
UIMA Version 3 User's Guide
Written and maintained by the Apache

UIMA™ Development Community

Version 3.0.0-beta

Copyright © 2006, 2017 The Apache Software Foundation

Copyright © 2004, 2006 International Business Machines Corporation

License and Disclaimer. The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such terms in this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date November, 2017

http://www.apache.org/licenses/LICENSE-2.0

UIMA Version 3 User's Guide iii

Table of Contents
1. Overview .. 1

1.1. What's new .. 1
1.2. Java 8 is required ... 4

2. Backwards Compatibility ... 5
2.1. JCas and non-JCas APIs .. 5

2.1.1. JCas reserved names ... 5
2.2. Serialization forms .. 5

2.2.1. Delta CAS Version 2 Binary deserialization not supported 5
2.3. APIs for creating and modifying Feature Structures .. 6
2.4. PEAR support .. 6
2.5. toString() ... 7
2.6. Logging configuration is somewhat different .. 7
2.7. Type System sharing ... 7
2.8. Deserializing 0 length items in a CAS ... 8
2.9. Some checks moved to native Java ... 8
2.10. Some class hierarchies have been modified .. 8

3. New/Extended APIs .. 9
3.1. UIMA FSIndex and FSIterators improvements ... 9
3.2. New Select API .. 10
3.3. New custom Java objects in the CAS framework .. 10
3.4. Built-in lists and arrays .. 10

3.4.1. Built-in lists and arrays have common super classes / interfaces 11
3.5. Many UIMA objects implement Stream or Collection .. 11
3.6. Reorganized APIs ... 11
3.7. Use of JCas Class to specify a UIMA type ... 12
3.8. JCasGen changes .. 12

3.8.1. JCas additional static fields .. 12
3.9. Generics added ... 12
3.10. Other changes ... 12

4. Select framework ... 15
4.1. Select's use of the builder pattern .. 15
4.2. Sources of Feature Structures ... 15

4.2.1. Use of Type in selection of sources .. 17
4.2.2. Sources and generic typing .. 17

4.3. Selection and Ordering .. 18
4.3.1. Boolean properties .. 19
4.3.2. Configuration for any source ... 19
4.3.3. Configuration for any index ... 19
4.3.4. Configuration for sort-ordered indexes .. 20
4.3.5. Bounded sub-selection within an Annotation Index 20
4.3.6. Variations in Bounded sub-selection within an Annotation Index 21
4.3.7. Defaults for bounded selects .. 21
4.3.8. Following or Preceding ... 22

4.4. Terminal Form actions ... 22
4.4.1. Iterators ... 23
4.4.2. Arrays and Lists ... 23
4.4.3. Single Items ... 23
4.4.4. Streams ... 24

5. CAS Java Objects .. 25
5.1. Tutorial example ... 25
5.2. semi-built-in UIMA Types ... 28

UIMA Version 3 User's Guide

iv UIMA Version 3 User's Guide UIMA Version 3.0.0-beta

5.2.1. FSArrayList ... 28
5.2.2. IntegerArrayList ... 28
5.2.3. FSHashSet ... 28

5.3. Design for reuse ... 29
6. Logging .. 31

6.1. Logging Levels ... 31
6.2. Context Data .. 32
6.3. Markers used in UIMA Java core logging .. 32
6.4. Defaults and Configuration .. 33

6.4.1. Throttling logging from Annotators .. 33
7. Migrating to V3 .. 35

7.1. Migrating: the big picture .. 35
7.2. How to migrate .. 35
7.3. Migrating JCas classes ... 35

7.3.1. Running the migration tool .. 37
7.3.2. Understanding the reports .. 38
7.3.3. Examples ... 41

7.4. Consuming V3 Maven artifacts ... 42
8. PEAR support ... 43

8.1. JCas issues ... 43
8.2. Custom Java Objects ... 44

9. Migration aids ... 45
9.1. Properties Table .. 45

Overview 1

Chapter 1. Overview of UIMA Version 3
UIMA Version 3 adds significant new functionality for the Java SDK, while remaining backward
compatible with Version 2. Much of this new function is enabled by a shift in the internal details of
how Feature Structures are represented. In Version 3, these are represented internally as ordinary
Java objects, and subject to garbage collection.

In contrast, version 2 stored Feature Structure data in special internal arrays of
ints and other data types. Any Java object representation of Feature Structures in
version 2 was merely forwarding references to these internal data representations.

If JCas is being used in an application, the JCas classes must be migrated, but this can often be
done automatically. In Version 3, the JCas classes ending in "_Type" are no longer used, and the
main JCas class definitions are much simplified.

If an application doesn't use JCas classes, then nothing need be done for
migration. Otherwise, the JCas classes can be migrated in several ways:

generating during build
If the project is built by Maven, it's possible the JCas classes are built from
the type descriptions, using UIMA's Maven JCasGen plugin. If so, you can
just rebuild the project; the JCasGen plugin for V3 generates the new JCas
classes.

running the migration utility
This is the recommended way if you can't regenerate the classes from the type
descriptions.

This does the work of migrating and produces new versions of the JCas
classes, which need to replace the existing ones. It allows complex existing
JCas classes to migrated, perhaps with developer assistance as needed. Once
done, the application has no migration startup cost.

The migration tool is capable of using existing source or compiled JCas
classes as input, and can migrate classes contained within Jars or PEARs.

regenerating the JCas classes using the JCasGen tool
The JCasGen tool (available as a Eclipse or Maven plugin, or a stand-alone
application) generates Version 3 JCas classes from the XML descriptors.

This is perfectly adequate for migrating non-customized JCas classes. When
run from the UIMA Eclipse plugin for editing XML component descriptors,
it will attempt to merge customizations with generated code. However, its
approach is not as comprehensive as the migration tool, which parses the Java
source code.

Migration of JCas classes is the first step needed to start using UIMA version 3. See the later
chapter on migration for details on using the migration tool.

1.1. What's new in UIMA Java SDK version 3
The major improvements in version 3 include:

What's new

2 Overview UIMA Version 3.0.0-beta

Support for arbitrary Java objects, transportable in the CAS
Support is added to allow users to define additional UIMA Types whose JCas implementation
may include Java objects, with serialization and deserialization performed using normal CAS
transportable data. A following chapter on Custom Java Objects describes this new facility.

New UIMA semi-built-in types, built using the custom Java object support
The new support that allows custom serialization of arbitrary Java objects so they can be
transported in the CAS (above) is used to implement several new semi-built-in UIMA types.

FSArrayList
a Java ArrayList of Feature Structures. The JCas class implements the List API.

IntegerArrayList
a variable length int array. Supports OfInt iterators.

FSHashSet
a Java HashSet containing Feature Structures. This JCas class implements the Set API.

Select framework for accessing Feature Structures
A new select framework provides a concise way to work with Feature Structure data stored
in the CAS or other collections. It is integrated with the Java 8 stream framework, while
providing additional capabilities supported by UIMA, such as the ability to move both
forwards and backwards while iterating, moving to specific positions, and doing various kinds
of specialized Annotation selection such as working with Annotations spanned by another
annotation.

By default, when sorted iterators are set up by the select framework, they ignore typePriorities;
this addresses a need of many use cases, and makes operation when there are many annotations
spanning the same begin and end more reliable. Each select can specify to use typePriority as
part of the ordering when required.

This user's guide has a chapter devoted to this new framework.

Elimination of ConcurrentModificationException while iterating over UIMA indexes
The index and iteration mechanisms are improved; it is now allowed to modify the indexes
while iterating over them (the iteration will be unaffected by the modification).

Note that the automatic index corruption avoidance introduced in more recent versions of
UIMA could be automatically removing Feature Structures from indexes and adding them
back, if the user was updating some Feature of a Feature Structure that was part of an index
specification for inclusion or ordering purposes.

In version 2, you would accomplish this using a two pass scheme: Pass 1
would iterate and merely collect the Feature Structures to be updated into
a Java collection of some kind. Pass 2 would use a plain Java iterator over
that collection and modify the Feature Structures and/or the UIMA indexes.
This is no longer needed in version 3; UIMA iterators use a copy-on-write
technique to allow index updating, while doing whatever minimal copying is
needed to continue iteration over the original index.

In both version 2 and 3, there are 3 iterater movement APIs which have a side effect of
insuring the iterator is operating correctly over the current index contents. These are the
moveToFirst, moveToLast, and moveTo(some_feature_structure) API calls.
In version 3, using these will reinitialize the iterator (if needed) so that it is iterating over the
current index contents; if the index has not been modified, no reinitialization is needed (or
done).

What's new

UIMA Version 3.0.0-beta Overview 3

Logging updated
The UIMA logger is a facade that can be hooked up at deploy time to one of several logging
backends. It has been extended to implement all of the Logger API calls provided in the SLF4j
Logger interface, and has been changed to use SLF4j as its back-end. SLF4j, in turn, requires
a logging back-end which it determines by examining what's available in the classpath, at
deploy time. This design allows UIMA to be more easily embedded in other systems which
have their own logging frameworks.

Modern loggers support MDC/NDC and Markers; these are supported now via the slf4j facade.
UIMA itself is extended to use these to provide contexts around logging.

See the following chapter on logging for details.

Automatic garbage collection of unreferenced Feature Structures
This allows creating of temporary Feature Structures, and automatically reclaiming space
resources when they are no longer needed. In version 2, space was reclaimed only when a CAS
was reset at the end of processing.

better performance
The internal design details have been extensively reworked to align with recent trends in
computer hardware over the last 10-15 years. In particular, space and time tradeoffs are
adjusted in favor of using more memory for better locality-of-reference, which improves
performance. In addition, the many internal algorithms (such as managing Feature Structure
indexes) have been improved.

Type system implementations are reused where possible, reducing the footprint in many
scaled-out cases.

Backwards compatible
Version 3 is intended to be binary backwards compatible - the goal is that you should be
able to run existing applications without recompiling them, except for the need to migrate or
regenerate any User supplied JCas Classes. Utilities are provided to help do the necessary JCas
migration mostly automatically.

Integration with Java 8
Version 3 requires Java 8 as the minimum level. Some of version 3's new facilities, such as the
select framework for accessing Feature Structures from CASs or other collections, integrate
with the new Java 8 language constructs, such as Streams and Spliterators.

Programming convenience
Many APIs have been made more consistent and better integrated; see the chapter on new and
extended APIs. Examples: UIMA Indexes now implement Iterable, so you can use the Java
"extended for" construct directly; UIMA Lists have new push and pushNode methods to create
and link a new node onto the front of a list; there are new methods on the CAS and JCas to get
a shared instance of common immutable objects, like 0-length arrays and empty lists.

Just to give a small taste of the kinds of things Java 8 integration provides, here's an example of
using the new select framework, where the task is to compute

• a Set of all the found types
• in a UIMA index
• under some top-most type "MyType"
• occurring as Annotations within a particular bounding Annotation
• that are nonOverlapping

Here is the Java code using the new select framework together with Java 8 streaming functions:

Java 8 is required

4 Overview UIMA Version 3.0.0-beta

Set<Type> foundTypes =
 myIndex.select(MyType.class)
 .coveredBy(myBoundingAnnotation)
 .nonOverlapping()
 .map(fs -> fs.getType())
 .collect(Collectors.toCollection(TreeSet::new));

Another example: to collect, by category, the average length of the annotations having that
category. Here we assume that MyType is an Annotation and that it has a feature called
category which returns a String denoting the category:

Map<String, Double> freqByCategory =
 myIndex.select(MyType.class)
 .collect(Collectors
 .groupingBy(MyType::getCategory,
 Collectors.averagingDouble(f ->
 (double)(f.getEnd() - f.getBegin()))));

1.2. Java 8 is required
The UIMA Java SDK Version 3 requires Java 8 or later.

Backwards Compatibility 5

Chapter 2. Backwards Compatibility
Because users have made substantial investment in developing applications using the UIMA
framework, a goal of version 3 is to protect this investment, by enabling Annotators and
applications developed under previous versions to be able to be used in subsequent versions of the
framework.

To this end, version 3 is designed to be backwards compatible, except for needing:

• possibly a recompilation (due to some rearrangements of many classes and interfaces)

• a new set of User-defined JCas classes (if these were previously being used). The creation of
these Cas classes can be done by regenerating them using JCasGen, or by using a migration
tool that handles converting the existing JCas classes. A later chapter covers how to upgrade
the JCas classes.

There are some additional exceptions, described in the following sections.

2.1. JCas and non-JCas APIs
The JCas class changes include no longer needing or using the Xyz_Type sister classes for each
main JCas class. User code is unlikely to access these sister classes. The JCas API method to access
this sister class now throws a UnsupportedOperation exception.

The non-JCas Java cover classes for the built-in UIMA types remain, for backwards compatibility.
So, if you have code that casts a Feature Structure instance to AnnotationImpl (a now deprecated
version 2 non-JCas Java cover class), that will continue to work.

2.1.1. Additional reserved names in the JCas generated
classes

Names beginning with "_" (underscore) are being used by the new JCas implementation, so you
should not name things with this convention. If you do, please insure your names are not colliding
with the names being used by the generated JCas files.

2.2. Serialization forms
The backwards compatibility extends to the serialized forms, so that it should be possible to have a
UIMA-AS services working with a client, where the client is a version 3 instance, but the server is
still a version 2 (or vice versa).

2.2.1. Delta CAS Version 2 Binary deserialization not
supported

The binary serialization forms, including Compressed Binary Form 4, build an internal model of
the v2 CAS in order to be able to deserialize v2 generated versions. For delta CAS, this model
cannot be accurately built, because version 3 excludes from the model all unreachable Feature
Structures, so in most cases it won't match the version 2 layout.

Version 3 will throw an exception if delta CAS deserialization of a version 2 binary delta CAS is
attempted.

APIs for creating and modifying Feature Structures

6 Backwards Compatibility UIMA Version 3.0.0-beta

2.3. APIs for creating and modifying Feature
Structures

There are 3 sets of APIs for creating and modifying Feature Structures; all are supported in V3.
• Using the JCas classes
• Using the normal CAS interface with Type and Feature objects
• Using the low level CAS interface with int codes for Types and Features

Version 3 retains all 3 sets, to enable backward compatibility.

The low level CAS interface was originally provided to enable a extra-high-performance (but
without compile-time type safety checks) mode. In Version 3, this mode is actually somewhat
slower than the others, and no longer has any advantages.

Using the low level CAS interface also sometimes blocks one of the new features of Version 3 -
namely, automatic garbage collection of unreachable Feature Structures. This is because creating
a Feature Structure using the low level API creates the Java object for that Feature Structure, but
returns an "int" handle to it. In order to be able to find the Feature Structure, given that int handle,
an entry is made in an internal map. This map holds a reference to this Feature Structure, which
prevents it from being garbage collected (until of coursse, the CAS is reset).

The normal CAS APIs allow writing Annotators where the type system is unknown at compile
time; these are fully supported.

2.4. PEAR support
Pears are supported in Version 3. If they use JCas, their JCas classes need to be migrated.

When a PEAR contains a JCas class definition different from the surrounding non-PEAR context,
each Feature Structure instance within that PEAR has a lazily-created "dual" representation using
the PEAR's JCas class definition. The UIMA framework things storing references to Feature
Structures are modified to store the non-PEAR version of the Feature Structure, but to return
(when in a particular PEAR component in the pipeline) the dual version. The intent is that this be
"invisible" to the PEAR's annotators. Both of these representations share the same underlying CAS
data, so modifications to one are seen in the other.

If a user builds code that holds onto Feature Structure references, outside of annotators
(e.g., as a shared External Resource), and sets and references these from both outside
and inside one (or more) PEARs, they should adopt a strategy of storing the non-
PEAR form. To get the non-PEAR form from a Feature Structure, use the method
myFeatureStructure._maybeGetBaseForPearFs().

Similarly, if code running in an Annotator within a PEAR wants to work
with a Feature Structure extracted from non-UIMA managed data outside of
annotators (e.g., such as a shared External Resource) where the form stored
is the non-PEAR form, you can convert to the PEAR form using the method
myFeatureStructure.__maybeGetPearFs(). This method checks to see
if the processing context of the pipeline is currently within a PEAR, and if that
PEAR has a different definition for that JCas class, and if so, it returns that version
of the Feature Structure.

The new Java Object support does not support multiple, different JCas class definitions for the
same UIMA Type, inside and outside of the PEAR context. If this is detected, a runtime exception
is thrown.

toString()

UIMA Version 3.0.0-beta Backwards Compatibility 7

The workaround for this is to manually merge any JCas class definitions for the same class.

2.5. toString()
The formatting of various UIMA artifacts, including Feature Structures, has changed somewhat,
to be more informative. This may impact situations such as testing, where the exact string
representations are being compared.

A special global Java property, -Duima.v2_pretty_print_format can be set to have the toString()
operation for Feature Sructures print in the V2 style.

2.6. Logging configuration is somewhat different
The default logging configuration in v2 was to use Java Util Logging (the logger built into Java).
For v3, the default is to use SLF4J which, in turn, picks a back-end logger, depending on what it
finds in the class path.

This change was done to permit easier integration of UIMA as a library running within other
frameworks.

V3 UIMA logger includes the APIs like info(..), warn(..) etc., that are part of the SLF4j APIs. In
addition, these are augmented with the Java 8 style lambda arguments that were introduced in
log4j-2, for more concise and efficient log message computation.

The new UIMA Logger APIs (e.g. logger.info(...), logger.warn(...)) use the SLF4j and other
modern logger substitutable notation of "{}", as opposed to the style adopted by the original Java
logger, of "{nnn}". All modern loggers have switched to this.

The technique for (optionally) reporting the class and method (and sometimes, line number) was
changed to conform to current logger conventions - whereby the loggers themselves obtain this
information from the call stack. The V2 calls which pass in the sourceClass and sourceMethod
information have this information ignored, but replaced with what the loggers obtain from the stack
track. In some cases, where the callers in V2 were not actually passing in the correct class/method
information, this will result in a different log record.

For more details, please see the logging chapter.

2.7. Type System sharing
Type System definitions are shared when they are equal. After type systems have been built up
from type definitions, at "commit" time, a check is made to see if an identical type system already
exists (same types and features). This is often the case when a UIMA application is scaling up by
adding multiple pipelines, all using the same type system.

If an identical committed type system already exists, then the commit operation returns it, and the
one just built is discarded. Normally, this is not an issue. However, some application code may
save references to the type system object or to defined types and features. These references end up
pointing to the discarded version, when the commit operation finds an already committed equal
version.

Application code may code around this by re-acquiring references to the type system object, and
to any type and feature objects, if the type system instance object returned from commit is not
identical (==) to the one being committed. The type system commit APIs are changed to return the

Deserializing 0 length items in a CAS

8 Backwards Compatibility UIMA Version 3.0.0-beta

type system - either the one being committed, or an already existing equal committed type system.
So when coding myTypesystem.commit(); if you later refer to myTypesystem, change this to
myTypesystem = myTypesystem.commit();, to keep the variable myTypesystem always
referring to to the committed type system.

2.8. Deserializing 0 length items in a CAS
In V3, 0-length arrays and lists belonging to one CAS are deserialized into a shared Java object.
Since 0-length arrays and lists are immutable, this should normally not matter. It could cause
problems if the application somehow is depending on object non-identity equality for these items.

2.9. Some checks moved to native Java
In the interest of performance, some duplicate checks, such as whether an array index is within
bounds, have been removed from UIMA when they are already being checked by the underlying
Java runtime. This has affected some of the internal APIs, such as the JCas's checkArrayBounds
which was removed because it was no longer being used.

2.10. Some class hierarchies have been modified
The various JCas Classes implementing the built-ins for arrays have some additional interfaces
added, grouping them into CommonPrimitiveArray or CommonArray. These changes are
internal, and should not affect users.

New/Extended APIs 9

Chapter 3. New and Extended APIs

3.1. UIMA FSIndex and FSIterators improvements
The FSIndex interface implements Collection, so you can now write for (MyType item :
myIndex) to iterate over an index.

Because it implements Collection, the FSIndex interface includes a stream() method, so you
can now write myIndex.stream().any-stream-operations, which will use the items in the
index as the source of the stream.

The FSIterator interface now implements the Java ListIterator Interface, and supports the methods
there except for add, nextIndex, previousIndex, and set; the remove() method's meaning is changed
to remove the item from all of the UIMA indexes.

The iterators over indexes no longer throw concurrent modification exceptions if the index is
modified while it is being iterated over. Instead, the iterators use a lazily-created copy-on-write
approach that, when some portion of the index is updated, prior to the update, copies the original
state of that portion, and continues to iterate over that. While this is helpful if you are explicitly
modifying the indexes in a loop, it can be especially helpful when modifying Feature Structures
as you iterate, because the UIMA support for detecting and avoiding possible index corruption if
you modify some feature being used by some index as a key, is automatically (under the covers)
temporarily removing the Feature Structure from indexes, doing the modification, and then adding
it back.

Similarly to version 2, iterator methods moveToFirst, moveToLast, and
moveTo(a_positioning_Feature_Structure) "reset" the iterator to be able to "see" the
current state of the indexes. This corresponds to resetting the concurrent modification detection
sensing in version 2, when these methods are used.

Note that the phrase Concurrent Modification is being used here in a single threading to the
indexes. UIMA does not support multi-threaded write access to the CAS; it does support multi-
threaded read access to a set of CAS Views, concurrent with one thread having write access (to
different views).

The remove() API for iterators is now implemented for FSIterators. Its meaning is slightly
different from the normal Java meaning - it doesn't remove the item from the collection being
iterated over; rather it removes the Feature Structure returned by get() from all indexes in the
view.

The FSIterator methods that normally check for iterator validity have versions which skip that
check. This may be a performance optimization in cases where you can guarantee the iterator
is valid, for example if you have a loop which is checking hasNext() and following it with
a next(), which is only executed if the hasNext() was true. The non-checking versions are
suffixed with Nvc (stands for No Validity Check).

The FSIndex API has a new method, subType(type-spec), which returns an FSIndex for the
same index, but specialized to elements which are a subtype of the original index. The type-spec
can be either a JCas class, e.g. MyToken.class, or a UIMA type instance.

New Select API

10 New/Extended APIs UIMA Version 3.0.0-beta

3.2. New Select API
A versatile new Select framework for accessing and acting on Feature Structures selected from the
CAS or from Indexes or from other collection objects is documented in a separate chapter. This
API is integrated with Java 8's Stream facility.

3.3. New custom Java objects in the CAS
framework

There is a new framework that supports allowing you to add your own custom Java objects as
objects transportable in the CAS. A following chapter describes this facility, and some new semi-
built-in types that make use of it.

3.4. Built-in lists and arrays
The built-in FSArray JCas class is now parameterized with the type of its elements.

UIMA Array and List types implement Iterable, so you can use them like this: for (MyType
item : myArray)

UIMA Arrays and Lists support contains(element) and isEmpty().

UIMA Array and List types support a stream() method returning a Stream or a type-specialized
sub interface of Stream for primitives (IntStream, LongStream, DoubleStream) over the objects in
the collection. Omitted are stream types where boxing would occur - Arrays of Byte, Short, Float,
Boolean.

The iterator() methods for IntegerList IntegerArrayList, IntegerArray,
DoubleArray, and LongArray return an OfInt / OfDouble / OfLong instances. These are
subtypes of Iterator with an additional methods nextInt / nextLong / nextDouble which avoid
the boxing of the normal iterator.

The new select framework supports stream operations; see the "select" chapter for details.

A new set of methods on UIMA built-in lists, createNonEmptyNode() and emptyList(),
creates a non-empty node of the type, or retrieves a (shared) empty node of the type. These
methods are not static, and create or get the instance in the same CAS as the object instance. These
methods are callable on both the empty and non-empty node instances, or on their shared super
interface, for example, on NonEmptyFloatList, EmptyFloatList, and FloatList (the common super
interface).

A new set of static methods on UIMA built-in lists and arrays, create(jcas, array_source)
take a Java array of items, and creates a corresponding UIMA built-in list or array populated with
items from the array_source.

For UIMA Lists and Arrays, the CAS and JCas has emptyXXXList/Array methods, which return
a shared instance of the immutable empty object. The Cas and JCas have generic emptyArray/List,
taking an argument JCas class identifying the type, e.g. FloatArray.class, StringList.class, etc.

For lists, there are some new common APIs for all list kinds.

• push(item) pushes the item onto an existing list node, creates a new non-empty node,
setting its head to item and its tail to the existing list node. This allows easy construction of
a list in backwards order.

Built-in lists and arrays have common super classes / interfaces

UIMA Version 3.0.0-beta New/Extended APIs 11

• pushNode() creates and links in a new node in front of this node.

• insertNode() creates and links in a new node following this node.

• createNonEmptyNode() creates a node of the same type, in the same CAS, without
linking it.

• getCommonTail() gets the tail of the node

• setTail() sets the tail of the node

• walkList() walks the list applying a consumer to each item

• getLength() walks the list to compute its length

• emptyList returns a shared instance of the empty list of the same type, in the same CAS

3.4.1. Built-in lists and arrays have common super
classes / interfaces

Some methods common to multiple implements were moved to the super classes, some classes
were made abstract (to prevent them from being instantiated, which would be an error). For arrays,
a new method common to all arrays, copyValuesFrom() copies values from arrays of the same
type.

3.5. Many UIMA objects implement Stream or
Collection

In Java 8, classes which implement Collection can be converted to streams using the xxx.sream()
method. To better integrate with Java 8, the following UIMA classes and interfaces now implement
Stream or Collection:

• FSIndex (implements Collection)

• all of the built-in Arrays, e.g. FloatArray implement Stream, the Integer/long/double arrays
implement the non-boxing version

• all of the built-in Lists implement Stream, the IntegerList implements the non boxing version

3.6. Reorganized APIs
Some APIs were reorganized. Some of the reorganizations include altering the super class and
implements hierarchies, making some classes abstract, making use of Java 8's new default
mechanisms to supply default implementations in interfaces, and moving methods to more common
places. Users of the non-internal UIMA APIs should not be affected by these reorganizations.

As an example, version 2 had two different Java objects representing particular Feature Structures,
such as "Annotation". One was used (org.apache.uima.jcas.tcas.Annotation) if the
JCas was enabled; the other (org.apache.uima.cas.impl.AnnotationImpl)otherwise. In
version 3, there's only one implementation; the other (AnnotationImpl) is converted to an interface.
Annotation now "implements AnnotationImpl.

Use of JCas Class to specify a UIMA type

12 New/Extended APIs UIMA Version 3.0.0-beta

3.7. Use of JCas Class to specify a UIMA type
Several APIs require a UIMA type to be specified. For instance, the API to remove all Feature
Structures of a particular type requires the type to be specified. Instead of a UIMA Type
object, if there is a JCas cover class for that type, you can pass that as well, as (for example)
Annotation.class.

3.8. JCasGen changes
JCasgen is modified to generate the v3 style of JCas cover classes. It no longer generates the the
xxx_Type.java classes, as these are not used by UIMA Version 3.

3.8.1. JCas additional static fields
Static final string fields are declared for each JCas cover class and for each feature that is part of
that UIMA type. The fields look like this example, taken from the Sofa class:

public final static String _TypeName = "org.apache.uima.jcas.cas.Sofa";
public final static String _FeatName_sofaNum = "sofaNum";
public final static String _FeatName_sofaID = "sofaID";
public final static String _FeatName_mimeType = "mimeType";
public final static String _FeatName_sofaArray = "sofaArray";
public final static String _FeatName_sofaString = "sofaString";
public final static String _FeatName_sofaURI = "sofaURI";

Each string has a generated name corresponding to the name of the type or the feature, and a string
value constant which of the type or feature name. These can be useful in Java Annotations.

3.9. Generics added
Version 3 adds generic typing to several structures, and makes use of this to enable users to
unclutter their code by taking advantage of Java's type inferencing, in many cases.

Generic types are added to:

• FSIndex <T extends FeatureStructure> the type the index is over.

• FSArray <T extends FeatureStructure> the type the FSArray holds.

• FSList <T extends TOP> the type the FSList holds.

• SelectFSs <T extends FeatureStructure> the type the select is producing.

3.10. Other changes
The convenience methods in the JCas have been duplicated in the CAS, e.g. getAllIndexFS.

New methods getIndexedFSs(myUimaType) and getIndexedFSs(MyJCas.class) return
unmodifiable, unordered Collections of all indexed Feature Structures of the specified type and its
subtypes in this CAS's view. This collection can be used in a Java extended-for loop construction.
getIndexedFSs() is the same but is for all Feature Structures, regardless of type. These are
methods on the CAS, JCas, FSIndexRepository interfaces, and return the Feature Structures of the
specified type (including subtypes).

Other changes

UIMA Version 3.0.0-beta New/Extended APIs 13

The TypeSystemMgr Interface has a variation of the commit method, which has a parameter that
specifies the class loader to be used when loading JCas class. This should be used whenever there
are user-specified JCas classes associated with the type system. If not specified, it defaults to the
class loader used to load the UIMA framework.

The utility class org.apache.uima.util.FileUtils has a new method writeToFile(path,
string), which efficiently writes a string using UTF-8 encoding to path.

The StringArray class has a new contains(a_string) method.

The CAS protectIndexes method returns an instance of AutoClosableNoException which is
a subtype where the close method doesn't throw an exception. This allows writing the try-with-
resources form without a catch block for Exception.

Sometimes Annotators may log excessively, causing problems in production settings. Although this
could be controlled using logging configuration, sometimes when UIMA is embedded into other
applications, you may not have easy access to modify those.

For this case, the produceAnalysisEngine's "additionalParameters" map supports a new key,
AnalysisEngine.PARAM_THROTTLE_EXCESSIVE_ANNOTATOR_LOGGING. This key
specifies that throttling should be applied to messages produced by annotators using loggers
obtained by Annotator code using the getLogger() API.

The value specified must be an Integer, and is the number of messages allowed before logging is
suppressed. This number is applied to each logging level, separately. To suppress all logging, use 0.

The Type interface has new methods subsumes(another_type),
isStringOrStringSubtype(), and isStringSubtype().

The FlowController_ImplBase supports a getLogger() API, which is shorthand for
getContext().getLogger().

Many error messages were changed or added, causing changes to localization classes. For coding
efficiency, some of the structure of the internal error reporting calls was changed to make use of
Java's variable number of arguments syntax.

The UIMA Logger implementation has been extended with both the SLF4J logger APIs and the
Log4j APIs which support Java 8's Supplier Functional Interfaces.

The TypeSystem and Type object implementations implement Iterable and will iterate over all
the defined types, or, for a type, all the defined Features for that type.

Select framework 15

Chapter 4. The select framework for working
with CAS data

The select framework provides a concise way to work with Feature Structure data stored in the
CAS. It is integrated with the Java 8 stream framework, and provides additional capabilities
supported by the underlying UIMA framework, including the ability to move both forwards and
backwards while iterating, moving to specific positions, and doing various kinds of specialized
Annotation selection such as working with Annotations spanned by another annotation (think of a
Paragraph annotation, and the Sentences or Tokens within that).

There are 3 main parts to this framework:
• The source
• what to select, ordering
• what to do

Figure 4.1. Select - the big picture

These are described in code using a builder pattern to specify the many options and parameters.
Some of the very common parameters are also available as positional arguments in some contexts.
Most of the variations are defaulted so that in the common use cases, they may be omitted.

4.1. Select's use of the builder pattern
The various options and specifications are specified using the builder pattern. Each specification
has a name, which is a Java method name, sometimes having further parameters. These methods
return an instance of SelectFSs; this instance is updated by each builder method.

A common approach is to chain these methods together. When this is done, each subsequent
method updates the SelectFSs instance. This means that the last method in case there are multiple
method calls specifying the same specification is the one that is used.

For example,

a_cas.select().typePriority(true).typePriority(false).typePriority(true)

would configure the select to be using typePriority (described later).

Some parameters are specified as positional parameters, for example, a UIMA Type, or a starting
position or shift-offset.

4.2. Sources of Feature Structures
Feature Structures are kept in the CAS, and may be accessed using UIMA Indexes. Note that not
all Feature Structures in the CAS are in the UIMA indexes; only those that the user had "added to

Sources of Feature Structures

16 Select framework UIMA Version 3.0.0-beta

the indexes" are. Feature Structures not in the indexes are not included when using the CAS as the
source for the select framework.

Feature Structures may, additionally, be kept in FSArrays, FSLists, and many additional
collection-style objects that implement SelectViaCopyToArray interface. This interface is
implemented by the new semi-built-in types FSArrayList and FSHashSet; user-defined JCas
classes for user types may also choose to implement this. All of these sources may be used with
select.

Figure 4.2. select method with type

For CAS sources, if Views are being used, there is a separate set of indexes per CAS view. When
there are multiple views, only one view's set of indexed Feature Structures is accessed - the view
implied by the CAS being used. Note that there is a way to specify aggregating over all views; see
allViews described later.

For CAS sources, users may specify all Feature Structures in a view, or restrict this in two ways:
• specifying an index: Users may define their own indexes, in additional to the built in ones,

and then specify which index to use.
• specifying a type: Only Feature Structures of this type (or its subtypes) are included.

It is possible to specify both of these, using the form myIndex.select(myType); in that case the
type must be the type or a subtype of the index's top most type.

If no index is specified, the default is
• to use all Feature Structures in a CAS View, or
• to use all Feature Structures in the view's AnnotationIndex, if the selection and ordering

specifications require an AnnotationIndex.

Note that the non-CAS collection sources (e.g. the FSArray and FSList sources are considered
ordered, but non-sorted, and therefore cannot be used for an operations which require a sorted
order.

Use of Type in selection of sources

UIMA Version 3.0.0-beta Select framework 17

There are 4 kinds of sources of Feature Structures supported:
• a CAS view: all the FSs that were added to the indexes for this view.
• an Index over a CAS view. Note that the AnnotationIndex is often implied by other select

specifications, so it is often not necessary to supply this.
• Feature Structures from a (semi) built-in UIMA Collection instance, such as instances of the

types FSArray, FSArrayList, FSHashSet, etc.
• Feature Structures from a user-defined UIMA Collection instance.

UIMA Collection sources have somewhat limited configurability, because they are considered non-
sorted, and therefore cannot be used for an operations which require a sorted order, such as the
various bounding selections (e.g. coveredBy) or positioning operations (e.g. startAt).

Each of these sources has a new API method, select(...), which initiates the select
specification. The select method can take an optional parameter, specifying the UIMA type to
return. If supplied, the type must must be the type or subtype of the index (if one is specified or
implied); it serves to further restrict the types selected beyond whatever the index (if specified) has
as its top-most type.

4.2.1. Use of Type in selection of sources

The optional type argument for select(...) specifies a UIMA type. This restricts the Feature
Structures to just those of the specified type or any of its subtypes. If omitted, if an index is used as
a source, its type specification is used; otherwise all types are included.

Type specifications may be specified in multiple ways. The best practice, if you have a JCas cover
class defined for the type, is to use the form MyJCasClass.class. This has the advantage of
setting the expected generic type of the select to that Java type.

The type may also be specified by using the actual UIMA type instance (useful if not using the
JCas), using a fully qualified type name as a string, or using the JCas class static type field.

4.2.2. Sources and generic typing

The select method results in a generically typed object, which is used to have subsequent operations
make use of the generic type, which may reduce the need for casting.

The generic type can come from arguments or from where a value is being assigned, if that target
has a generic type. This latter source is only partially available in Java, as it does not propagate past
the first object in a chain of calls; this becomes a problem when using select with generically
typed index variables.

There is also a static version of the select method which takes a generically typed index as an
argument.

Selection and Ordering

18 Select framework UIMA Version 3.0.0-beta

// this works
// the generic type for Token is passed as an argument to select
FSIterator<Token> token_it = cas.select(Token.class).fsIterator();

FSIndex<Token> token_index = ... ; // generically typed

// this next fails because the
// Token generic type from the index variable being assigned
// doesn't get passed to the select().
FSIterator<Token> token_iterator = token_index.select().fsIterator();

// You can overcome this in two ways:
// pass in the type as an argument to select
// using the JCas cover type.
FSIterator<Token> token_iterator =
 token_index.select(Token.class).fsIterator();

// You can also use the static form of select
// to avoid repeating the type information
FSIterator<Token> token_iterator =
 SelectFSs.select(token_index).fsIterator();

// Finally, you can also explicitly set the generic type
// that select() should use, like a special kind of type cast, like this:
FSIterator<Token> token_iterator =
 token_index.<Token>select().fsIterator();

Note: the static select method may be statically imported into code that uses it, to avoid
repeatedly qualifying this with its class, SelectFSs.

Any specification of an index may be further restricted to just a subType (including that subtype's
subtypes, if any) of that index's type. For example, an AnnotationIndex may be specialized to just
Sentences (and their subtypes):

FSIterator<Token> token_iterator =
 annotation_index.select(Token.class).fsIterator();

4.3. Selection and Ordering
There are four sets of sub-selection and ordering specifications, grouped by what they apply to:

• all sources
• Indexes or FSArrays or FSLists
• Ordered Indexes
• The Annotation Index

With some exceptions, configuration items to the left also apply to items on the right.

When the same configuration item is specified multiple times, the last one specified is the one that
is used.

Boolean properties

UIMA Version 3.0.0-beta Select framework 19

Figure 4.3. Selection and Ordering

4.3.1. Boolean properties
Many configuration items specify a boolean property. These are named so the default (if you don't
specify them) is generally what is desired, and the specification of the method with null parameter
switches the property to the other (non-default) value.

For example, normally, when working with bounded limits within Annotation Indexes, type
priorities are ignored when computing the bound positions. Specifying typePriority() says to use
type priorities.

Additionally, the boolean configuration methods have an optional form where they take a boolean
value; true sets the property. So, for example typePriority(true) is equivalent to typePriority(), and
typePriority(false) is equivalent to omitting this configuration.

4.3.2. Configuration for any source
limit

a limit to the number of Feature Structures that will be produced or iterated over.

nullOk
changes the behavior for some terminal_form actions, which would otherwise throw an
exception if a null result happened.

4.3.3. Configuration for any index
allViews

Normally, only Feature Structures belonging to the particular CAS view are included in the
selection. If you want, instead, to include Feature Structures from all views, you can specify
allViews().

When this is specified, it acts as an aggregation of the underlying selections, one per view in
the CAS. The ordering among the views is arbitrary; the ordering within each view is the same

Configuration for sort-ordered indexes

20 Select framework UIMA Version 3.0.0-beta

as if this setting wasn't in force. Because of this implementation, the items in the selection may
not be unique -- Feature Structures in the underlying selections that are in multiple views will
appear multiple times.

4.3.4. Configuration for sort-ordered indexes
When an index is sort-ordered, there are additional capabilities that can be configured, in particular
positioning to particular Feature Structures, and running various iterations backwards.

orderNotNeeded
relaxes any iteration by allowing it to proceed in an unordered manner. Specifying this may
improve performance in some cases. When this is specified, the current implementation
skips the work of keeping multiple iterators for a type and all of its subtypes in the proper
synchronization.

startAt
position the starting point of any iteration. startAt(xxx) takes two forms, each of which has,
in turn 2 subforms. The form using begin, end is only valid for Annotation Indexes.

startAt(fs); // fs specifies a feature structure
 // indicating the starting position

startAt(fs, shifted); // same as above, but after positioning,
 // shift to the right or left by the shift
 // amount which can be positive or negative

// the next two forms are only valid for AnnotationIndex sources

startAt(begin, end); // start at the position indicated by begin/end

startAt(begin, end, shifted) // same as above,
 // but with a subsequent shift.
 // which can be positive or negative

backwards
specifies a backwards order (from last to first position) for subsequent operations

4.3.5. Bounded sub-selection within an Annotation Index
When selecting Annotations, frequently you may want to select only those which have a relation to
a bounding Annotation. A commonly done selection is to select all Annotations (of a particular type
including its subtypes) within the span of another bounding Annotation, for example, all Tokens
within a Sentence.

There are four varieties of sub-selection within an annotation index. They all are based on a
bounding Annotation (except the between which is based on two bounding Annotations).

The bounding Annotations are specified using either a Annotation (or a subtype), or by specifying
the begin and end offsets that would be for the bounding Annotation.

Leaving aside between as a special case, the bounding Annotation's begin and end (and
sometimes, its type) is used to specify where an iteration would start, where it would end, and
possibly, which Annotations within those bounds would be filtered out. There are many variations
possible; these are described in the next section.

Variations in Bounded sub-selection within an Annotation Index

UIMA Version 3.0.0-beta Select framework 21

The returned Annotations exclude the one(s) which are equal to the bounding FS. There are
several variations of how this equal test is done, discussed in the next section.

coveredBy
iterates over Annotations within the bound

covering
iterates over Annotations that span the bound.

at
iterates over Annotations that have the same span (i.e., begin and end) as the bound.

between
uses two Annotations, and returns Annotations that are in between the two bounds. If the
bounds are backwards, then they are automatically used in reverse order. The meaning of
between is that an included Annotation's begin has to be >= the earlier bound's end, and the
Annotation's end has to be <= the later bound's begin.

4.3.6. Variations in Bounded sub-selection within an
Annotation Index

There are five variations you can specify. Two affect how the starting bound position is set;
the other three affect skipping of some Annotations while iterating. The defaults (summarized
following) are designed to fit the popular use cases.

typePriority
The default is to ignore type priorities when setting the starting position, and just use the
begin / end position to locate the left-most equal spot. If you want to respect type priorities,
specify this variant.

nonOverlapping
Normally, all Annotations satisfying the bounds are returned. If this is set, annotations whose
begin position is not >= the previous annotation's (going forwards) end position are skipped.
This is also called unambiguous iteration. If the iterator is run backwards, it is first run
forwards to locate all the items that would be in the forward iteration following the rules; and
then those are traversed backwards. This variant is ignored for covering selection.

includeAnnotationsWithEndBeyondBounds
The Subiterator strict configuration is equivalent to the opposite of this. This only applied to
the coveredBy selection; if specified, then any Annotations whose end position is > the end
position of the bounding Annotation are included; normally they are skipped.

skipSameBeginEndType
While doing bounded iteration, if the Annotation being returned is identical (has the same
_id()) with the bounding Annotation, it is always skipped. But other annotations, which might
have the same begin, end, and type values, are included by default.

When this configuration is specified, any Annotation which has the same begin, end, and type
is also skipped.

4.3.7. Defaults for bounded selects
The ordinary core UIMA Subiterator implementation defaults to using type order as part of the
bounds determination. uimaFIT, in contrast, doesn't use type order, and sets bounds according to
the begin and end positions.

Following or Preceding

22 Select framework UIMA Version 3.0.0-beta

This select implementation mostly follows the uimaFIT approach by default, but provides the
above configuration settings to flexibly alter this to the user's preferences. For reference, here are
the default settings, with some comparisons to the defaults for Subiterators:

typePriority
default: false; type priorities are not used when moving to left-most among equal items.
Subiterators created using the AnnotationIndex, in contrast, use type priorities.

nonOverlapping
default: false; no Annotations are skipped because they overlap. This corresponds to the
"ambiguous" mode in Subiterators.

includeAnnotationsWithEndBeyondBounds
default: (only applies to coveredBy selections; The default is to skip Annotations whose end
position lies outside of the bounds; this corresponds to Subiterator's "strict" option.

skipSameBeginEndType
default: only the single Annotation with the same _id() is skipped when using a bounded
iteration. Use this setting to expand the set of skipped Annotations to include all those equal to
the bound's begin, end and type.

4.3.8. Following or Preceding

For an Annotation Index, you can specify all Feature Structures following or preceding a position.
The position can be specified either as a Feature Structure, or by using begin and end values. The
arguments are identical to those of the startAt specification, but are interpreted differently.

following
Position the iterator according to the argument, get that Annotation's end value, and then move
the iterator forwards until the Annotation at that position has its begin value >= to the saved
end value.

preceding
Position the iterator according to the argument, save that Annotation's begin value, and
then move it backwards until the Annotation's (at that position) end value is <= to the saved
beginvalue.

The preceding iteration skips annotations whose end values are > the saved begin.

4.4. Terminal Form actions
After the sources and selection and ordering options have been specified, one terminal form action
may be specified. This can be an getting an iterator, array or list, or a single value with various
extra checks, or a Java stream. Specifying any stream operation (except limit) converts the object to
a stream; from that point on, any stream operation may be used.

Iterators

UIMA Version 3.0.0-beta Select framework 23

Figure 4.4. Select Terminal Form Actions

4.4.1. Iterators
(Iterable)

The SelectFSs object directly implements Iterable, so it may be used in the extended Java
for loop.

fsIterator
returns a configured fsIterator or subIterator. This iterator implements ListIterator as well
(which, in turn, implements Java Iterator). Modifications to the list using add or set are
not supported.

iterator
This is just the plain Java iterator, for convenience.

spliterator
This returns a spliterator, which can be marginally more efficient to use than a normal iterator.
It is configured to be sequential (not parallel), and has other characteristics set according to the
sources and selection/ordering configuration.

4.4.2. Arrays and Lists
asArray

This takes 1 argument, the class of the returned array type, which must be the type or subtype
of the select.

asList
Returns a Java list, configured from the sources and selection and ordering specifications.

4.4.3. Single Items
These methods return just a single item, according to the previously specified select configuration.
Variations may throw exceptions on empty or more than one item situations.

Streams

24 Select framework UIMA Version 3.0.0-beta

These have no-argument forms as well as argument forms identical to startAt (see above). When
arguments are specified, they adjust the item returned by positioning within the index according to
the arguments.

Note: Positioning arguments with a Annotation or begin and end require an Annotation
Index. Positioning using a Feature Structure, by contrast, only require that the index being
use be sorted.

get
If no argument is specified, then returns the first item, or null. If nullOk(false) is configured,
then if the result is null, an exception will be thrown.

If any positioning arguments are specified, then this returns the item at that position unless
there is no item at that position, in which case it throws an exception unless nullOk is set.

single
returns the item at the position, but throws exceptions if there are more than one item in the
selection, or if there are no items in the selection.

singleOrNull
returns the item at the position, but throws an exception if there are more than one item in the
selection.

4.4.4. Streams
any stream method

Select supports all the stream methods. The first occurance of a stream method converts the
select into a stream, using spliterator, and from then on, it behaves just like a stream
object.

For example, here's a somewhat contrived example: you could do the following to collect the
set of types appearing within some bounding annotation, when considered in nonOverlapping
style:

Set<Type> foundTypes =
 // items of MyType or subtypes
 myIndex.select(MyType.class)
 .coveredBy(myBoundingAnnotation)
 .nonOverlapping()
 .map(fs -> fs.getType())
 .collect(Collectors.toCollection(TreeSet::new));

Or, to collect by category a set of frequency values:

Map<Category, Integer> freqByCategory =
 myIndex.select(MyType.class)
 .collect(Collectors
 .groupingBy(MyType::getCategory,
 Collectors.summingInt(MyType::getFreq)));

CAS Java Objects 25

Chapter 5. Defining CAS-transported custom
Java objects

One of the goals of v3 is to support more of the Java collection framework within the CAS, to
enable users to conveniently build more complex models that could be transported by the CAS. For
example, a user might want to store a Java "Set" object, representing a set of Feature Structures. Or
a user might want to use an adjustable array, like Java's ArrayList.

With the current version 2 implementation of JCas, users already may add arbitrary Java objects to
their JCas class definitions as fields, but these do not get transported with the CAS (for instance,
during serialization). Furthermore, in version 2, the actual JCas instance you get when accessing
a Feature Structure in some edge cases may be a fresh instance, losing any previously computed
value held as a Java field. In contrast, each Feature Structure in a CAS is represented as the same
unique Java Object (because that's the only way a Feature Structure is stored).

Version 3 has a new a capability that enables converting arbitrary Java objects that might be part
of a JCas class definition, into "ordinary" CAS values that can be transported with the CAS. This is
done using a set of conventions which the framework follows, and which developers writing these
classes make use of; they include two kinds of marker Java interfaces, and 2 methods that are called
when serializing and deserializing.

The marker interfaces identify those JCas classes which need these extra methods
called. The extra methods are methods implemented by the creator of these JCas
classes, which marshal/unmarshal CAS feature data to/from the Java Object this
class is supporting.

Storing the Java Object data as the value of a normal CAS Feature means that they get
"transported" in a portable way with the CAS - they can be saved to external storage and read back
in later, or sent to remote services, etc.

5.1. Tutorial example
Here's a tutorial example on how to design and implement your own special Java object. For this
example, we'll imagine we need to implement a map from FeatureStructures to FeatureStructures.

Tutorial example

26 CAS Java Objects UIMA Version 3.0.0-beta

Figure 5.1. Creating a custom Java CAS-stored Object

Step 1 is deciding on the Java Object implementation to use. We can define a special class, but in
this case, we'll just use the ordinary Java HashMap<TOP, TOP> for this.

Step 2 is deciding on the CAS Feature Structure representation of this. For this example, let's
design this to represent the serialized form of the hashmap as 2 FSArrays, one for the keys, and one
for the values. We could also use just one array and intermingle the keys and values. It's up to the
designer of this new JCas class to decide how to do this.

Step 3 is defining the UIMA Type for this. Let's call it FS2FSmap. It will have 2 Features: an
FSArray for the keys, and another FSArray for the values. Let's name those features "keys" and
"values". Notice that there's no mention of the Java object in the UIMA Type definition.

Step 4 is to run JCasGen on this class to get an initial version of the class. Of course, it will be
missing the Java HashMap, but we'll add that in the next step.

Step 5: modify 3 aspects of the generated JCas class.

1. Mark the class with one of two interfaces:
• UimaSerializable

• UimaSerializableFSs

These identify this JCas class a needing the calls to marshal/unmarshal the data to/from the
Java Object and the normal CAS data features. Use the second form if the data includes
any Feature Structure references. In our example, the data does include Feature Structure
references, so we add implements UimaSerializableFSs to our JCas class.

2. Add the Java Object as a field to the class

Tutorial example

UIMA Version 3.0.0-beta CAS Java Objects 27

We'll define a new field:

final private Map<TOP, TOP> fs2fsMap = new HashMap<>();

3. Implement two methods to marshal/unmarshal the Java Object data to the CAS Data
Features

Now, we need to add the code that translates between the two UIMA Features "keys"
and "values" and the map, and vice-versa. We put this code into two methods, called
_init_from_cas_data and _save_to_cas_data. These are special methods that are
part of this new framework extension; they are called by the framework at critical times
during deserialization and serialization. Their purpose is to encapsulate all that is needed to
convert from transportable normal CAS data, and the Java Object(s).

In this example, the _init_from_cas_data method would iterate over the two
Features, together, and add each key value pair to the Java Object. Likewise, the
_save_to_cas_data would first create two FSArray objects for the keys and values, and
then iterate over the hash map and extract these and set them into the key and value arrays.

public void _init_from_cas_data() {
 FSArray keys = getKeys();
 FSArray values = getValues();
 fs2fsMap.clear();
 for (int i = keys.size() - 1; i >=0; i--) {
 fs2fsMap.put(keys.get(i), values.get(i));
 }
}

public void _save_to_cas_data() {
 int i = 0;
 FSArray keys = new FSArray(this, fs2fsMap.size());
 FSArray values = new FSArray(this, fs2fsMap.size());
 for (Entry<TOP, TOP> entry : fs2fsMap.entrySet()) {
 keys.set(i, entry.getKey());
 values.set(i, entry.getValues());
 i++;
 }
 setKeys(keys);
 setValues(values);
}

Beyond this simple implementation, various optimization can be done. One typical one is
to treat the use case where no updates were done as a special case (but one which might
occur frequently), and in that case having the _save_to_cas_data operation do nothing,
since the original CAS data is still valid.

One additional "boilerplate" method is required for all of these classes:

public FeatureStructureImplC _superClone() {return clone();}

For custom types which hold collections of Feature Structures, you can have those participate in the
Select framework, by implementing the optional Interface SelectViaCopyToArray.

For more examples, please see the implementations of the semi-built-in classes described in the
following section.

semi-built-in UIMA Types

28 CAS Java Objects UIMA Version 3.0.0-beta

5.2. Additional semi-built-in UIMA Types for some
common Java Objects

Some additional semi-built-in UIMA types are defined in Version 3 using this new mechanism.
They work fully in Java, and are serialized or transported to non-Java frameworks as ordinary CAS
objects.

Semi-built-in means that the JCas cover classes for these are defined as part of the core Java
classes, but the types themselves are not "built-in". They may be added to any tyupe system by
importing them by name using the import statement:

<import name="org.apache.uima.semibuiltins"/>

If you have a Java project whose classpath includes uimaj-core, and you run the Component
Descriptor Editor Eclipse plugin tool on a descriptor which includes a type system, you can
configure this import by selecting the Add on the Import type system subpanel, and import by
name, and selecting org.apache.uima.semibuiltins. (Note: this will not show up if your project
doesn't include uimaj-core on its build path.)

5.2.1. FSArrayList

This is like the current FSArray, except that it implements the List API and supports adding to the
array, with automatic resizing, like an ArrayList in Java. It is implemented internally using a Java
ArrayList.

The CAS data form is held in a plain FSArray feature.

The equals() method is true if both FSArrayList objects have the same size, and contents are
equal item by item. The list of supported operations includes all of the operations of the Java
List interface. This object also includes the select methods, so it can be used as a source for the
select framework.

5.2.2. IntegerArrayList

This is like the current IntegerArray, except that it implements the List API and supports adding to
the array, with automatic resizing, like an ArrayList in Java.

The CAS data form is held in a plain IntegerArray feature.

The equals() method is true if both IntegerArrayList objects have the same size, and contents
are equal item by item. The list of supported operations includes a subset of the operations of
the Java List interface, where certain values are changed to Java primitive ints. To support the
Iterable interface, there is a version of iterator() where the result is "boxed" into an Integer.
For efficiency, there's also a method intListIterator, which returns an instance of IntListIterator,
which permits iterating forwards and backwards, without boxing.

5.2.3. FSHashSet

This type stores Feature Structures in a HashSet, using whatever is defined as the Feature
Structure's equals and hashcode.

Design for reuse

UIMA Version 3.0.0-beta CAS Java Objects 29

You may customize the particular equals and hashcode by creating a wrapper
class that is a subclass of the type of interest which forwards to the underlying
Feature Structure, but has its own definition of equals and hashcode.

The CAS data form is held in an FSArray consisting of the members of the set.

5.3. Design for reuse
While it is possible to have a single custom JCas class implement multiple Java Objects, this is
typically not a good design practice, as it reduces reusability. It is usually better to implement one
custom Java object per JCas class, with an associated UIMA type, and have that as the reusable
entity.

Logging 31

Chapter 6. Logging
Logging has evolved; two major changes now supported by V3 are

• using a popular open-source standard logging facade, SLF4j, that can at run time discover
and hook to a user specified logging framework.

• Support for both old-style and new style substitutable parameter specification.

For backwards compatibilit, V3 retains the existing V2 logging facade, so existing code will
continue to work. The APIs have been augmented by the methods available in the SLF4j Logger
API, plus the Java 8 enabled APIs from the Log4j implementation that support the Supplier
Functional Interface.

The old APIs support messages using the standard Java Util Logging style of writing substitutable
parameters using an integer, e.g., {0}, {1}, etc. The new APIs support messages using the modern
substitutable parameters without an integer, e.g. {}.

The implementation of this facade in V2 was the built-in-to-Java (java.util) logging framework. For
V3, this is changed to be the SLF4j facade. This is an open source, standard facade which allows
deferring until deployment time, the specific logging back end to use.

If, at initialization time, SLF4J gets configured to use a back end which is either the built-in Java
logger, or Log4j-2, then the UIMA logger implementation is switched to UIMA's implementation
of those APIs (bypassing SLF4j, for efficiency).

The SLF4j and other documentation (e.g., https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/
index.html for log4j-2) describe how to connect various logging back ends to SLF4j, by putting
logging back-end implementations into the classpath at run time. For example, to use the back end
logger built into Java, you would include the slf4j-jdk14 Jar. This Jar is included in the UIMA
binary distribution, so that out-of-the-box, logging is available and configured the same as it was
for V2.

The Eclipse UIMA Runtime plugin bundle excludes the slf4j api Jar and back ends, but will "hook
up" the needed implementations from other bundles.

6.1. Logging Levels
There are 2 logging level schemes, and there is a mapping between them. Either of them may be
used when using the UIMA logger. One of the schemes is the original UIMA v2 level set, which is
the same as the built-in-to-java logger levels. The other is the scheme adopted by SLF4J and many
of its back ends.

Log statements are "filtered" according to the logging configuration, by Level, and sometimes
by additional indicators, such as Markers. Levels work in a hierarchy. A given level of filtering
passes that level and all higher levels. Some levels have two names, due to the way the different
logger back-ends name things. Most levels are also used as method names on the logger, to indicate
logging for that level. For example, you could say aLogger.log(Level.INFO, message)
but you can also say aLogger.info(message)). The level ordering, highest to lowest, and the
associated method names are as follows:

• SEVERE or ERROR; error(...)
• WARN or WARNING; warn(...)
• INFO; info(...)
• CONFIG; info(UIMA_MARKER_CONFIG, ...)
• FINE or DEBUG; debug(...)

https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/index.html
https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/index.html

Context Data

32 Logging UIMA Version 3.0.0-beta

• FINER or TRACE; trace(...)
• FINEST; trace(UIMA_MARKER_FINEST, ...)

The CONFIG and FINEST levels are merged with other levels, but distinguished by having
Markers. If the filtering is configured to pass CONFIG level, then it will pass the higher levels
(i.e., the INFO/WARN/ERROR or their alternative names WARNING/SEVERE) levels as well.

6.2. Context Data
Note: Not (yet) implemented; for planning purposes only.

Context data is kept in SLF4j MDC and/or NDC maps; there is a separate map per thread. Some of
this information is always updated, other is only recorded if the logger for the class has a level set
to Tracing. The following table lists the keys and the values recorded in the contexts; these can be
retrieved by the logging layouts and included in log messages.

Because the keys for context data are global, the ones UIMA uses internally are prefixed with
"uima_".

Key Name Description

uima_annotator the name of the annotator.

uima_root_context The root context corresponds to the pipeline being run. This could be be
nested.

6.3. Markers used in UIMA Java core logging
Note: Not (yet) implemented; for planning purposes only.

Markers are used to group log calls associated with specific kinds of things together, so they can be
enabled/disabled as a group. The Marker can also be included in a trace record. The following table
lists the keys and a description of which logging they are associated with.

Marker Name Description of logging

Markers used to classify CONFIG and FINEST

org.apache.uima.config configuration log record

org.apache.uima.finest sub category of trace, corresponds to FINEST

Markers used to classify some tracing logging

uima_annotator for tracing when annotators are entered, exited

uima_flow_controller for tracing when flow controllers are computing

uima_feature_structure for tracing Feature Structure Creation and updating

uima_index for tracing when indexes are added to or removed from

uima_index_copy_on_write for tracing when an index part is copied, due to it being
updated while an iterator might be iterating.

Defaults and Configuration

UIMA Version 3.0.0-beta Logging 33

uima_index_auto_rmv_add for tracing when index corruption avoidance done

uima_serialization_deserialization for tracing when serialization or deserialization is done

6.4. Defaults and Configuration
By default, UIMA is configured so that the UIMA logger is hooked up to the SLF4j facade, which
may or may not have a logging back-end. If it doesn't, then any use of the UIMA logger will
produce one warning message stating that SLF4j has no back-end logger configured, and so no
logging will be done.

When UIMA is run as an embedded library in other applications, slf4j will use those other
application's logging frameworks.

Each logging back-end has its own way of being configured; please consult the proper back-end
documentation for details.

For backwards compatibility, the binary distribution of UIMA includes the slf4j back-end which
hooks to the standard built-in Java logging framework, so out-of-the-box, UIMA should be
configured and log by default as V2 did.

6.4.1. Throttling logging from Annotators
Sometimes, in production, you may find annotators are logging excessively, and you
wish to throttle this. But you may not have access to logging settings to control this,
perhaps because UIMA is running as a library component within another framework.
For this special case, you can limit logging done by Annotators by passing an additional
parameter to the UIMA Framework's produceAnalysisEngine API, using the key name
AnalysisEngine.PARAM_THROTTLE_EXCESSIVE_ANNOTATOR_LOGGING and setting the value
to an Integer object equal to the the limit. Using 0 will suppress all logging. Any positive number
allows that many log records to be logged, per level. A limit of 10 would allow 10 Errors, 10
Warnings, etc. The limit is enforced separately, per logger instance.

Note: This only works if the logger used by Annotators is obtained from the Annotator
base implementation class via the getLogger() method.

Migrating to V3 35

Chapter 7. Migrating to UIMA Version 3

7.1. Migrating: the big picture
Although UIMA V3 is designed to be backwards compatible with UIMA V2, there are some
migration steps needed. These fall into two broad use cases:

• if you have an existing UIMA pipeline / application you wish to upgrade to use V3

• if you are "consuming" the Maven artifacts for the core SDK, as part of another project

7.2. How to migrate an existing UIMA pipeline to V3
UIMA V3 is designed to be binary compatible with existing UIMA V2 pipelines, so compiled and/
or JAR-ed up classes representing a V2 pipeline should run with UIMA v3, with three changes:

• Java 8 is required. (If you're already using Java 8, nothing need be done.)

• Any defined JCas cover classes must be migrated or regenerated, and used instead. (If you
do not define any JCas classes or don't use JCas in your pipeline, then nothing need be
done.) A quick way to do this is to create a Jar with the migrated JCas classes, and put it into
the classpath ahead of the other JCas class definitions.

• The runtime classpath needs to include the slf4j-api Jar, and an appropriate slf4j bridging
Jar, for details, see next.

Some adjustments may need to be made to logging setup, typically by including additional Jars
(provided in the UIMA Binary distribution) in your application's classpath. If you are using the
standard UIMA Launch scripts, this is already done. For custom application setups, insure that the
classpath includes the (now) required jar "slf4j-api-xxxx.jar" (replace xxxx with the version). If you
were using the standard UIMA based logging, to get the similar behavior, include the slf4j-jdk14-
xxxx.jar; this enables the standard Java Utility Logging facility.

Some Maven projects use the JCasGen maven plugin; these projects' JCasGen maven plugin, if
switched to UIMA V3, automatically generate the V3 versions. For proper operation, please run
maven clean install; the clean operation ought to remove the previously generated JCas class,
including the UIMA V2 xxx_Type classes. These are no longer used, and won't compile in V3.

You can use any of the methods of invoking JCasGen to generate the new V3 versions. If using the
Eclipse plugins (i.e., pushing the JCasGen) button in the configuration editor, etc.), the V3 version
of the plugin must be the one installed into Eclipse.

If you have the source or class files, you can also migrate those using the migration tool described
in this section. This approach is useful when you've customized the JCas class, and wish to
preserve those customizations, while converting the v2 style to the v3 style.

7.3. Migrating JCas classes
If you have customized JCasGen classes, these can be migrated by running the migration tool,
which is available as a stand-alone command line tool (runV3migrateJCas.sh or ...bat), or
as Eclipse launch configurations.

This tool can migrate either sets of

Migrating JCas classes

36 Migrating to V3 UIMA Version 3.0.0-beta

• Java source files (xxx.java) or

• Compiled Java class files (including those contained in JARs or PEARs)
Usually, if you have the source code it is best to migrate the sources. Otherwise, you can migrate
the compiled classes.

When migrating source files, you specify one or more "roots" - places in a file directory, and the
tool scans those directories recursively (including inside Jars and PEARs), looking for JCas source
files. When it finds one, it copies it to the output spot and migrates it. The output is arranged in
parallel directories (before and after migration), for easy side-by-side comparing in a tool such as
Eclipse file compare.

After checking the migration results, including comparing the files, you replace the original source
with the migrated versions. Also, the original V2 source would contain a source file for each JCas
class ending in "_Type"; these are not used in version 3 and should be deleted.

You may also migrate class files; this can be used when the source files are not available. This
option has a decompilation step, to produce the source to be migrated and requires a classpath
(passed as the migrationClasspath parameter); this classpath is used to resolve symbols during
the decompilation, and should be the classpath used when running those classes. For class files, the
migration tool attempts to compile the results and, for Jars and PEARs, to update those migrated
classes in a copy of the original packaging (meaning, within Jars or PEARs):

• The classesRoots are used to locate .class files, perhaps within Jars and PEARs.
• These are decompiled, using special versions of the migrateClasspath.
• The resultant sources are migrated.
• The migrated sources are compiled.
• If the original classes came from Jars or PEARs, copies of these are made with the migrated

classes replaced.

When scanning directories from source or class roots, if a Jar or a PEAR is encountered, it is
recursively scanned.

When migrating from compiled classes:

• The class is decompiled, and the resulting source is migrated.

• The next 2 steps are skipped if no Java compiler is available. A compiler is available if the
migrate utility is being run using a JDK (as opposed to a JRE version of Java).

• The migrated classes are compiled. During this processes, the classpath used is the same as
the decompile classpath, except that the uima-core Jar for version 3 (from the classpath used
to run the migration tool) is prepended so that the migrated version can be compiled.

• Finally, if the original "packaging" of the class files is a Jar or PEAR, it is copied and
updated with the migrated classes (provided there was no compile error).

The results of the migration include the migrated files, a set of logs, and for classesRoots: the
compiled classes, and repackaging of them into copies of original Jars and/or PEARs. The
migration operation is summarized in the console output, detailing anything that might need
inspection to verify the migration was done correctly.

If all is OK, the migration will say that it "finished with no unusual conditions", at
the end.

To complete the migration, fix any reported issues that need fixing, and then update your UIMA
application to use these classes/Jars/PEARs in place of the version 2 ones.

Running the migration tool

UIMA Version 3.0.0-beta Migrating to V3 37

The actual migration step is a source-to-source transformation, done using a parse of the source
files. The parts in the source which are version 2 specific are replaced with the equivalent version 3
code. Only those parts which need updating are modified; other code and comments which are part
of the source file are left unchanged. This is intended to preserve any user customization that may
have been done.

Note: After running the tool, it is important to examining the console output and logs. You
can confirm that the migration completed without any unusual conditions, or, if something
unusual was encountered, you can take corrective action.

7.3.1. Running the migration tool

The tool can be run as a stand-alone command, using the launcher scripts runV3migrateJCas;
there are two versions of this — one for windows (ending it ".bat") and one for linux / mac (ending
in ".sh"). If you run this without any arguments, it will show a brief help for the arguments.

There are also a pair of Eclipse launch configurations (one for migrating source files, the other
for compiled classes and JARs and PEARs), which are available if you have the uimaj-examples
project (included in the binary distribution of UIMA) in your Eclipse workspace.

7.3.1.1. Using Eclipse to run the migration tool

There are two Eclipse launch configurations; one works with source code, the other with compiled
classes or Jars or PEARs. The launch configurations are named:

• UIMA Run V3 migrate JCas from sources roots
• UIMA Run V3 migrate JCas from classes roots

When running from class directory roots, the classes must not have compile errors, and may
contain Jars and PEARs. Both launchers write their output to a temporary directory, whose name is
printed in the Eclipse console log.

To use the Eclipse launcher to migrate from source code,
• First select the eclipse project containing the source code to transform; this project's "build

path" will also supply the classpath used during migration.
• run the migrate-from-sources launcher.

This will scan the directory tree of the project, looking for source files which are JCas files, and
migrate them. No existing files are modified; everything is written to the output directory.

To use the launcher for compiled code,
• First select the eclipse project that provides the classpath for the compiled code. This is

required for proper "decompiling" of the classes and recompiling the transformed results.
• The launcher will additionally prompt you for another directory which the migration tool

will use as the top of a tree to scan for compiled Java JCas classes to be migrated.

7.3.1.2. Running from the command line

Command line: Specifying input sources

Input is specified using these arguments:

"-sourcesRoots"
a list of one or more directories, separated by the a path separator character (";" for Windows,
":" for others).

Understanding the reports

38 Migrating to V3 UIMA Version 3.0.0-beta

Migrates each candidate source file found in any of the file tree roots, skipping over non-JCas
classes.

"-classesRoots"
a list of one or more directories containing class files or Jars or PEARs, separated by the a path
separator character (";" for Windows, ":" for others).

Decompiles, then migrates each candidate class file found in any of the file tree roots (skipping
over non-JCas classes).

You can specify either of these, but not both.

Command line: Specifying a classpath for the migration

When migrating from compiled classes, a classpath is required to locate and decompile the JCas
classes to be migrated. This classpath should include the JCas classes to be decompiled. The
compiled classes must not have compile errors.

When migrating from sourcesRoots, this argument is required only if the JCas classes have
references to other non-migrated classes (other than core UIMA classes). For example, if your
JCas class had a reference to a user defined Utility class, that would need to be in the classpath. For
plain, non-customized JCas classes, this argument is unnecessary.

To specify this parameter, use the argument -migrateClasspath. The Eclipse launcher "UIMA
run V3 migrate JCas from classes roots" sets this argument using the selected Eclipse project's
classpath. When migrating within a PEAR, the migration tool automatically adds the classpath
specified by the PEAR (if any) to the classpath.

7.3.1.3. Handling duplicate definitions

Sometimes, a classpath or directory tree may contain multiple instances of the same JCas class.
These might be identical, or they might be different versions.

The migration utility handles this by migrating each instance. The migrated forms are stored in the
output directory prefixed by the root-id (see above), as the parent directory. The different versions
can then be conveniently compared using tooling such as Eclipse's file compare.

7.3.2. Understanding the reports
The output directory contains a logs directory with additional information. A summary is also
written to System.out.

Each file translated has both a v2 source and a v3 source. When the input is ".class" files, the v2
source is the result of the decompilation step, prior to any migration.

The process of scanning directories to find JCas class to migrate may come across multiple
instances of the same class. There are two subcases:

• The instances are the same.

• The instances are different (two non-identical definitions for the same class). Sometimes
these arise when migrating from compiled classes, where the compilation was done by
different versions of the Java compiler, and the resulting decompilations are logically equal
but have some fields or methods in a different order.

This diagram illustrates some of the potentials for identical and non-identical duplicate definitions
for the same classname, that the tool may encounter. The blue boxes represent ordinary file

Understanding the reports

UIMA Version 3.0.0-beta Migrating to V3 39

directories or Jars, and the other boxes with labels Cn1 and Cn2 represent the definitions for a
classes named Cn1 and Cn2; the different colors represent non-identical definitions, as an example.
Note that a definition for a class might appear sometimes not within a Jar (or a PEAR, not shown
here), as well as with that.

The migration tool allows for all of these variants. It will migrate all versions, and will (when
migrating from compiled Jars and PEARs) compile and reassemble these.

The output directories prefix the package/classname holding the source code with a prefix of "a0",
"a1", etc. The "a" stands for alternative, and the 0 is for the first alternative, and the 1, 2, ... are for
other non-equal alternatives.

When the migration is run from compiled classes, then, if possible, the resulting migrated
classes are recompiled and if from Jars or PEARs, reassembled into copies of those artifacts. The
compilation for the same classname, with the same sourcecode, could be different for different

Understanding the reports

40 Migrating to V3 UIMA Version 3.0.0-beta

containers because each compilation is done with that container's classpath (e.g. Jar or Pear) and
with respect to the compilation units of that container.

Because of this, the compiled results for a given source instance, are done separately, and kept
in output directories, indexed additionally by the container number, as "c0", "c1", A list of
all container numbers and the migrated classes within those containers, is printed out to enable
correlating these by hand when necessary.

The overall directory output directory tree looks like:

Directory structure, starting at -outputDirectory
 converted/
 v2/
 a0/pkg/name.../Classname.java
 /Classname2.java etc.
 a1/pkg/name.../Classname.java if there are multiple
 different versions
 ...
 v3/
 a0/pkg/name.../Classname.java
 /Classname2.java etc.
 a1/pkg/name.../Classname.java if there are multiple
 different versions
 ...

 v3-classes/ for Jars and PEARs, the compiled class
 // xyz is the path in the container to the
 // start of the pkg/name.../Classname.class
 // the "a0", "a1", ... is extra but serves to
 // identify which alternative of the source
 23/a0/xyz/pkg/name.../Classname.class
 33/a0/xyz/pkg/name.../Classname.class
 42/a0/xyz/pkg/name.../Classname.class
 ...

 pears/
 // xyz_updated_pear_copy is the path
 // relative to the container, of the PEAR
 33/xyz_updated_pear_copy.pear
 ...

 jars/
 // xyz_updated_jar_copy is the path
 // relative to the container, of the Jar
 42/xyz_updated_jar_copy.jar
 ...

 not-converted/

 logs/
 processed.txt
 failed.txt
 skippedBuiltins.txt
 nonJCasFiles.txt
 workaroundDir.txt
 deletedCheckModified.txt
 manualInspection.txt
 pearFileUpdates.txt
 jarFileUpdates.txt

 ...

Examples

UIMA Version 3.0.0-beta Migrating to V3 41

The converted subtree holds all the sources and migrated versions that were successfully migrated.
The not-converted subtree hold the sources that failed in some way the migration. The logs contain
many kinds of entries for different issues encountered:

processed.txt
List of successfully processed classes

failed.txt
List of classes that failed to migrate

skippedBuiltins.txt
List of classes representing built-ins that were skipped. These need manual inspection to see
how to merge with new v3 built-ins.

NonJCasFiles.txt
List of files that were thought to be JCas classes but upon further analysis appear to not be.
These need manual inspection to confirm.

deletedCheckModified.txt
List of class where a version 2 if statement doing the "featOkTst" was apparently modified.
In the migrated code, this statement was deleted, perhaps incorrectly. These need manual
inspection to confirm.

manualInspection.txt
List of files where the migration found a get or set method, where the version 2 code was
accessing a casFeatCode with the feature name not matching. These need manual inspection.

jarsFileUpdates.txt
List of Jar files and classes which were replace in them.

pearsFileUpdates.txt
List of Pear files and classes which were replace in them.

7.3.3. Examples
Run the command line tool:

cd $UIMA_HOME

bin/runV3migrateJCas.sh

 -migrateClasspath /home/me/myproj/xyz.jar:$UIMA_HOME/lib/uima-core.jar

 -classesRoots /home/me/myproj/xyz.jar:/home/me/myproj/target/classes

 -outputDirectory /temp/migratejcas

Run the Eclipse launcher:

First, make sure you've installed the V3 UIMA plugins into Eclipse!

Startup an Eclipse workspace containing the project
with JCas source files to be migrated.

Select the Java project with the JCas sources to be migrated.

Consuming V3 Maven artifacts

42 Migrating to V3 UIMA Version 3.0.0-beta

Eclipse -> menu -> Run -> Run configurations
 Use the search box to find
 "UIMA run V3 migrate JCas from sources" launcher.

Please read the console output summarization to see where the output went, and about any
conditions found during migration which need manual inspection and fixup.

7.4. Consuming V3 Maven artifacts
Projects may have tests which write to the UIMA log. Because V3 switched to SLF4J as the default
logger, unless SLF4J can find an adapter to some back-end logger, it will issue a message and
substitute a "NO-OP" back-end logger. If your test cases depend on having the V2 default logger
(which is the one built into Java), you need to add a "test" dependency that specifies the SLF4J-to-
JDK14 adapter to your POM. Here's the xml for that:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>1.7.24</version> <!-- or some version you need -->
 <scope>test</scope>
</dependency>

PEAR support 43

Chapter 8. PEAR support
PEARs continue to be supported in Version 3, with the same capabilities as in version 2. Here's a
brief review.

PEARs are both a packaging facility, and an isolation facility. The packaging facility allows
putting together into one PEAR file all the parts needed for a particular (reusable) UIMA pipeline,
including annotators and other data resources, and a classpath to use. PEARs are loaded using
special class loaders that load first from whatever classpath is specified by the PEAR; this serves
to isolate dependencies and insure that the PEAR makes use of whatever versions of classes it
depends on (and specifies in its classpath).

PEARs establish a boundary within a UIMA pipeline — annotator code is running either inside
a PEAR, or not. Note that PEARs cannot be nested. The CAS, flowing through a pipeline, is
dynamically updated with the current PEAR context (if any).

8.1. JCas issues
JCas classes defining Java implementations for UIMA Types may be defined within a PEAR.
These are loaded using the isolating Classloader, just like all the other PEAR resources. As a result,
this may cause some issues if the same JCas class is also defined outside the PEAR boundary, and
loaded with the normal UIMA classloader. The result of having the same JCas class both on the
PEAR classloader and outside that classloader will be that Java will have both classes loaded, and
code within the PEAR will be linked with one of them, and code outside the PEAR will be linked
with the other.

Sometimes, this is exactly what you might want. For example, you might have in the pear, a special
JCas definition of a UIMA type "Token" which the PEAR uses, while you might have another
JCas definition for that same UIMA type outside of the PEAR. Note that UIMA will always merge
Type definitions from inside and outside of PEARs, when it sets up a pipeline - it merges all type
definitions found for the whole pipeline.

A consequence of having two loaded class definitions in two contexts for the same UIMA type
means that the classes have the same names, but are different (because of different loading
classloaders), and assigning one to the other in Java will produce a ClassCast exception.

Othertimes, you may not want different classes. For instance, the class definitions might be
identical, and you want to create some "Token" annotations within the PEAR, and have them used
by JCas references outside of the PEAR.

In this case, the simplest thing to do is to install the PEAR, but then update its classpath so it no
longer includes the JCas classes that came with the PEAR. When classes are not found with the
special PEAR class loader, that loader delegates to its parent, which is the normal UIMA class
loader. This action will cause the PEAR to use the identically same JCas class within the PEAR
as is used outside of the PEAR, and no Class Cast Exception issues will arise. This is the most
efficient way to run with PEARs that use JCas classes where you want to share results inside and
outside of PEARs.

Version 3 has special support for the case where there are different definitions of JCas classes
for the same UIMA type, inside and outside the PEAR. It does this using what are called PEAR
Trampolines. When there are multiple JCas definitions, the one defined outside of the PEAR is
the one stored internally in UIMA's indexes and types that have references to Feature Structures.
Accessing the Feature Structures checks (by asking the CAS) to see if its in a particular PEAR

Custom Java Objects

44 PEAR support UIMA Version 3.0.0-beta

context (there may be several in one pipeline), and if so, a trampoline instance of the Feature
Structure is created / used / accessed. The trampoline instance shares internally the CAS data
with the base instance, but is a separate instance of the PEAR's JCas class definition. This allows
seamless access both inside and outside of the PEAR context to the particular JCas class definition
needed.

8.2. Custom Java Objects
Custom Java Objects may store references to Feature Structures. If it is desired to create these
inside a PEAR, and yet have the references work outside a PEAR, the implementor of these must
insure that the actual stored JCas class for a Feature Structure is the base version, not the PEAR
version, and also insure that any references are properly converted (while within a PEAR context).

Refer to the implementation of FSHashSet and FSArrayList to see what needs to be done to
make these "Pear aware".

Migration aids 45

Chapter 9. Migration aids
To aid migration, some features of UIMA V3 which might cause migration difficulties can be
disabled. Users may initially want to disable these, and get their pipelines working, and then over
time, re-enable these while fixing any issues that may come up, one feature at a time.

Global JVM properties for UIMA V3 that control these are described in the table below.

9.1. Properties Table
This table describes the various JVM defined properties; specify these on the Java command line
using -Dxxxxxx, where the xxxxxx is one of the properties starting with uima. from the table
below.

Title Property Name & Description

Use UIMA V2 format
for toString() for
Feature Structures

uima.uima.v2_pretty_print_format

The native v3 format for pretty printing feature structures includes an
id number with each FS, and some other minor improvements. If you
have code which depends on the exact format that v2 UIMA produced
for the toString() operation on Feature Structures, then include this flag
to revert to that format.

Disable Type System
consolidation

uima.disable_typesystem_consolidation

Default: equal Type Systems are consolidated.

When type systems are committed, the resulting Type System (Java
object) is considered read-only, and is compared to already existing
Type Systems. Existing type systems, if found, are reused. Besides
saving storage, this can sometimes improve locality of reference, and
therefore, performance. Setting this property disables this consolidation.

Enable finding all
Feature Structures by
their int ID

uima.enable_id_to_feature_structure_map_for_all_fss

Default: normally created Feature Structures are not kept in a map.

In version 3, normally, Feature Structures are not added to the map used
by the Low Level CAS API to map from int ids to Feature Structures.
This has the benefit that no longer referenced Feature Structures may be
garbaged collected. This behavior may be overridden by this property.

Trading off runtime checks for speed

Disabling runtime
feature validation

uima.uima.disable_runtime_feature_validation

Once code is running correctly, you may remove this check for
performance reasons by setting this property.

Disabling runtime
feature value
validation

uima.disable_runtime_feature_value_validation

Default: features being set into FS features which are FSs are checked
for proper type subsumption.

Properties Table

46 Migration aids UIMA Version 3.0.0-beta

Once code is running correctly, you may remove this check for
performance reasons by setting this property.

	UIMA Version 3 User's Guide
	Table of Contents
	Chapter 1. Overview of UIMA Version 3
	1.1. What's new in UIMA Java SDK version 3
	1.2. Java 8 is required

	Chapter 2. Backwards Compatibility
	2.1. JCas and non-JCas APIs
	2.1.1. Additional reserved names in the JCas generated classes

	2.2. Serialization forms
	2.2.1. Delta CAS Version 2 Binary deserialization not supported

	2.3. APIs for creating and modifying Feature Structures
	2.4. PEAR support
	2.5. toString()
	2.6. Logging configuration is somewhat different
	2.7. Type System sharing
	2.8. Deserializing 0 length items in a CAS
	2.9. Some checks moved to native Java
	2.10. Some class hierarchies have been modified

	Chapter 3. New and Extended APIs
	3.1. UIMA FSIndex and FSIterators improvements
	3.2. New Select API
	3.3. New custom Java objects in the CAS framework
	3.4. Built-in lists and arrays
	3.4.1. Built-in lists and arrays have common super classes / interfaces

	3.5. Many UIMA objects implement Stream or Collection
	3.6. Reorganized APIs
	3.7. Use of JCas Class to specify a UIMA type
	3.8. JCasGen changes
	3.8.1. JCas additional static fields

	3.9. Generics added
	3.10. Other changes

	Chapter 4. The select framework for working with CAS data
	4.1. Select's use of the builder pattern
	4.2. Sources of Feature Structures
	4.2.1. Use of Type in selection of sources
	4.2.2. Sources and generic typing

	4.3. Selection and Ordering
	4.3.1. Boolean properties
	4.3.2. Configuration for any source
	4.3.3. Configuration for any index
	4.3.4. Configuration for sort-ordered indexes
	4.3.5. Bounded sub-selection within an Annotation Index
	4.3.6. Variations in Bounded sub-selection within an Annotation Index
	4.3.7. Defaults for bounded selects
	4.3.8. Following or Preceding

	4.4. Terminal Form actions
	4.4.1. Iterators
	4.4.2. Arrays and Lists
	4.4.3. Single Items
	4.4.4. Streams

	Chapter 5. Defining CAS-transported custom Java objects
	5.1. Tutorial example
	5.2. Additional semi-built-in UIMA Types for some common Java Objects
	5.2.1. FSArrayList
	5.2.2. IntegerArrayList
	5.2.3. FSHashSet

	5.3. Design for reuse

	Chapter 6. Logging
	6.1. Logging Levels
	6.2. Context Data
	6.3. Markers used in UIMA Java core logging
	6.4. Defaults and Configuration
	6.4.1. Throttling logging from Annotators

	Chapter 7. Migrating to UIMA Version 3
	7.1. Migrating: the big picture
	7.2. How to migrate an existing UIMA pipeline to V3
	7.3. Migrating JCas classes
	7.3.1. Running the migration tool
	7.3.1.1. Using Eclipse to run the migration tool
	7.3.1.2. Running from the command line
	Command line: Specifying input sources
	Command line: Specifying a classpath for the migration

	7.3.1.3. Handling duplicate definitions

	7.3.2. Understanding the reports
	7.3.3. Examples

	7.4. Consuming V3 Maven artifacts

	Chapter 8. PEAR support
	8.1. JCas issues
	8.2. Custom Java Objects

	Chapter 9. Migration aids
	9.1. Properties Table

