77"
del et ed_nenber="7 61" rei ndexed_nenbers="39" />

Here the integers 63, 77 represent xmi:id fields of the objects that have been newly added members
to thisView, 7 and 61 are xmi:id fields of the objects that have been removed from this view and
39 isthe xmi:id of an object to be reindexed in this view.

100

XMI CAS Serialization Reference UIMA Version 3.1.0

Chapter 8. Compressed Binary CASes

8.1. Binary CAS Compression overview

UIMA has a proprietary binary serialization format, used internally for several things, including
communicating with embedded C++ annotators using UIMA-CPP. This binary format is also
selectable for use with UIMA-AS. Its use requires that the source and target systems implement the
identical type system (because the type system is not sent, and internal coding is used within the
format that is keyed to the particular type system).

Starting with version 2.4.1, two additional forms of binary serialization are added. Both compress
the data being serialized; typical size ratios can approach 50 : 1, depending on the exact contents of
the CAS, when compared with normal binary serialization.

Thetwo forms are called 4 and 6, for historical/internal reasons. The serialized forms of both of
these is fixed, but not currently standardized, and the form being used is encoded in the header so
that the appropriate deserializer can be chosen. Both forms include support for Delta CAS being
returned from a service.

Form 6 builds on form 4, and adds: serializing only those feature structures which are reachable
(that is, in some index, or referenced by other reachable feature structures), and type filtering.

Type filtering takes a source type system and atarget type system, and for serializing (source to
target), sends the binary representation of reachable feature structures in the target's type system.
For deserializing (reading atarget into a source), the filtering takes the specification being read as
being encoded using the target's type system, and translates that into the source's type system. In
this process, types which exist in the source but not the target are skipped (when serializing); types
which exist in the target, but not the source are skipped when deserializing. Features that exist in
some source type but not in the version of the same type in the target are skipped (when serializing)
or set to default values (i.e., 0 or null) when being deserialized.

There are two main use cases for using compressed forms. The first one is for communicating with
UIMA-AS remote services (not yet implemented).

The second use case is for saving compressed representations of CA Ses to other media, such as
disk files, where they can be deserialized later for use in other UIMA applications.

8.2. Using Compressed Binary CASes

The main user interface for serializing a CAS using compression is to use one of the static
methods named serializeWithCompression in Serialization. If you pass a Type System argument
representing atarget type system, then form 6 compression is used; otherwise form 4 isused. To
get the benefit of only serializing reachable Feature Structure instances, without type mapping
(whichisonly in form 6), pass atype system argument which is null.

To deserialize into a CAS without type mapping, use one of the deserialize method in Seriaization.
There are multiple forms of this method, depending on the arguments. The forms which take

extra arguments include a Reusel nfo may only be used with serialized forms created with form 6
compression. The plain form of deserialize works with al forms of binary serialization, compressed
and non-compressed, by examining a common header which identifies the form of binary
serialization used; however, for form 6, since it requires additional arguments, it will fail - and you
need to use the other deserialize form.

Compressed Binary CASes 101

Simple Delta CAS seridization

Form 6 has an additional object, Reuselnfo, which holds information which is required for
subsequent Delta CAS format serializations / deserializations. It can speed up subsequent
serializations of the same CAS (beforeit is further updated), for instance, if an applicationis
sending the CAS to multiple services in parallel. The serializeWithCompression method returns
this object when form 6 is being used.

In addition, the Casl OUtils class offers static load and save methods, which can be used with the
SerialFormat enum to seriadize and deserialize to URLS or streams; see the Javadocs for details.

8.3. Simple Delta CAS serialization

Use Form 4 for this, because form 6 supports delta CAS but requires that at the time of
deserialization of a CAS (on the receiver side) which will later be delta serialized back to the
sender, an instance of the Reuselnfo must be saved, and that same instance then used for delta
serialization; furthermore, the original serialization (on the sender side) also must save an instance
of the Reusel nfo and use this when deserializing the delta CAS.

Form 4 may not be as efficient as form 6 in that it does not filter the CASes either by type systems
nor by only sending reachable Feature Structure instances. But, it doesn't require a Reuselnfo
object when doing delta serialization or deserialization, so it may be more convenient to use when
saving delta CA Sesto files (as opposed to the other use case of a remote service returning delta
CASesto aremote client).

8.4. Use Case cookbook

Here are some use cases, together with a suggested approach and example of how to use the APIs.

Save a CASto an output stream, using form 4 (no type system filtering):

/1 set up an output stream In this exanple, an internal byte array.
Byt eArrayCQut put St r eam baos = new Byt eArrayCQut put Strean{ QUT_BFR_| NI T_SZ) ;
Seri alization.serializeWthConpression(casSrc, baos);

/1l or
Casl QUt| s. save(casSrc, baos, Serial For mat. COWPRESSED) ;

Deserialize from a stream into an existing CAS:

/] assune the streamis a byte array input stream
/'l For exanple, one could be created
/1 fromthe above ByteArrayQutput Stream as fol |l ows:
Byt eArrayl nput St ream bai s = new Byt eArrayl nput St r ean(baos. t oByt eArray());
/| Deserialize into a cas having the identical type system
Seri alization.deserializeCAS(cas, bais);
/'l or
Casl QUtils. |l oad(bais, aCas);

Note that thedeseri al i zeCAS(cas, input Strean) method isageneral way to deserialize
into a CAS from an inputStream for all forms of binary serialized data (with exceptions as noted
above). The method reads a common header, and based on what it finds, selects the appropriate

deserialization routine.

Note: Thedeseri al i zat i on method with just 2 arguments method doesn't support type
filtering, or delta cas deseriaizating for form 6. To do those, see example below.

Serializeto an output stream, filtering out some types and/or features:

102

Compressed Binary CASes UIMA Version 3.1.0

Use Case cookbook

To do this, an additional input specifying the Type System of the target must be supplied; this Type
System should be a subset of the source CASs. The out parameter may be an OutputStream, a
DataOutputStream, or aFile.

/1 set up an output stream In this exanple, an internal byte array.
Byt eArr ayQut put St r eam baos = new Byt eArrayCQut put St rean(OUT_BFR _| NI T_SZ) ;
Seri alization.serializeWthConpression(cas, out, tgtTypeSysten);

Deserialize with typefiltering:

There are 2 type systemsinvolved here: oneisthereceiving CAS, and the other is the type system
used to decode the serialized form. This may optionally be stored with the serialized form:

Casl QUi |l s.save(cas, out, Serial Format. COWRESSED FI LTERED TS);

and/or it can be supplied at load time. Here's two examples of suppling this at load time:

Casl QUtils.load(input, cas, typeSystem;
CaslQUtils.load(input, type_systemserialized_form.input, cas);

The reuselnfo should be null unless deseriaizing adelta CAS, in which case, it must be the reuse
info captured when the original CAS was serialized out. If the target type system isidentical to the
oneinthe CAS, you may pass null for it. If adeltacasis not being received, you must pass null for
the reuselnfo.

Byt eArrayl nput St ream bai s = new Byt eArrayl nput St r eanm(baos. t oByt eArray());
Seri alization.deserializeCAS(cas, bais, tgtTypeSystem reuselnfo);

UIMA Version 3.1.0 Compressed Binary CASes 103

Chapter 9. JSON Serialization of CASs and
UIMA Description objects

9.1. JSON serialization support overview

Applications are moving to the "cloud”, and new applications are being rapidly developed that are
hooking things up using various mashup techniques. New standards and conventions are emerging
to support this kind of application development, such as REST services. JSON is now a popular
way for services to communicate; its popularity isrising (in 2014) while XML isfaling.

Starting with version 2.7.0, JSON style serialization (but not (yet) deserialization) for CASs and
UIMA descriptionsis supported. The exact format of the serialization is configurable in several
aspects. The implementation is built on top of the Jackson JSON generation library.

The next section discusses seridlization for CASes, while alater section describes seridization of
description objects, such as type system descriptions.

9.2. JSON CAS Serialization

CASs primarily consist of collections of Feature Structures (FSs). Similar to XM serialization,
JSON serialization skips serializing unreachable FSs, outputting only those FSs that are found
in the indexes (these are called roots), plus all of the FSsthat are referenced via some chain of
references, from the roots.

To support the kinds of things users do with FSs, the serialized form may be augmented to include
additional information beyond the FSs.

For traditional UIMA implementations, the serialized formats mostly assumed that the receivers
had access to a type system description, which specified details of the types of each feature value.
For JSON serialization, some of thisinformation can be including directly in the serialization.

This abbreviated type system information is one kind of additional information that can be
included; here'sasummary list of the various kinds of additional information you can add to the
serialization:

» having away to identify which fields in a FS should be treated as references to other FSs, or
as representing serialized binary data from UIMA byte arrays.

» something like XML namespaces to allow the use of short type namesin the serialization
while handling name collisions

 enough of the UIMA type hierarchy to allow the common operation of iterating over atype
together with all of its subtypes

» A way to identify which FSs were "added-to-the-indexes’ (separately, per CAS View) and
therefore serve as roots when iterating over types.

* Anidentification of the associated type system definition
Simple JSON serialization does not have a convention for supporting these, but many extensions

do. We borrow some of the concepts in the JSON-LD (linked data) standard in providing this
additional information.

JSON support 105

The Big Picture

9.2.1. The Big Picture

CAS JSON serialization consists of several parts. an optional _context, the set of Feature
Structures, and (if doing a delta serialization) information about changes to what was indexed.

,
_context | -optional

‘Seralization) < Sfeatture
: . tructures
Index - only if
_.changes /' Delta CAS

Figure 9.1. The major sections of JSON serialization

The serializer can be configured to omit the _context or parts of the _context for cases where that
information isn't needed. The index changes information is only included if Delta CAS serialization
is specified. Note that Delta CAS support isincomplete; so thisinformation isjust for planning
purposes.

9.2.2. The _context section

The _context section has entries for each used type as well as some special additiona entries.
Each entry for atype has multiple sub-entries, identified by a key-name. Each sub-entry can be
selectively omitted if not needed.
» _type system - aURI of the type system information
» _types- information about each used type
¢ _id - thetype'sfully qualified UIMA type name

» _feature_types- amap from features of thistype to information about the type of the
value of the feature

¢ _subtypes- an array of used subtype short-names

Here's an example:

106 JSON support UIMA Version 3.1.0

The _context section

"_context" : {
" _type_systent : "URl to the type systeminformation",
"_types : {
"A _Typi cal _User_or_built_in_Type" : {
"_id" : "org.apache.uinma.test. A Typical _User_or_built_in_Type",
" feature_types" : |
"sof a" " ref",
"aFSs" " _ref",
"an_array" " _array",
"a_byte_ array" : " _byte_array"],
" _subtypes" : ["subtypel", "subtype2", ...] },
"Sofa" : {
"_id" : "uina.cas. Sofa",
" feature_types" : {"sofaArray" : " _ref"} }
}

}

The _type_system isan optional URI that references a UIMA type system description that defines
the types for the CAS being serialized.

Inthe typessection, thekey (e.g. "Sofa’ or "A_Typical _User_or_built_in Type") isthe

"short" name for the type used in the serialization. It is either just the last segment of the full
type name (e.g. for the type x.y.z.TypeName, it's TypeName), or, if name would collide with
another type nameif just the last segment was used (example: some.package.cname.Foo, and
some.other.package.cname.Foo), then the key is made up of the next-to-last segment, with an
optional suffixed incrementing integer in case of collisions on that name, a colon (:) and then the
last name.

In this example, since the next to last segment of both namesis "cname", one
namespace hame would be "cname", and the other would be "cnamel”. The keys
in this case would be cname:Foo and cnamel:Foo.

The value of the _id isthe fully qualified name of the type.

The feature typesvaluesof ref, array, and byte array indicate the corresponding values of
the named features need special handling when deserailized.

» _ref - used when features are deserialized as numbers, but they are to be interpreted as
references to other FSswhosei d isthe number. UIMA lists and arrays of FSs are marked
with _ref; if the valueisa JSON array, the elements of the array will be either numbers (to
beinterpreted as references), or embedded serializations of FSs.

e _array - used when features are serialized as JSON arrays containing embedded values,
unless the corresponding UIMA object has multiple references, in which caseit is serialized
as aFS reference which looks like asingle number. If afeature is marked with _array, then
anon-array, single number should be interpreted asthei d of the feature structure that is the
array or thefirst element of the list of items. This designation is used for both UIMA arrays
and lists.

Thisdesignation isfor arrays and lists of primitive values, except for byte arrays. In the case
of FSarrays and lists, the _ref designation is used instead of thisto indicate that the resulting
valuesin aJSON array that look like numbers should be interpreted as references.

* _hyte array - _byte array features are serialized numbers (if they are areferenceto a
separate object, or as strings (if embedded). The strings are to be decoded into binary byte
arrays using the Base64 encoding (the standard one used by Jackson to serialize binary data).

UIMA Version 3.1.0 JSON support 107

Seriaizing Feature Structures

Note that single element arrays are not unwrapped, as in some other JSON serializations, to enable
distinguishing references to arrays from embedded arrays.

_subtypesare alist of the type's used subtypes. A typeisused if it isthe type of a Feature Structure
being serialized, or if it isin the supertype chain of some Feature Structure which is serialized. If a
type has no used subtypes, this element is omitted. The names are represented as the "short” name.
Userstypically use thisinformation to construct support for iterators over atype which includes all
of its subtypes.

9.2.2.1. Omitting parts of the _context section

Itis possible to selectively omit some of the _context sections (or the entire _context), via
configuration. Here's an example:

/1 make a new instance to hold the serialization configuration
JsonCasSerializer jcs = new JsonCasSeri alizer();

/1 Omt the expanded type nanes information

j cs. set JsonCont ext (JsonCont ext For mat . om t ExpandedTypeNanes) ;

See the Javadocs for JsonCont ext For mat for how to specify the parts.

9.2.3. Serializing Feature Structures

Feature Structures themselves are represented as JSON objects consisting of field - value pairs,
where the fields correspond to UIMA Features, and the values are the values of the features.

The various kinds of values for a UIMA feature are represented by their natural JSON counterpart.
UIMA primitive boolean values are represented by JSON true and false literals. UIMA Strings
are represented as JSON strings. Numbers are represented by JSON numbers. Byte Arrays are
represented by the Jackson standard binary encoding (base64 encoding), written as JSON strings.
References to other Feature Structures are al so represented as JSON integer numbers, the values
of which are interpreted as ids of the referred-to FSs. These ids are treated in the same manner as
the xmi:ids of XMI Seriaization. Arrays and Lists when embedded (see following section) are
represented as JSON arrays using the [] notation.

Besides the feature values defined for a Feature Structure, an additional special feature may be
seridlized: _type. The _type isthe type name, written using the short format. Thisis automatically
included when the type cannot easily be inferred from other contextual information.

Here's an example, with some comments which, since JSON doesn't support comments, are just
here for explanation:

{ "_type" : "Annotation", // _type may be omtted
"feat1" : true, /'l bool ean val ue represented as true or false
"feat2" : 123, // could be a nunber or a reference to FSwith id 123
"feat3" : "b3axgh"//could be a string or a base64 encoded byte array

}

9.2.3.1. Embedding normally referenced values

Consider a FS which has a feature that refers to another FS. This can be seridized in one of two
ways.
« the value of the feature can be coded asani d (a number), where the number isthei d of the
referred-to FS.
» The value of the feature can be coded as the seridization of the referred-to FS.

108 JSON support UIMA Version 3.1.0

Seriaizing Feature Structures

This second way of encoding is often done by JSON style serializations, and is called "embedding"”.
Referred-to FSs may be embedded if there are no other references to the embedded FS. Multiple
references may arise due to having a FS referenced as a "root" in some CAS View, or being used as
avaluein aFSfeature.

Following the XMI conventions, UIMA arrays and lists which are identified as singly referenced
by either the static or dynamic method (see below) are embedded directly as the value of afeature.
In this case, the JSON serialization writes out the value of the feature as a JSON array. Otherwise,
the value is written out as a FS reference, and a separate serialization occurs of the list elements or
the array.

In addition to arrays and lists, FSs which are identifed as singly referenced from another FS
are serialized as the embedded value of the referring feature. Thisis aso done (when using the
dynamic method) for singly referenced rooted instances.

If aFSismultiply referenced, the seriadization in these casesis just the numeric value of thei d of
the FS.

9.2.3.2. Dynamic vs Static multiple-references and embedding
There are two methods of determining if a particular FS or list or array can be embedded.

» dynamic - calculates at serilization time whether or not there are multiple referencesto a
given FS.

* static - looksin the type system definition to see if the feature is marked with
<multipleReferencesAllowed>.

® mul tipl eRef erencesAl | owed false - use the embedded style

® nul tipl eRef erencesAl | owed true - use separate objects
Note that since thisflag is not available for references to FSs from View indexes,
any FSthat isindexed in any view is considered (if using static mode) to be
multipleReferencesAllowed.

Delta serialization only supports the static method; this mode is forced on if delta serializationis
specified.

Dynamic embedding is enabled by default for JSON, but may be disabled via configuration.

9.2.3.3. Embedded Arrays and Lists

When static embedding is being used, a case can arise where some feature is marked to have only
singly referenced FS values, but that value may actually be multiply referenced. This is detected
during serialization, and an messageisissued if an error handler has been specified to the serializer.
The seriaization continues, however. In the case of an Array, the value of the array is embedded in
the serialization and the fact that these were referring to the same object islost. In the case of alist,
if any element in the list has multiple references (for example, if the list has back-references, loops,
etc.), the serialization of the list istruncated at the point where the multiple reference occurs.

Note that you can correctly serialize arbitrarily linked complex list structures
created using the built-in list types only if you use dynamic embedding, or specify
nmul ti pl eRef er encesAl | owed = true.

Embedded list or array values are both serialized using the JSON array notation; as aresult, these
alternative representations are not distinguised in the JISON serialization.

UIMA Version 3.1.0 JSON support 109

Organizing the Feature Structures

9.2.3.4. Omitting null values

Following the conventions established in XM serialization, features with nul | values have their
key-value pairs omitted from the FS serialization when the type of the feature valueiis:

* aFeature Structure Reference

» aString (whosevalueisnul I, not "" (a0-length String))

» an embedded Array or List (where the entire array and/or listisnul I')

Note: Inside arrays or lists of FSs, references which are being serialized as references have
anul | reference coded as the number O; references which are embedded are seriaized as
nul | .

Configuring the serializer with set Oni t OVal ues(true) causes additiona primitive features
(byte/short/int/long/float/doubl e) to be omitted, when their values are 0 or 0.0

9.3. Organizing the Feature Structures

The set of al FSsbeing serialized is divided into two parts. Thefirst part represents all FSs that
areroot FSs, in that they were in one or more indexes at the time of serialization. The second part
represents feature structures that are multiply referenced, or are referenced via a chain of references
from the root FSs. The same feature structure can appear in both lists. The elements in the second
part are actual serialized FSs, whereas, the elementsin the first part are either references to the
corresponding FSsin the second part, if they exist, or the actual embedded serialized FSs. Actual
embedded seriaized FSs only exist once in the two parts.

" views" : {
" InitialView : {
"theFirstType" : [{ ... fsl ...}, 123, 456, { ... fsn ...}]
"anot her Type" : [{ ... fs1 ...}, ... { ... fsn ...}]

/1 more types which have roots in view "12"

be
"Anot herView' : {

"theFirstType" : [{ ... fsvl ...}, 123, { ... fsvn ...}]
"anot herType" : [{ ... fsvl ...}, ... { ... fsvn ...}]
. /1 nore types which have roots in view "25"
Ve
/1 nmore views
},
" referenced_fss" : {
"12" . {"_type" : "Sofa", "sofaNuni : 1, "sofalD' : "_InitialView' },
"25" . {" _type" : "Sofa", "sofaNunt : 2, "sofalD' : "AnotherView' },
"123" : { ... fs-123 ... },
"456" : { ... fs-456 ... },
}

Thefirst part map is made up of multiple maps, one for each separate CAS View. The outer map
iskeyed by thei d of the corresponding SofaFS (or O, if there is no corresponding SofaFS). For
each view, the value is amap whose key is aused Type, and the values are an array of instances of
FSs of that type which were found in some index; these are the "root" FSs. Only root instances of a
particular type areincluded in this array.

The second part map has keys which arethei d value of the FSs, and values which are a map of
key-value pairs corresponding to the feature-values of that FS. In this case, the _type extra feature
is added to record the type.

110

JSON support UIMA Version 3.1.0

Additional JSON CAS Serialization features

The _views map, keyed by view and type name, has all the FSs (as an JSON array) for that type
that werein one or more indexesin any View. If aFSin thisarray is not multiply referenced
(using dynamic mode), then it is embedded here. Otherwise, only the reference (a simple number
representing thei d of that FS) is serialized for that FS.

9.4. Additional JSON CAS Serialization features

JSON serialization also supports several additional features, including:

» Type and feature filtering: only types and features that exist in a specified type system
description are serialized.

* An ErrorHandler; thiswill be called in various error situations, including when serializing in
static mode an array or list value for afeature marked mul ti pl eRef er encesAl | owed =
f al se isfound to have multiple references.

A switch to control omitting of numeric features that have 0 values (default isto include
these). Seethe set Ori t 0Val ues(true_or _f al se) method in JsonCasSerializer.

» apretty printing flag (default is not to do pretty-printing)
See the Javadocs for JsonCasSerializer for details.

9.4.1. Delta CAS

Note: Delta CAS support isincomplete, and is not supported as of release 2.7.0, but may
be supported in later releases. The information here isjust for planning purposes.

_delta_casis present only when a delta CAS serialization is being performed. This serializes just
the changes in the CAS since a Mark was set; so for cases where alarge CASis deserialized into
a service, which then does arelatively small amount of additions and modifications, only those
changes are serialized. The values of the keys are arrays of the ids of FSs that were added to the
indexes, removed from the indexes, or reindexed.

This mode requires the static embeddability mode. When specified, a_del t a_cas key-value

is added to the serialization at the end, which lists the FSs (by i d) that were added, removed,

or reindexed, since the mark was set. Additional extrainformation, created when the CAS was
previously deserialized and the mark set, must be passed to the seriaizer, in the form of an instance
of Xmi Seri al i zati onShar edDat a, or JsonSerializationSharedData (not yet defined as of
release 2.7.0).

Here'swhat the last part of the serialization looks like, when Delta CAS is specified:

" delta _cas" : {
"added_nenbers” : [123, ...],
"del eted_nenbers" : [456, ...],
"rei ndexed_nenbers" : [] }

9.5. Using JSON CAS serialization

The support is built on top the Jackson JSON serialization package. We follow Jackson
conventions for configuring.

The seridization APIs are in the JsonCasSeridizer class.

UIMA Version 3.1.0 JSON support 111

JSON serialization for UIMA descriptors

Although there are some static short-cut methods for common use cases, the basic operations
needed to serialize a CAS as JSON are:

» Make aninstance of the JsonCasSeri al i zer class. Thiswill serve to collect configuration
information.

» Do any additional configuration needed. See the Javadocs for details. The following objects
can be configured:

e TheJsonCasSeri al i zer object: here you can specify the kind of JSON formatting,
what to serialize, whether or not delta serialization is wanted, prettyprinting, and
more.

¢ The underlying JsonFact ory object from Jackson. Normally, you won't need
to configure this. If you do, you can create your own instance of this object and
configure it and use it in the serialization.

¢ Theunderlying JsonGener at or from Jackson. Normally, you won't need to
configure this. If you do, you can get the instance the serializer will be using and
configure that.

* Once al the configuration is done, the serialize(...) call isdonein this class, which will
create a one-time-use inner class where the actual serialization is done. The seriaize(...)
method is thread-safe, in that the same JsonCasSerializer instance (after it has been
configured) can kick off multiple (identically configured) serializations on different threads
at the sametime.

The serialize call follows the Jackson conventions, taking one of 3 specifications of whereto
serialize to: aWriter, an OutputStream, or aFile.

Here's an example:

JsonCasSerializer jcs = new JsonCasSeri alizer();
jcs.setPrettyPrint(true); // do some configuration
StringWiter sw = new StringWiter();
jcs.serialize(cas, sw); // serialize into sw

The JsonCasSerializer class also has some static convenience methods for JISON serialization,
for the most common configuration cases; please see the Javadocs for details. These are named
jsonSerialize, to distinguish them from the non-static serialize methods.

Many of the common configuration methods generally return the instance, so they can be
chained together. For example, if j cs isan instance of the JsonCasSerializer, you can write
jcs.setPrettyPrint(true).setOntOval ues(true); toconfigureboth of these.

9.6. JSON serialization for UIMA descriptors

UIMA descriptors are things like analysis engine descriptors, type system descriptors, etc. UIMA
has an internal form for these, typically named UIMA descriptions; these can be serialized out as
XML using at oXM. method. JSON support adds the ability to serialize these a JSON objects, as
well. It may be of use, for example, to have the full type system description for aUIMA pipeline
availablein JSON notation.

The class JsonMetaDataSerializer defines a set of static methods that serialize UIMA description
objects using a toJson method that takes as an argument the description object to be serialized,

112 JSON support UIMA Version 3.1.0

JSON serialization for UIMA descriptors

and the standard set of serialiization targets that Jackson supports (File, Writer, or OutputStream).
Thereisalso an optional prettyprint flag (default is no prettyprinting).

The resulting JSON serialization is just a straight-forward serialization of the description object,
having the same fields as the XML serialization of it.

Here'swhat a small TypeSystem description looks like, serialized:

{"typeSyst enDescri pti on"

{"nane" : "casTest CaseTypesysteni,
"description"” : "Type system description for CAS test cases.",
"version" : "1.0",
"vendor" : "Apache Software Foundation",
"types" : |
{"typeDescription"
{"nane" : "Token",
"description" : "",
"supertypeNane" : "uima.tcas. Annotation",
"features" : [
{"featureDescription"
{"name" : "type",

"description" : ,

"rangeTypeNane"

"TokenType" } },
{"featureDescription"

{"nane" : "tokenFl oat Feat",
"description" : "",
"rangeTypeNane" : "uima.cas.Float" } }] } },
{"typeDescri pti on"
{"nane" : "TokenType",
"description" : "",
"supertypeNane" : "uima.cas. TOP'" } }] } }

Here's a sample of code to serialize a UIMA description object held in the variablet sd, with and
without pretty printing:

StringWiter sw = new StringWiter();
JsonMet aDat aSeri al i zer.toJSON(tsd, sw); // no prettyprinting

sw = new StringWiter();
JsonMet aDat aSeri al i zer.toJSON(tsd, sw, true); // prettyprinting

UIMA Version 3.1.0 JSON support 113

Chapter 10. UIMA Setup and Configuration
10.1. UIMA JVM Configuration Properties

Some updates change UIMA's behavior between released versions. For example, sometimes an
error check is enhanced, and this can cause something that previously incorrect but not checked, to
now signal an error. Often, users will want these kinds of things to be ignored, at least for awhile,
to give them time to analyze and correct the issues.

To enable users to gradually address these issues, there are some global JVM properties for

UIMA that can restore earlier behaviors, in some cases. These are detailed in the table below.
Additionally, there are other VM properties that can be used in checking and optimizing some
performance trade-offs, such as the automatic index protection. For the most part, you don't need to
assign any values to these properties, just define them. For example to disable the enhanced check
that insures you don't add a subtype of AnnotationBase to the wrong View, you could disable this
by adding the VM argument - Dui ma. di sabl e_enhanced_check_wr ong_add_t o_i ndex.
This would remove the enhanced checking for this, added in version 2.7.0 (the previously existing
partial checking is till there, though).

10.2. Configuring index protection

A new feature in version 2.7.0 optionally can include checking for invalid feature updates which
could corrupt indexes. Because this checking can slightly slow down performance, there are global
JVM properties to control it. The suggested way to operation with these is as follows.

At the beginning, run with automatic protection enabled (the default), but turn on explicit
reporting (- Dui ma. report _fs_updat e_corrupts_i ndex)

« For all reported instances, examine your code to see if you can restructure to do the updates
before adding the FS to the indexes. Where you cannot, surround the code doing these
updates with atry / finally or block form of pr ot ect | ndexes(), which isdescribed in
Section 4.5.1, “Updating indexed feature structures’ [65] (and also is similarly available
with JCas).

 After no further reports, for maximum performance, leave in the protections you may have
installed in the above step, and then disable the reporting and runtime checking, using the
JVM argument - Dui ma. di sabl e_aut o_pr ot ect _i ndexes, and removing (if present) -
Dui ma. report _fs_update_corrupts_index.
One additional VM property, -
Dui ma. t hr ow_excepti on_when_fs_update_corrupts_i ndex, isintended to
be used in automated build / testing configurations. It causes the framework to throw a
UIMARuntimeException if an update outside of apr ot ect | ndexes block occurs that could
corrupt the indexes, rather than "recovering" this.

10.3. Properties Table

This table describes the various VM defined properties; specify these on the Java command line
using -Dxxxxxx, where the xxxxxx is one of the properties starting with ui na. from the table
below.

Title Property Name & Description Since
Version

Setup and Configuration 115

Properties Table

Use built-in Java ui ma. use_j ul _as_defaul t _ui ma_| ogger 3.00
Logger as default
back-end See UIMA-5381%. The standard UIMA logger uses an dlf4j

implementation, which, in turn hooks up to a back end
implementation based on what can be found in the class path
(see df4j documentation). If no backend implementation is
found, the dlf4j default isto use a NOP logger back end which
discards all logging.

When this flag is specified, the behavior of the UIMA logger is
altered to use the built-in-to-Java logging implementation as the
back end for the UIMA logger.

XML: enable ui ma. xm . enabl e. doct ype_decl (defaultisfalse) 2.10.4,
doctype 3.1.0
declarations See UIMA-60642 Normally, thisis turned off to avoid exposure

to malicious XML ; see XML Externa Entity processing

vulnerability®.

Index protection properties

Report I1legal ui ma. report _fs_update_corrupts_i ndex (defaultisnot |2.7.0
Index-key Feature | to report)
Updates

See UIMA-4135" Updating Features which are used in Set and
Sorted indexes as "keys"' may corrupt the indexes, if the Feature
Structure (FS) has been added to the indexes. To update these,
you must first completely remove the FS from the indexesiin

all views, then do the updates, and then add it back. UIMA

now checks for this (unless specifically disabled, see below),
and if this property is set, will log WARN messages for each
occurrence unless the user does explicit pr ot ect | ndexes (see
CAS JavaDocs for CAS/ JCas pr ot ect | ndexes methods), if
this property is defined.

To scan the logs for these reports, search for instances of lines
having the stringWhi l e FS was in the index, the
feature

Specifying this property overrides
ui ma. di sabl e_aut o_prot ect _i ndexes.

Users would run with this property defined, and then for

high performance, would use the report to manually change
their code to avoid the problem or to wrap the updates with a

pr ot ect | ndexes kind of protection (see the reference manual,
in the CAS or JCas chapters, for examples of user code doing
this, and then run with the protection turned off (see below).

L https://issues.apache.org/jiralbrowse/lUIMA-5381
2 https://issues.apache.org/jiralbrowse/UIMA-6064
3 https://www.owasp.org/index.php/XML_External_Entity (XXE)_Processing
4 https://issues.apache.orgljiralbrowse/UIMA-4135

116 Setup and Configuration UIMA Version 3.1.0

https://issues.apache.org/jira/browse/UIMA-5381
https://issues.apache.org/jira/browse/UIMA-6064
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://issues.apache.org/jira/browse/UIMA-4135
https://issues.apache.org/jira/browse/UIMA-5381
https://issues.apache.org/jira/browse/UIMA-6064
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://issues.apache.org/jira/browse/UIMA-4135

Properties Table

Throw exception ui ma. excepti on_when_fs_update_corrupts_i ndex 2.7.0
onillegal Index-key | (default isfalse)
Feature Updates

See UIMA-4150°. Throws a UIMARunti meException if an
Indexed FS feature used as akey in one or moreindexesis
updated, outside of an explicit pr ot ect | ndexes block..\ This
isintended for use in automated build and test environments,

to provide astrong signal if this kind of mistake getsinto

the build. If it is not set, then the other properties specify if
corruption should be checked for, recovered automatically, and /
or reported

Specifying this property also forces
ui ma. report_fs_ update_corrupts_index totrueevenif
it was set to false.

Disable the index ui ma. di sabl e_aut o_prot ect _i ndexes 2.7.0
corruption checking
See UIMA-4135°. After you have fixed all reported issues
identified with the above report, you may set this property to
omit this check, which may dightly improve performance.

Note that this property isignored if the -
Dexcepti on_when_fs_update_corrupts_i ndex or -
Dreport _fs_update_corrupts_index

Measurement / Tracing properties

Trace Feature uima.trace_fs_creation_and_updating 2.10.1
Structure Creation/
Updating This causes atrace file to be produced in the current working

directory. Thefile has one line for each Feature Structure that

is created, and include information on the cas/cas-view, and

the features that are set for the Feature Structure. Thereis,
additionally, one line for each Feature Structure update. Updates
that occur next-to trace information for the same Feature
Structure are combined.

This can generate alot of output, and definitely slows down

execution.
Measure index ui ma. measure. fl atten_i ndex 2.8.0
flattening ;
optimization See UIMA-4357". This creates a short report to System.out

when Javais shutdown. The report has some statistics about the
automatic management of flattened index creation and use.

Some additional global flags intended for helping v3 migration are documented in the V3 user's
guide.

S https://issues.apache.org/jiralbrowse/UIMA-4150
6 https://issues.apache.org/jiralbrowse/UIMA-4135
7 https://issues.apache.orgljiralbrowse/UIMA-4357

UIMA Version 3.1.0 Setup and Configuration 117

https://issues.apache.org/jira/browse/UIMA-4150
https://issues.apache.org/jira/browse/UIMA-4135
https://issues.apache.org/jira/browse/UIMA-4357
https://issues.apache.org/jira/browse/UIMA-4150
https://issues.apache.org/jira/browse/UIMA-4135
https://issues.apache.org/jira/browse/UIMA-4357

Chapter 11. UIMA Resources
11.1. What is a UIMA Resource?

UIMA uses the term Resour ce to describe all UIMA components that can be acquired by an
application or by other resources.

ordinary

- Collection reader

2 Annotator -
CAS consumer
4 CAS multipli
multiplier
8 1 Flow Contoller P
| -
= |
o
3 Data
(n'e
External Resource || Parameterizable
Configurable

Figure 11.1. Resource Kinds
There are many kinds of resources; here's alist of the main kinds:

Annotator
a user written component, receives a CA S, does some processing, and returns the possibly
updated CAS. Variantsinclude CollectionReaders, CAS Consumers, CAS Multipliers.

Flow Controller
a user written component controlling the flow of CASes within an aggregate.

External Resource
auser written component. Variants include:
» Data- includes specid lifecycle call to load data
» Parameterized - allows multiple instantiations with simple string parameter variants;
example: adictionary, that has variantsin content for different languages
» Configurable - supports configuration from the XML specifier

11.1.1. Resource Inner Implementations

Many of the resource kindsinclude in their specification a (possibly optional) element, which
is the name of a Java class which implements the resource. We will call this class the "inner
implementation”.

The UIMA framework creates instances of Resource from resource specifiers, by calling the
framework's pr oduceResour ce(speci fi er, additional paraneters) method. Thiscall
produces ainstance of Resource.

UIMA Resources 119

Sharing Resources

For example, calling produceResource on an AnalysisEngineDescription
produces an instance of AnalysisEngine. This, in turn will have a
reference to the user-written inner implementation class. specified by the
annot at or | npl enent at i onNane.

External resource descriptors may include ani npl enent at i onNane element.
Calling produceResource on a External ResourceDescription produces an instance
of Resource; the resource obtained by subsequent callsto get Resource(. . .)

is dependent on the particular descriptor, and may be an instance of the inner
implementation class.

For external resources, each resource specifier kind handles the case where the inner
implementation is omitted. If it is supplied, the named class must implement the interface specified
in the bindings for this resource. In addition, the particular specifier kind may further restrict the
kinds of classes the user supplies as the implementationName.

Some examples of this further restriction:

customResour ce
the class must also implement the Resource interface

dataResource
the class must also implement the SharedResourceObject interface

11.2.

Sharing Resources, even across pipelines

UIMA applications run one or more UIMA Pipelines. Each pipeline has atop-level Analysis
Engine, which may be an aggregation of many other Analysis Engine components. The UIMA
framework instantiates Annotator resources as specified to configure the pipelines.

Sometimes, many identical pipelines are created (for example, in order to exploit multi-core
hardware by processing multiple CASesin paralédl). In this case, the framework would produce
multiple instances of those Annotation resources; these are implemented as multiple instances of
the same Java class.

Sets of External Resources plus a CAS Pool and UIMA Extension ClassL oader are set up and kept,
per instance of a ResourceManager; this instance serves to allow sharing of these items across one
or more pipelines.

» The UIMA Extension ClassLoader (if specified) is used to find the resources to be loaded by
the framework

» TheExternal Resources are specified by a pipeline's resource configuration.

» The CAS Pool isapool of CASsall with identical type systems and index definitions,
associated with a pipeline.

When setting up apipeline, the UIMA Framework's pr oduceResour ce or one of its specialized
variantsis called, and a new ResourceManager being created and used for that pipeline. However,
in many cases, it may be advantageous to share the same Resources across multiple pipelines; this
is easily doable by passing a common instance of the ResourceManager to the pipeline creation
methods (using the additional parameters of the produceResource method).

To handle additional use cases, the ResourceManager has acopy() method which creates
acopy of the Resource Manager instance. The new instance is created with anull CAS

120

UIMA Resources UIMA Version 3.1.0

External Resources support for multiple Parameterized Instances

Manager; if you want to share the the CAS Pool, you have to copy the CAS Manager:

newRM set CasManager (ori gi nal RM get CasManager ()) . You aso may set the Extension
Class Loader in the new instance (PEAR wrappers use thisto allow PEARS to have their own
classpath). See the Javadocs for details.

11.3. External Resources support for multiple
Parameterized Instances

A typical external resource gets a single instantiation, shared with all users of a particular
ResourceM anager. Sometimes, multiple instantiations may be useful (of the same resource).

The framework supports this for ParameterizedDataResources. There's one kind supplied with
UIMA - the fileL anguageResourceSpecifier. This works by having each call to getResource(name,
extra_keyd[]) use the extra keys to select a particular instance. On the first call for a particular
instance, the named resource uses the extrakeysto initialize anew instance by calling its| oad
method with a data resource derived from the extra keys by the named resource.

For example, the fileL anguageResourceSpecifier uses the language code and goes through a
process with lots of defaulting and fall back to find a resource to load, based on the language code.

UIMA Version 3.1.0 UIMA Resources 121

	UIMA References
	Table of Contents
	Chapter 1. Javadocs
	1.1. Using named Eclipse User Libraries

	Chapter 2. Component Descriptor Reference
	2.1. Notation
	2.2. Imports
	2.3. Type System Descriptors
	2.3.1. Imports
	2.3.2. Types
	2.3.3. Features
	2.3.4. String Subtypes

	2.4. Analysis Engine Descriptors
	2.4.1. Primitive Analysis Engine Descriptors
	2.4.1.1. Basic Structure
	2.4.1.2. Analysis Engine MetaData
	2.4.1.3. Type System Definition
	2.4.1.4. Type Priority Definition
	2.4.1.5. Index Definition
	2.4.1.6. Capabilities
	2.4.1.7. OperationalProperties
	2.4.1.8. External Resource Dependencies
	2.4.1.9. Resource Manager Configuration
	2.4.1.10. Environment Variable References

	2.4.2. Aggregate Analysis Engine Descriptors
	2.4.2.1. Delegate Analysis Engine Specifiers
	2.4.2.2. FlowController
	2.4.2.3. FlowConstraints
	Fixed Flow
	Capability Language Flow

	2.4.2.4. External Resource Bindings
	2.4.2.5. Sofa Mappings

	2.4.3. Configuration Parameters
	2.4.3.1. Configuration Parameter Declaration
	Example

	2.4.3.2. Configuration Parameter Settings
	Example

	2.4.3.3. Configuration Parameter Overrides
	2.4.3.4. External Configuration Parameter Overrides
	2.4.3.5. Direct Access to External Configuration Parameters
	2.4.3.6. Other Uses for External Configuration Parameters

	2.5. Flow Controller Descriptors
	2.6. Collection Processing Component Descriptors
	2.6.1. Collection Reader Descriptors
	2.6.2. CAS Initializer Descriptors (deprecated)
	2.6.3. CAS Consumer Descriptors

	2.7. Service Client Descriptors
	2.8. Custom Resource Specifiers

	Chapter 3. Collection Processing Engine Descriptor Reference
	3.1. CPE Overview
	3.2. Notation
	3.3. Imports
	3.4. CPE Descriptor Overview
	3.5. Collection Reader
	3.5.1. Error handling for Collection Readers

	3.6. CAS Processors
	3.6.1. Specifying an Individual CAS Processor
	3.6.1.1. <descriptor> Element
	3.6.1.2. <configurationParameterSettings> Element
	3.6.1.3. <sofaNameMappings> Element
	3.6.1.4. <runInSeparateProcess> Element
	3.6.1.5. <deploymentParameters> Element
	3.6.1.6. <filter> Element
	3.6.1.7. <errorHandling> Element
	Retry action taken on a timeout

	3.6.1.8. <checkpoint> Element

	3.7. CPE Operational Parameters
	3.8. Resource Manager Configuration
	3.9. Example CPE Descriptor

	Chapter 4. CAS Reference
	4.1. Javadocs
	4.2. CAS Overview
	4.2.1. The Type System
	4.2.2. Creating, accessing and manipulating data
	4.2.3. Creating and using indexes

	4.3. Built-in CAS Types
	4.4. Accessing the type system
	4.4.1. TypeSystemPrinter example
	4.4.2. Using the CAS APIs to create and modify feature structures

	4.5. Creating feature structures
	4.5.1. Updating indexed feature structures

	4.6. Accessing or modifying features of feature structures
	4.7. Indexes and Iterators
	4.7.1. Built-in Indexes
	4.7.2. Adding Feature Structures to the Indexes
	4.7.3. Iterators over UIMA Indexes
	4.7.4. Special iterators for Annotation types
	4.7.5. Constraints and Filtered iterators

	4.8. The CAS API's – a guide to the Javadocs
	4.8.1. APIs in the CAS package

	4.9. Type Merging
	4.10. Limited multi-thread access to read-only CASs

	Chapter 5. JCas Reference
	5.1. Name Spaces
	5.2. XML description element
	5.3. Mapping built-in CAS types to Java types
	5.4. Augmenting the generated Java Code
	5.4.1. Keeping hand-coded augmentations when regenerating
	5.4.2. Additional Constructors
	5.4.2.1. Using readObject

	5.4.3. Modifying generated items

	5.5. Merging types
	5.5.1. Aggregate AEs and CPEs as sources of types
	5.5.2. JCasGen support for type merging
	5.5.3. Impact of Type Merging on Composability of Annotators
	5.5.4. Adding Features to DocumentAnnotation

	5.6. Using JCas within an Annotator
	5.6.1. Creating new instances using the Java “new” operator
	5.6.2. Getters and Setters
	5.6.3. Obtaining references to Indexes
	5.6.4. Adding (and removing) instances to (from) indexes
	5.6.5. Using Iterators
	5.6.6. Class Loaders in UIMA
	5.6.6.1. Use of Class Loaders is optional

	5.6.7. Issues accessing JCas objects outside of UIMA Engine Components

	5.7. Setting up Classpath for JCas
	5.8. PEAR isolation

	Chapter 6. PEAR Reference
	6.1. Packaging a UIMA component
	6.1.1. Creating the PEAR structure
	6.1.2. Populating the PEAR structure
	6.1.2.1. Standard Type
	6.1.2.2. Service Type
	6.1.2.3. Network Type

	6.1.3. Creating the installation descriptor
	6.1.4. Documented template for the installation descriptor:
	6.1.4.1. The SUBMITTED_COMPONENT section
	6.1.4.2. The ID, NAME, and DESC tags
	6.1.4.3. Tags related to deployment types
	Standard Type
	Service Type
	Network Type

	6.1.4.4. The Collection Reader and CAS Consumer tags
	6.1.4.5. The INSTALLATION section

	6.1.5. Packaging the PEAR structure into one file

	6.2. Installing a PEAR package
	6.2.1. Installing a PEAR file using the PEAR APIs

	6.3. PEAR package descriptor

	Chapter 7. XMI CAS Serialization Reference
	7.1. XMI Tag
	7.2. Feature Structures
	7.3. Primitive Features
	7.4. Reference Features
	7.5. Array and List Features
	7.5.1. Arrays and Lists as Multi-Valued Properties
	7.5.2. Arrays and Lists as First-Class Objects
	7.5.3. Null Array/List Elements

	7.6. Subjects of Analysis (Sofas) and Views
	7.7. Linking an XMI Document to its Ecore Type System
	7.8. Delta CAS XMI Format

	Chapter 8. Compressed Binary CASes
	8.1. Binary CAS Compression overview
	8.2. Using Compressed Binary CASes
	8.3. Simple Delta CAS serialization
	8.4. Use Case cookbook

	Chapter 9. JSON Serialization of CASs and UIMA Description objects
	9.1. JSON serialization support overview
	9.2. JSON CAS Serialization
	9.2.1. The Big Picture
	9.2.2. The _context section
	9.2.2.1. Omitting parts of the _context section

	9.2.3. Serializing Feature Structures
	9.2.3.1. Embedding normally referenced values
	9.2.3.2. Dynamic vs Static multiple-references and embedding
	9.2.3.3. Embedded Arrays and Lists
	9.2.3.4. Omitting null values

	9.3. Organizing the Feature Structures
	9.4. Additional JSON CAS Serialization features
	9.4.1. Delta CAS

	9.5. Using JSON CAS serialization
	9.6. JSON serialization for UIMA descriptors

	Chapter 10. UIMA Setup and Configuration
	10.1. UIMA JVM Configuration Properties
	10.2. Configuring index protection
	10.3. Properties Table

	Chapter 11. UIMA Resources
	11.1. What is a UIMA Resource?
	11.1.1. Resource Inner Implementations

	11.2. Sharing Resources, even across pipelines
	11.3. External Resources support for multiple Parameterized Instances

