
UIMA Tutorial and Developers' Guides
Written and maintained by the Apache

UIMA™ Development Community

Version 3.0.0-alpha02

Copyright © 2006, 2017 The Apache Software Foundation

Copyright © 2004, 2006 International Business Machines Corporation

License and Disclaimer. The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such terms in this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date March, 2017

http://www.apache.org/licenses/LICENSE-2.0

UIMA Tutorial and Developers' Guides iii

Table of Contents
1. Annotator & AE Developer's Guide .. 1

1.1. Getting Started ... 2
1.1.1. Defining Types .. 3
1.1.2. Generating Java Source Files for CAS Types ... 4
1.1.3. Developing Your Annotator Code .. 5
1.1.4. Creating the XML Descriptor .. 8
1.1.5. Testing Your Annotator .. 10

1.2. Configuration and Logging .. 13
1.2.1. Configuration Parameters .. 13
1.2.2. Logging ... 16

1.3. Building Aggregate Analysis Engines .. 20
1.3.1. Combining Annotators .. 20
1.3.2. AAEs can also contain CAS Consumers .. 23
1.3.3. Reading the Results of Previous Annotators ... 24

1.4. Other examples ... 25
1.5. Additional Topics ... 26

1.5.1. Annotator Methods ... 26
1.5.2. Reporting errors from Annotators ... 27
1.5.3. Throwing Exceptions from Annotators .. 28
1.5.4. Accessing External Resources .. 30
1.5.5. Result Specifications ... 37
1.5.6. Class path setup when using JCas ... 39
1.5.7. Using the Shell Scripts .. 39

1.6. Common Pitfalls ... 40
1.7. UIMA Objects in Eclipse Debugger .. 40
1.8. Analysis Engine XML Descriptor ... 41

1.8.1. Header and Annotator Class Identification ... 41
1.8.2. Simple Metadata Attributes .. 42
1.8.3. Type System Definition .. 42
1.8.4. Capabilities .. 42
1.8.5. Configuration Parameters (Optional) ... 43

2. CPE Developer's Guide .. 47
2.1. CPE Concepts .. 48
2.2. CPE Configurator and CAS viewer ... 49

2.2.1. Using the CPE Configurator .. 49
2.2.2. Running the CPE Configurator from Eclipse .. 53

2.3. Running a CPE from Your Own Java Application ... 54
2.3.1. Using Listeners .. 54

2.4. Developing Collection Processing Components ... 55
2.4.1. Developing Collection Readers .. 55
2.4.2. Developing CAS Initializers .. 60
2.4.3. Developing CAS Consumers .. 61

2.5. Deploying a CPE .. 63
2.5.1. Deploying Managed CAS Processors .. 65
2.5.2. Deploying Non-managed CAS Processors ... 66
2.5.3. Deploying Integrated CAS Processors ... 67

2.6. Collection Processing Examples .. 68
3. Application Developer's Guide .. 71

3.1. The UIMAFramework Class ... 71
3.2. Using Analysis Engines ... 71

3.2.1. Instantiating an Analysis Engine ... 72

UIMA Tutorial and Developers' Guides

iv UIMA Tutorial and Developers' Guides UIMA Version 3.0.0-alpha02

3.2.2. Analyzing Text Documents .. 72
3.2.3. Analyzing Non-Text Artifacts .. 73
3.2.4. Accessing Analysis Results .. 73
3.2.5. Multi-threaded Applications ... 74
3.2.6. Multiple AEs & Creating Shared CASes ... 76
3.2.7. Saving CASes to file systems or general Streams .. 77

3.3. Using Collection Processing Engines ... 80
3.3.1. Running a CPE from a Descriptor .. 80
3.3.2. Configuring a CPE Descriptor Programmatically .. 80

3.4. Setting Configuration Parameters .. 82
3.5. Integrating Text Analysis and Search .. 83

3.5.1. Building an Index ... 83
3.5.2. Semantic Search Query Tool ... 86

3.6. Working with Remote Services ... 88
3.6.1. Deploying as SOAP Service .. 88
3.6.2. Deploying as a Vinci Service ... 90
3.6.3. Calling a UIMA Service .. 91
3.6.4. Restrictions on remotely deployed services .. 92
3.6.5. The Vinci Naming Services (VNS) ... 93
3.6.6. Configuring Timeout Settings .. 95

3.7. Increasing performance using parallelism ... 97
3.8. Monitoring AE Performance using JMX .. 98
3.9. Performance Tuning Options .. 100

4. Flow Controller Developer's Guide .. 103
4.1. Developing the Flow Controller Code .. 103

4.1.1. Flow Controller Interface Overview .. 103
4.1.2. Example Code .. 104

4.2. Creating the Flow Controller Descriptor ... 106
4.3. Adding Flow Controller to an Aggregate .. 107
4.4. Adding Flow Controller to CPE .. 108
4.5. Using Flow Controllers with CAS Multipliers ... 108
4.6. Continuing the Flow When Exceptions Occur ... 109

5. Annotations, Artifacts & Sofas .. 111
5.1. Terminology ... 111

5.1.1. Artifact .. 111
5.1.2. Subject of Analysis — Sofa ... 111

5.2. Formats of Sofa Data ... 111
5.3. Setting and Accessing Sofa Data ... 112

5.3.1. Setting Sofa Data .. 112
5.3.2. Accessing Sofa Data ... 112
5.3.3. Accessing Sofa Data using a Java Stream .. 112

5.4. The Sofa Feature Structure ... 113
5.5. Annotations .. 113

5.5.1. Built-in Annotation types ... 113
5.5.2. Annotations have an associated Sofa ... 114

5.6. AnnotationBase ... 114
6. Multiple CAS Views .. 115

6.1. CAS Views and Sofas ... 115
6.1.1. Naming CAS Views and Sofas ... 115
6.1.2. Multi/Single View parts in Applications .. 116

6.2. Multi-View Components .. 116
6.2.1. Deciding: Multi-View ... 116
6.2.2. Multi-View: additional capabilities .. 116

UIMA Tutorial and Developers' Guides

UIMA Version 3.0.0-alpha02 UIMA Tutorial and Developers' Guides v

6.2.3. Component XML metadata .. 116
6.3. Sofa Capabilities & APIs for Apps .. 117
6.4. Sofa Name Mapping .. 117

6.4.1. Name Mapping in an Aggregate Descriptor .. 118
6.4.2. Name Mapping in a CPE Descriptor ... 118
6.4.3. CAS View received by Process .. 119
6.4.4. Name Mapping in a UIMA Application ... 119
6.4.5. Name Mapping for Remote Services ... 120

6.5. JCas extensions for Multiple Views ... 120
6.6. Sample Multi-View Application .. 120

6.6.1. Annotator Descriptor ... 121
6.6.2. Application Setup ... 121
6.6.3. Annotator Processing .. 121
6.6.4. Accessing the results of analysis ... 122

6.7. Views API Summary ... 123
6.8. Sofa Incompatibilities: V1 and V2 .. 123

7. CAS Multiplier .. 125
7.1. Developing the CAS Multiplier Code .. 125

7.1.1. CAS Multiplier Interface Overview ... 125
7.1.2. Getting an empty CAS Instance .. 126
7.1.3. Example Code .. 126

7.2. CAS Multiplier Descriptor ... 129
7.3. Using CAS Multipliers in Aggregates .. 130

7.3.1. Aggregate: Adding the CAS Multiplier .. 130
7.3.2. CAS Multipliers and Flow Control ... 131
7.3.3. Aggregate CAS Multipliers .. 132

7.4. CAS Multipliers in CPE's ... 133
7.5. Applications: Calling CAS Multipliers ... 133

7.5.1. Output CASes .. 133
7.5.2. CAS Multipliers with other AEs ... 134

7.6. Merging with CAS Multipliers .. 135
7.6.1. CAS Merging Overview .. 135
7.6.2. Example CAS Merger ... 135
7.6.3. SimpleTextMerger in an Aggregate ... 137

8. XMI & EMF ... 139
8.1. Overview ... 139
8.2. Converting an Ecore Model to or from a UIMA Type System 139
8.3. Using XMI CAS Serialization ... 140

8.3.1. Character Encoding Issues with XML Serialization 140
9. Managing different TypeSystems ... 143

9.1. Annotators, Type Merging, and Remotes .. 143
9.2. Supporting Remote Annotators ... 143
9.3. Type filtering support in Binary Compressed Serialization/Deserialization 143
9.4. Remote Services support with Compressed Binary Serialization 144
9.5. Compressed Binary serialization to/from files ... 144

Annotator & AE Developer's Guide 1

Chapter 1. Annotator and Analysis Engine
Developer's Guide

This chapter describes how to develop UIMA type systems, Annotators and Analysis Engines using
the UIMA SDK. It is helpful to read the UIMA Conceptual Overview chapter for a review on these
concepts.

An Analysis Engine (AE) is a program that analyzes artifacts (e.g. documents) and infers
information from them.

Analysis Engines are constructed from building blocks called Annotators. An annotator is a
component that contains analysis logic. Annotators analyze an artifact (for example, a text
document) and create additional data (metadata) about that artifact. It is a goal of UIMA that
annotators need not be concerned with anything other than their analysis logic – for example the
details of their deployment or their interaction with other annotators.

An Analysis Engine (AE) may contain a single annotator (this is referred to as a Primitive AE),
or it may be a composition of others and therefore contain multiple annotators (this is referred to
as an Aggregate AE). Primitive and aggregate AEs implement the same interface and can be used
interchangeably by applications.

Annotators produce their analysis results in the form of typed Feature Structures, which are simply
data structures that have a type and a set of (attribute, value) pairs. An annotation is a particular
type of Feature Structure that is attached to a region of the artifact being analyzed (a span of text in
a document, for example).

For example, an annotator may produce an Annotation over the span of text President Bush,
where the type of the Annotation is Person and the attribute fullName has the value George W.
Bush, and its position in the artifact is character position 12 through character position 26.

It is also possible for annotators to record information associated with the entire document rather
than a particular span (these are considered Feature Structures but not Annotations).

All feature structures, including annotations, are represented in the UIMA Common Analysis
Structure(CAS). The CAS is the central data structure through which all UIMA components
communicate. Included with the UIMA SDK is an easy-to-use, native Java interface to the
CAS called the JCas. The JCas represents each feature structure as a Java object; the example
feature structure from the previous paragraph would be an instance of a Java class Person with
getFullName() and setFullName() methods. Though the examples in this guide all use the JCas,
it is also possible to directly access the underlying CAS system; for more information see UIMA
References Chapter 4, CAS Reference .

The remainder of this chapter will refer to the analysis of text documents and the creation of
annotations that are attached to spans of text in those documents. Keep in mind that the CAS can
represent arbitrary types of feature structures, and feature structures can refer to other feature
structures. For example, you can use the CAS to represent a parse tree for a document. Also, the
artifact that you are analyzing need not be a text document.

This guide is organized as follows:

• Section 1.1, “Getting Started” [2] is a tutorial with step-by-step instructions for how to
develop and test a simple UIMA annotator.

• Section 1.2, “Configuration and Logging” [13] discusses how to make your UIMA
annotator configurable, and how it can write messages to the UIMA log file.

Getting Started

2 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

• Section 1.3, “Building Aggregate Analysis Engines” [20] describes how annotators can
be combined into aggregate analysis engines. It also describes how one annotator can make
use of the analysis results produced by an annotator that has run previously.

• Section 1.4, “Other examples” [25] describes several other examples you may find
interesting, including

• SimpleTokenAndSentenceAnnotator – a simple tokenizer and sentence annotator.
• PersonTitleDBWriterCasConsumer – a sample CAS Consumer which populates a

relational database with some annotations. It uses JDBC and in this example, hooks
up with the Open Source Apache Derby database.

• Section 1.5, “Additional Topics” [26] describes additional features of the UIMA SDK
that may help you in building your own annotators and analysis engines.

• Section 1.6, “Common Pitfalls” [40] contains some useful guidelines to help you
ensure that your annotators will work correctly in any UIMA application.

This guide does not discuss how to build UIMA Applications, which are programs that use
Analysis Engines, along with other components, e.g. a search engine, document store, and user
interface, to deliver a complete package of functionality to an end-user. For information on
application development, see Chapter 3: “Application Developer's Guide” .

1.1. Getting Started
This section is a step-by-step tutorial that will get you started developing UIMA annotators. All
of the files referred to by the examples in this chapter are in the examples directory of the UIMA
SDK. This directory is designed to be imported into your Eclipse workspace; see UIMA Overview
& SDK Setup Section 3.2, “Setting up Eclipse to view Example Code” for instructions on how to
do this. See UIMA Overview & SDK Setup Section 3.4, “Attaching UIMA Javadocs” for how to
attach the UIMA Javadocs to the jar files. Also you may wish to refer to the UIMA SDK Javadocs
located in the docs/api/index.html1 directory.

Note: In Eclipse 3.1, if you highlight a UIMA class or method defined in the UIMA SDK
Javadocs, you can conveniently have Eclipse open the corresponding Javadoc for that class
or method in a browser, by pressing Shift + F2.

Note: If you downloaded the source distribution for UIMA, you can attach that as well to
the library Jar files; for information on how to do this, see UIMA References Chapter 1,
Javadocs.

The example annotator that we are going to walk through will detect room numbers for rooms
where the room numbering scheme follows some simple conventions. In our example, there are
two kinds of patterns we want to find; here are some examples, together with their corresponding
regular expression patterns:

Yorktown patterns:
20-001, 31-206, 04-123(Regular Expression Pattern: ##-[0-2]##)

Hawthorne patterns:
GN-K35, 1S-L07, 4N-B21 (Regular Expression Pattern: [G1-4][NS]-[A-Z]##)

There are several steps to develop and test a simple UIMA annotator.
1. Define the CAS types that the annotator will use.

1 api/index.html

api/index.html
api/index.html

Defining Types

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 3

2. Generate the Java classes for these types.
3. Write the actual annotator Java code.
4. Create the Analysis Engine descriptor.
5. Test the annotator.

These steps are discussed in the next sections.

1.1.1. Defining Types
The first step in developing an annotator is to define the CAS Feature Structure types that it creates.
This is done in an XML file called a Type System Descriptor. UIMA defines basic primitive types
such as Boolean, Byte, Short, Integer, Long, Float, and Double, as well as Arrays of these primitive
types. UIMA also defines the built-in types TOP, which is the root of the type system, analogous
to Object in Java; FSArray, which is an array of Feature Structures (i.e. an array of instances of
TOP); and Annotation, which we will discuss in more detail in this section.

UIMA includes an Eclipse plug-in that will help you edit Type System Descriptors, so if you are
using Eclipse you will not need to worry about the details of the XML syntax. See UIMA Overview
& SDK Setup Chapter 3, Setting up the Eclipse IDE to work with UIMA for instructions on setting
up Eclipse and installing the plugin.

The Type System Descriptor for our annotator is located in the file descriptors/tutorial/
ex1/TutorialTypeSystem.xml. (This and all other examples are located in the examples
directory of the installation of the UIMA SDK, which can be imported into an Eclipse project for
your convenience, as described in UIMA Overview & SDK Setup Section 3.2, “Setting up Eclipse
to view Example Code”.)

In Eclipse, expand the uimaj-examples project in the Package Explorer view, and browse to
the file descriptors/tutorial/ex1/TutorialTypeSystem.xml. Right-click on the file in

the navigator and select Open With → Component Descriptor Editor. Once the editor opens, click
on the “Type System” tab at the bottom of the editor window. You should see a view such as the
following:

Our annotator will need only one type – org.apache.uima.tutorial.RoomNumber. (We
use the same namespace conventions as are used for Java classes.) Just as in Java, types have

Generating Java Source Files for CAS Types

4 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

supertypes. The supertype is listed in the second column of the left table. In this case our
RoomNumber annotation extends from the built-in type uima.tcas.Annotation.

Descriptions can be included with types and features. In this example, there is a description
associated with the building feature. To see it, hover the mouse over the feature.

The bottom tab labeled “Source” will show you the XML source file associated with this
descriptor.

The built-in Annotation type declares three fields (called Features in CAS terminology). The
features begin and end store the character offsets of the span of text to which the annotation
refers. The feature sofa (Subject of Analysis) indicates which document the begin and end offsets
point into. The sofa feature can be ignored for now since we assume in this tutorial that the CAS
contains only one subject of analysis (document).

Our RoomNumber type will inherit these three features from uima.tcas.Annotation, its
supertype; they are not visible in this view because inherited features are not shown. One additional
feature, building, is declared. It takes a String as its value. Instead of String, we could have
declared the range-type of our feature to be any other CAS type (defined or built-in).

If you are not using Eclipse, if you need to edit the type system, do so using any XML or text
editor, directly. The following is the actual XML representation of the Type System displayed
above in the editor:

<?xml version="1.0" encoding="UTF-8" ?>
 <typeSystemDescription xmlns="http://uima.apache.org/resourceSpecifier">
 <name>TutorialTypeSystem</name>
 <description>Type System Definition for the tutorial examples -
 as of Exercise 1</description>
 <vendor>Apache Software Foundation</vendor>
 <version>1.0</version>
 <types>
 <typeDescription>
 <name>org.apache.uima.tutorial.RoomNumber</name>
 <description></description>
 <supertypeName>uima.tcas.Annotation</supertypeName>
 <features>
 <featureDescription>
 <name>building</name>
 <description>Building containing this room</description>
 <rangeTypeName>uima.cas.String</rangeTypeName>
 </featureDescription>
 </features>
 </typeDescription>
 </types>
 </typeSystemDescription>

1.1.2. Generating Java Source Files for CAS Types
When you save a descriptor that you have modified, the Component Descriptor Editor will
automatically generate Java classes corresponding to the types that are defined in that descriptor
(unless this has been disabled), using a utility called JCasGen. These Java classes will have the
same name (including package) as the CAS types, and will have get and set methods for each of the
features that you have defined.

This feature is enabled/disabled using the UIMA menu pulldown (or the Eclipse Preferences →
UIMA). If automatic running of JCasGen is not happening, please make sure the option is checked:

Developing Your Annotator Code

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 5

The Java class for the example org.apache.uima.tutorial.RoomNumber type can be found in src/
org/apache/uima/tutorial/RoomNumber.java . You will see how to use these generated
classes in the next section.

If you are not using the Component Descriptor Editor, you will need to generate these Java classes
by using the JCasGen tool. JCasGen reads a Type System Descriptor XML file and generates the
corresponding Java classes that you can then use in your annotator code. To launch JCasGen, run
the jcasgen shell script located in the /bin directory of the UIMA SDK installation. This should
launch a GUI that looks something like this:

Use the “Browse” buttons to select your input file (TutorialTypeSystem.xml) and output directory
(the root of the source tree into which you want the generated files placed). Then click the “Go”
button. If the Type System Descriptor has no errors, new Java source files will be generated under
the specified output directory.

There are some additional options to choose from when running JCasGen; please refer to the
UIMA Tools Guide and Reference Chapter 8, JCasGen User's Guide for details.

1.1.3. Developing Your Annotator Code

Annotator implementations all implement a standard interface (AnalysisComponent), having
several methods, the most important of which are:

• initialize,
• process, and
• destroy.

initialize is called by the framework once when it first creates an instance of the annotator
class. process is called once per item being processed. destroy may be called by the application
when it is done using your annotator. There is a default implementation of this interface for

Developing Your Annotator Code

6 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

annotators using the JCas, called JCasAnnotator_ImplBase, which has implementations of all
required methods except for the process method.

Our annotator class extends the JCasAnnotator_ImplBase; most annotators that use the JCas
will extend from this class, so they only have to implement the process method. This class is not
restricted to handling just text; see Chapter 5, Annotations, Artifacts, and Sofas.

Annotators are not required to extend from the JCasAnnotator_ImplBase class; they may instead
directly implement the AnalysisComponent interface, and provide all method implementations
themselves. 2 This allows you to have your annotator inherit from some other superclass if
necessary. If you would like to do this, see the Javadocs for JCasAnnotator for descriptions of the
methods you must implement.

Annotator classes need to be public, cannot be declared abstract, and must have public, 0-argument
constructors, so that they can be instantiated by the framework. 3 .

The class definition for our RoomNumberAnnotator implements the process method, and is
shown here. You can find the source for this in the uimaj-examples/src/org/apache/uima/
tutorial/ex1/RoomNumberAnnotator.java .

Note: In Eclipse, in the “Package Explorer” view, this will appear by
default in the project uimaj-examples, in the folder src, in the package
org.apache.uima.tutorial.ex1.

In Eclipse, open the RoomNumberAnnotator.java in the uimaj-examples project, under the src
directory.

package org.apache.uima.tutorial.ex1;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.apache.uima.analysis_component.JCasAnnotator_ImplBase;
import org.apache.uima.jcas.JCas;
import org.apache.uima.tutorial.RoomNumber;

/**
 * Example annotator that detects room numbers using
 * Java 1.4 regular expressions.
 */
public class RoomNumberAnnotator extends JCasAnnotator_ImplBase {
 private Pattern mYorktownPattern =
 Pattern.compile("\\b[0-4]\\d-[0-2]\\d\\d\\b");

 private Pattern mHawthornePattern =
 Pattern.compile("\\b[G1-4][NS]-[A-Z]\\d\\d\\b");

 public void process(JCas aJCas) {
 // Discussed Later
 }
}

The two Java class fields, mYorktownPattern and mHawthornePattern, hold regular expressions
that will be used in the process method. Note that these two fields are part of the Java
implementation of the annotator code, and not a part of the CAS type system. We are using the

2Note that AnalysisComponent is not specific to JCAS. There is a method getRequiredCasInterface() which the user would have to implement
to return JCas.class. Then in the process(AbstractCas cas) method, they would need to typecast cas to type JCas.
3 Although Java classes in which you do not define any constructor will, by default, have a 0-argument constructor that doesn't do anything,
a class in which you have defined at least one constructor does not get a default 0-argument constructor.

Developing Your Annotator Code

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 7

regular expression facility that is built into Java 1.4. It is not critical that you know the details
of how this works, but if you are curious the details can be found in the Java API docs for the
java.util.regex package.

The only method that we are required to implement is process. This method is typically called
once for each document that is being analyzed. This method takes one argument, which is a JCas
instance; this holds the document to be analyzed and all of the analysis results. 4

public void process(JCas aJCas) {
 // get document text
 String docText = aJCas.getDocumentText();
 // search for Yorktown room numbers
 Matcher matcher = mYorktownPattern.matcher(docText);
 int pos = 0;
 while (matcher.find(pos)) {
 // found one - create annotation
 RoomNumber annotation = new RoomNumber(aJCas);
 annotation.setBegin(matcher.start());
 annotation.setEnd(matcher.end());
 annotation.setBuilding("Yorktown");
 annotation.addToIndexes();
 pos = matcher.end();
 }
 // search for Hawthorne room numbers
 matcher = mHawthornePattern.matcher(docText);
 pos = 0;
 while (matcher.find(pos)) {
 // found one - create annotation
 RoomNumber annotation = new RoomNumber(aJCas);
 annotation.setBegin(matcher.start());
 annotation.setEnd(matcher.end());
 annotation.setBuilding("Hawthorne");
 annotation.addToIndexes();
 pos = matcher.end();
 }
}

The Matcher class is part of the java.util.regex package and is used to find the room numbers in
the document text. When we find one, recording the annotation is as simple as creating a new Java
object and calling some set methods:

RoomNumber annotation = new RoomNumber(aJCas);
annotation.setBegin(matcher.start());
annotation.setEnd(matcher.end());
annotation.setBuilding("Yorktown");

The RoomNumber class was generated from the type system description by the Component
Descriptor Editor or the JCasGen tool, as discussed in the previous section.

Finally, we call annotation.addToIndexes() to add the new annotation to the indexes
maintained in the CAS. By default, the CAS implementation used for analysis of text documents
keeps an index of all annotations in their order from beginning to end of the document. Subsequent
annotators or applications use the indexes to iterate over the annotations.

4Version 1 of UIMA specified an additional parameter, the ResultSpecification. This provides a specification of which types and features
are desired to be computed and "output" from this annotator. Its use is optional; many annotators ignore it.

This parameter has been replaced by specific set/getResultSpecification() methods, which allow the annotator to receive a signal (a method
call) when the result specification changes.

Creating the XML Descriptor

8 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

Note: If you don't add the instance to the indexes, it cannot be retrieved by down-stream
annotators, using the indexes.

Note: You can also call addToIndexes() on Feature Structures that are not subtypes of
uima.tcas.Annotation, but these will not be sorted in any particular way. If you want
to specify a sort order, you can define your own custom indexes in the CAS: see UIMA
References Chapter 4, CAS Reference and Section 2.4.1.5, “Index Definition” for details.

We're almost ready to test the RoomNumberAnnotator. There is just one more step remaining.

1.1.4. Creating the XML Descriptor

The UIMA architecture requires that descriptive information about an annotator be represented
in an XML file and provided along with the annotator class file(s) to the UIMA framework at run
time. This XML file is called an Analysis Engine Descriptor. The descriptor includes:

• Name, description, version, and vendor

• The annotator's inputs and outputs, defined in terms of the types in a Type System
Descriptor

• Declaration of the configuration parameters that the annotator accepts

The Component Descriptor Editor plugin, which we previously used to edit the Type System
descriptor, can also be used to edit Analysis Engine Descriptors.

A descriptor for our RoomNumberAnnotator is provided with the UIMA distribution under the
name descriptors/tutorial/ex1/RoomNumberAnnotator.xml. To edit it in Eclipse, right-

click on that file in the navigator and select Open With → Component Descriptor Editor.

Tip: In Eclipse, you can double click on the tab at the top of the Component Descriptor
Editor's window identifying the currently selected editor, and the window will
“Maximize”. Double click it again to restore the original size.

If you are not using Eclipse, you will need to edit Analysis Engine descriptors manually. See
Section 1.8, “Analysis Engine XML Descriptor” [41] for an introduction to the Analysis
Engine descriptor XML syntax. The remainder of this section assumes you are using the
Component Descriptor Editor plug-in to edit the Analysis Engine descriptor.

The Component Descriptor Editor consists of several tabbed pages; we will only need to use a few
of them here. For more information on using this editor, see Chapter 1, Component Descriptor
Editor User's Guide.

The initial page of the Component Descriptor Editor is the Overview page, which appears as
follows:

Creating the XML Descriptor

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 9

This presents an overview of the RoomNumberAnnotator Analysis Engine (AE). The left side of
the page shows that this descriptor is for a Primitive AE (meaning it consists of a single annotator),
and that the annotator code is developed in Java. Also, it specifies the Java class that implements
our logic (the code which was discussed in the previous section). Finally, on the right side of the
page are listed some descriptive attributes of our annotator.

The other two pages that need to be filled out are the Type System page and the Capabilities page.
You can switch to these pages using the tabs at the bottom of the Component Descriptor Editor. In
the tutorial, these are already filled out for you.

The RoomNumberAnnotator will be using the TutorialTypeSystem we looked at in Section
Section 1.1.1, “Defining Types” [3]. To specify this, we add this type system to the Analysis
Engine's list of Imported Type Systems, using the Type System page's right side panel, as shown
here:

On the Capabilities page, we define our annotator's inputs and outputs, in terms of the types in the
type system. The Capabilities page is shown below:

Testing Your Annotator

10 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

Although capabilities come in sets, having multiple sets is deprecated; here we're just using one
set. The RoomNumberAnnotator is very simple. It requires no input types, as it operates directly
on the document text -- which is supplied as a part of the CAS initialization (and which is always
assumed to be present). It produces only one output type (RoomNumber), and it sets the value of
the building feature on that type. This is all represented on the Capabilities page.

The Capabilities page has two other parts for specifying languages and Sofas. The languages
section allows you to specify which languages your Analysis Engine supports. The
RoomNumberAnnotator happens to be language-independent, so we can leave this blank. The
Sofas section allows you to specify the names of additional subjects of analysis. This capability
and the Sofa Mappings at the bottom are advanced topics, described in Chapter 5, Annotations,
Artifacts, and Sofas.

This is all of the information we need to provide for a simple annotator. If you want to peek at the
XML that this tool saves you from having to write, click on the “Source” tab at the bottom to view
the generated XML.

1.1.5. Testing Your Annotator

Having developed an annotator, we need a way to try it out on some example documents. The
UIMA SDK includes a tool called the Document Analyzer that will allow us to do this. To run
the Document Analyzer, execute the documentAnalyzer shell script that is in the bin directory
of your UIMA SDK installation, or, if you are using the example Eclipse project, execute the
“UIMA Document Analyzer” run configuration supplied with that project. (To do this, click on the

menu bar Run → Run ... → and under Java Applications in the left box, click on UIMA Document
Analyzer.)

You should see a screen that looks like this:

Testing Your Annotator

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 11

There are six options on this screen:

1. Directory containing documents to analyze

2. Directory where analysis results will be written

3. The XML descriptor for the Analysis Engine (AE) you want to run

4. (Optional) an XML tag, within the input documents, that contains the text to be analyzed.
For example, the value TEXT would cause the AE to only analyze the portion of the
document enclosed within <TEXT>...</TEXT> tags.

5. Language of the document

6. Character encoding

Use the Browse button next to the third item to set the “Location of AE XML Descriptor”
field to the descriptor we've just been discussing — <where-you-installed-uima-
e.g.UIMA_HOME> /examples/descriptors/tutorial/ex1/RoomNumberAnnotator.xml
. Set the other fields to the values shown in the screen shot above (which should be the default
values if this is the first time you've run the Document Analyzer). Then click the “Run” button to
start processing.

When processing completes, an “Analysis Results” window should appear.

Testing Your Annotator

12 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

Make sure “Java Viewer” is selected as the Results Display Format, and double-click on the
document UIMASummerSchool2003.txt to view the annotations that were discovered. The view
should look something like this:

You can click the mouse on one of the highlighted annotations to see a list of all its features in the
frame on the right.

Note: The legend will only show those types which have at least one instance in the CAS,
and are declared as outputs in the capabilities section of the descriptor (see Section 1.1.4,
“Creating the XML Descriptor” [8].

Configuration and Logging

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 13

You can use the DocumentAnalyzer to test any UIMA annotator — just make sure that the
annotator's classes are in the class path.

1.2. Configuration and Logging

1.2.1. Configuration Parameters
The example RoomNumberAnnotator from the previous section used hardcoded regular
expressions and location names, which is obviously not very flexible. For example, you might want
to have the patterns of room numbers be supplied by a configuration parameter, rather than having
to redo the annotator's Java code to add additional patterns. Rather than add a new hardcoded
regular expression for a new pattern, a better solution is to use configuration parameters.

UIMA allows annotators to declare configuration parameters in their descriptors. The descriptor
also specifies default values for the parameters, though these can be overridden at runtime.

1.2.1.1. Declaring Parameters in the Descriptor
The example descriptor descriptors/tutorial/ex2/RoomNumberAnnotator.xml is the
same as the descriptor from the previous section except that information has been filled in for the
Parameters and Parameter Settings pages of the Component Descriptor Editor.

First, in Eclipse, open example two's RoomNumberAnnotator in the Component Descriptor Editor,
and then go to the Parameters page (click on the parameters tab at the bottom of the window),
which is shown below:

Two parameters – Patterns and Locations -- have been declared. In this screen shot, the mouse
(not shown) is hovering over Patterns to show its description in the small popup window. Every
parameter has the following information associated with it:

• name – the name by which the annotator code refers to the parameter

Configuration Parameters

14 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

• description – a natural language description of the intent of the parameter

• type – the data type of the parameter's value – must be one of String, Integer, Float, or
Boolean.

• multiValued – true if the parameter can take multiple-values (an array), false if the
parameter takes only a single value. Shown above as Multi.

• mandatory – true if a value must be provided for the parameter. Shown above as Req (for
required).

Both of our parameters are mandatory and accept an array of Strings as their value.

Next, default values are assigned to the parameters on the Parameter Settings page:

Here the “Patterns” parameter is selected, and the right pane shows the list of values for this
parameter, in this case the regular expressions that match particular room numbering conventions.
Notice the third pattern is new, for matching the style of room numbers in the third building, which
has room numbers such as J2-A11.

1.2.1.2. Accessing Parameter Values from the Annotator Code

The class org.apache.uima.tutorial.ex2.RoomNumberAnnotator has overridden the
initialize method. The initialize method is called by the UIMA framework when the annotator
is instantiated, so it is a good place to read configuration parameter values. The default initialize
method does nothing with configuration parameters, so you have to override it. To see the code
in Eclipse, switch to the src folder, and open org.apache.uima.tutorial.ex2. Here is the
method body:

/**
* @see AnalysisComponent#initialize(UimaContext)

Configuration Parameters

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 15

*/
public void initialize(UimaContext aContext)
 throws ResourceInitializationException {
 super.initialize(aContext);

 // Get config. parameter values
 String[] patternStrings =
 (String[]) aContext.getConfigParameterValue("Patterns");
 mLocations =
 (String[]) aContext.getConfigParameterValue("Locations");

 // compile regular expressions
 mPatterns = new Pattern[patternStrings.length];
 for (int i = 0; i < patternStrings.length; i++) {
 mPatterns[i] = Pattern.compile(patternStrings[i]);
 }
}

Configuration parameter values are accessed through the UimaContext. As you will see in
subsequent sections of this chapter, the UimaContext is the annotator's access point for all of the
facilities provided by the UIMA framework – for example logging and external resource access.

The UimaContext's getConfigParameterValue method takes the name of the parameter as an
argument; this must match one of the parameters declared in the descriptor. The return value of this
method is a Java Object, whose type corresponds to the declared type of the parameter. It is up to
the annotator to cast it to the appropriate type, String[] in this case.

If there is a problem retrieving the parameter values, the framework throws an exception. Generally
annotators don't handle these, and just let them propagate up.

To see the configuration parameters working, run the Document Analyzer application and select
the descriptor examples/descriptors/tutorial/ex2/RoomNumberAnnotator.xml .
In the example document WatsonConferenceRooms.txt, you should see some examples
of Hawthorne II room numbers that would not have been detected by the ex1 version of
RoomNumberAnnotator.

1.2.1.3. Supporting Reconfiguration

If you take a look at the Javadocs (located in the docs/api5 directory) for
org.apache.uima.analysis_component.AnaysisComponent (which our annotator
implements indirectly through JCasAnnotator_ImplBase), you will see that there is a reconfigure()
method, which is called by the containing application through the UIMA framework, if the
configuration parameter values are changed.

The AnalysisComponent_ImplBase class provides a default implementation that just calls the
annotator's destroy method followed by its initialize method. This works fine for our annotator.
The only situation in which you might want to override the default reconfigure() is if your
annotator has very expensive initialization logic, and you don't want to reinitialize everything if
just one configuration parameter has changed. In that case, you can provide a more intelligent
implementation of reconfigure() for your annotator.

1.2.1.4. Configuration Parameter Groups

For annotators with many sets of configuration parameters, UIMA supports organizing them into
groups. It is possible to define a parameter with the same name in multiple groups; one common

5 api/index.html

api/index.html
api/index.html

Logging

16 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

use for this is for annotators that can process documents in several languages and which want to
have different parameter settings for the different languages.

The syntax for defining parameter groups in your descriptor is fairly straightforward –
see UIMA References Chapter 2, Component Descriptor Reference for details. Values
of parameters defined within groups are accessed through the two-argument version of
UimaContext.getConfigParameterValue, which takes both the group name and the
parameter name as its arguments.

1.2.1.5. Overriding Configuration Parameter Settings

There are two ways that the value assigned to a configuration parameter can be overridden. An
aggregate may declare a parameter that overrides one or more of the parameters in one or more
of its delegates. The aggregate must also define a value for the parameter, unless the parameter is
itself overridden by a setting in the parent aggregate.

An alternative method that avoids these strict hierarchical override constraints is to associate
an external global name with a parameter and to assign values to these external names in an
external properties file. With this approach a particular parameter setting can be easily shared
by multiple descriptors, even across different applications. For applications with many levels of
descriptor nesting it avoids the need to edit aggregate override definitions when the location of an
annotator in the hierarchy is changed. For details see UIMA References Section 2.4.3.4, “External
Configuration Parameter Overrides”

1.2.2. Logging
The UIMA SDK provides a logging facility, which is very similar to the java.util.logging.Logger
class that was introduced in Java 1.4. In addition, it includes the SLF4j framework https://
www.slf4j.org/ and all the methods in that framework's Logger API, plus the Java 8 specific API
extensions that take Supplier parameters.

Each logger instance is associated with a name. By convention, this name is usually a hierarchy of
simple names connected with periods, often the fully qualified class name of the component issuing
the logging call. The name (or any of its parents - starting prefixes up to a period) can be referenced
in a configuration file which can then configure for each logger various things such as the logging
level and where messages should go.

The UIMA framework supports this convention using the UimaContext object. If you
access a logger instance using getContext().getLogger() or the shorter, but equivalent
getUimaLogger() within an Annotator, the logger name will be the fully qualified name of the
Annotator implementation class.

Here is an example from the process method of
org.apache.uima.tutorial.ex2.RoomNumberAnnotator:

getLogger().trace("Found: {}", annotation);

The trace call indicates that this is a tracing message. This is useful for tracing program flow, but
it is a low level which is not usually enabled.

Log statements are "filtered" according to the logging configuration, by Level, and sometimes
by additional indicators, such as Markers. Levels work in a hierarchy. A given level of filtering
passes that level and all higher levels. Some levels have two names, due to the way the different
logger back ends name things. Most levels are also used as method names on the logger, to indicate

https://www.slf4j.org/
https://www.slf4j.org/

Logging

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 17

logging for that level. For example, you could say aLogger.log(Level.INFO, message)
but you can also say aLogger.info(message)). The level ordering, highest to lowest, and the
associated method names are as follows:

• SEVERE or ERROR; error(...)
• WARN or WARNING; warn(...)
• INFO; info(...)
• CONFIG; info(UIMA_MARKER_CONFIG, ...)
• FINE or DEBUG; debug(...)
• FINER or TRACE; trace(...)
• FINEST; trace(UIMA_MARKER_FINEST, ...)

The CONFIG and FINEST levels are merged with other levels, but distinguished by having
Markers. If the filtering is configured to pass CONFIG level, then it will pass also the INFO/
WARN/ERROR (or their alternative names WARNING/SEVERE) levels as well.

Each logging backend has its own documentation for how to configure loggers at run time, via
configuration files or APIs in some cases. Some backends even allow dynamic reconfiguration
while running, just by updating the configuration file (it is re-loaded every so often, if changed).

For the built-in-to-Java logging back end, if no logging configuration file is provided (see next
section), the Java Virtual Machine defaults would be used, which typically set the level to INFO
and higher messages, and direct output to the console.

The UIMA logger is by default implemented using an SLF4J implementation; this (in turn)
connects to a logging back end, determined via a search of the classpath for a connector. If none
can be found, then a message to that effect will be printed to System.err, and no logging will be
done. The binary distribution for UIMA includes, in its lib directory, the Jar which connects
SLF4j to the Java-built-in logger to use as its back end, so if you use the standard launchers, you
will get this logging back end.

Assuming you are using the Java-built-in-logger as the back-end, if you specify the configuration
using the standard UIMA SDK Logger.properties (found in UIMA_HOME/config/), the
output will be directed to a file named uima.log, in the current working directory (often the
“project” directory when running from Eclipse, for instance).

Note: When using Eclipse, the uima.log file, if written into the Eclipse workspace in the
project uimaj-examples, for example, may not appear in the Eclipse package explorer view
until you right-click the uimaj-examples project with the mouse, and select “Refresh”.
This operation refreshes the Eclipse display to conform to what may have changed on the
file system. Also, you can set the Eclipse preferences for the workspace to automatically

refresh (Window → Preferences → General → Workspace, then click the “refresh
automatically” checkbox.

The next several sections mainly describe how to configure the built-in Java logger. See the
documentation for other logging back ends for details on how to configure those.

1.2.2.1. Specifying the Logging Configuration when using
Java's built-in logger

The standard Java built-in logging initialization mechanisms will look for a Java System Property
named java.util.logging.config.file and if found, will use the value of this property as
the name of a standard “properties” file, for setting the logging level. Please refer to the Java 1.4.
documentation for more information on the format and use of this file.

Logging

18 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

Two sample logging specification property files can be found in the UIMA_HOME
directory where the UIMA SDK is installed: config/Logger.properties, and config/
FileConsoleLogger.properties. These specify the same logging, except the first logs just
to a file, while the second logs both to a file and to the console. You can edit these files, or create
additional ones, as described below, to change the logging behavior.

When running your own Java application, you can specify the location of this logging
configuration file on your Java command line by setting the Java system property
java.util.logging.config.file to be the logging configuration filename. This file
specification can be either absolute or relative to the working directory. For example:

java "-Djava.util.logging.config.file=C:/Program Files/apache-uima/config/Logger.properties"

Note: In a shell script, you can use environment variables such as UIMA_HOME if
convenient.

If you are using Eclipse to launch your application, you can set this property in the VM arguments
section of the Arguments tab of the run configuration screen. If you've set an environment variable
UIMA_HOME, you could for example, use the string: "-Djava.util.logging.config.file=
${env_var:UIMA_HOME}/config/Logger.properties".

If you running the .bat or .sh files in the UIMA SDK's bin directory, you can specify the location
of your logger configuration file by setting the UIMA_LOGGER_CONFIG_FILE environment
variable prior to running the script, for example (on Windows):

set UIMA_LOGGER_CONFIG_FILE=C:/myapp/MyLogger.properties

1.2.2.2. Setting Logging Levels when using Java's built-in
logger

Within the logging control file, the default global logging level specifies which kinds of events are
logged across all loggers. For any given facility this global level can be overridden by a facility
specific level. Multiple handlers are supported. This allows messages to be directed to a log file,
as well as to a “console”. Note that the ConsoleHandler also has a separate level setting to limit
messages printed to the console. For example: .level= INFO

The properties file can change where the log is written, as well.

Facility specific properties allow different logging for each class, as well. For example, to set the
com.xyz.foo logger to only log SEVERE messages: com.xyz.foo.level = SEVERE

If you have a sample annotator in the package org.apache.uima.SampleAnnotator you can
set the log level by specifying: org.apache.uima.SampleAnnotator.level = ALL

There are other logging controls; for a full discussion, please read the contents of the
Logger.properties file and the Java specification for logging in Java 1.4.

1.2.2.3. Configuring the format of logging output when using
Java's built-in logger

The logging output is formatted by handlers specified in the properties file for configuring logging,
described above. The default formatter that comes with the UIMA SDK formats logging output as
follows:

Logging

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 19

Timestamp - threadID: sourceInfo: Message level: message

Here's an example:

7/12/04 2:15:35 PM - 10: org.apache.uima.util.TestClass.main(62): INFO:
You are not logged in!

1.2.2.4. Meaning of the logging severity levels used by the
UIMA logger

These levels are defined by the Java logging framework, which was incorporated into Java as of
the 1.4 release level. The levels are defined in the Javadocs for java.util.logging.Level, and include
both logging and tracing levels:

• OFF is a special level that can be used to turn off logging.
• ALL indicates that all messages should be logged.
• CONFIG is a message level for configuration messages. These would typically occur once

(during configuration) in methods like initialize().
• INFO is a message level for informational messages, for example, connected to server IP:

192.168.120.12
• WARNING is a message level indicating a potential problem.
• SEVERE is a message level indicating a serious failure.

Tracing levels, typically used for debugging:

• FINE is a message level providing tracing information, typically at a collection level
(messages occurring once per collection).

• FINER indicates a fairly detailed tracing message, typically at a document level (once per
document).

• FINEST indicates a highly detailed tracing message.

1.2.2.5. Using loggers outside of an annotator

An application using UIMA may want to log its messages using the same logging framework. This
can be done by getting a reference to the UIMA logger, as follows:

Logger logger = UIMAFramework.getLogger(TestClass.class);

.

You can also simply get a direct reference to an Slf4j logger using the standard approach:

org.slf4j.Logger logger = org.slf4j.LogFactory.getLogger(TestClass.class);

The class argument specifies the name of the logger, using the fully qualified class name. For
UIMA loggers, if not specified, the name of the returned logger instance is “org.apache.uima”.

1.2.2.6. Changing the underlying UIMA logging implementation

By default the UIMA framework uses, under the hood of the UIMA Logger interface, the SLF4J
logging framework to do logging. This allows UIMA, when running embedded inside other
frameworks, to defer the choice of back-end logging frameworks to those applications.

Building Aggregate Analysis Engines

20 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

For backwards compatibility with Version 2, the older methods (prior to Slf4j) for switching the
logger implementation remains. You do this by specifying the system property

-Dorg.apache.uima.logger.class=<loggerClass>

when the UIMA framework is started.

The specified logger class must be available in the classpath and has to subclass the
org.apache.uima.util.Logger_common_impl class.

For backwards compatibility, V3 continues to provide the class
org.apache.uima.util.impl.Log4jLogger_impl as an alternative which can be specified
this way by this JVM argument:

-Dorg.apache.uima.logger.class=org.apache.uima.util.impl.Log4jLogger_impl

to switch to the log4j back end. This has been updated in V3 to log4j 2 (see https://
logging.apache.org/log4j). If you use this, you must provide the required Log4j 2 jars in the
classpath.

1.2.2.7. Throttling excessive logging from Annotators

Sometimes, in production, you may find annotators are logging excessively, and you
wish to throttle this. But you may not have access to logging settings to control this,
perhaps because UIMA is running as a library component within another framework.
For this special case, you can limit logging done by Annotators by passing an additional
parameter to the UIMA Framework's produceAnalysisEngine API, using the key name
AnalysisEngine.PARAM_THROTTLE_EXCESSIVE_ANNOTATOR_LOGGING and setting the value
to an Integer object equal to the the limit. Using 0 will suppress all logging. Any positive number
allows that many log records to be logged, per level. A limit of 10 would allow 10 Errors, 10
Warnings, etc. The limit is enforced separately, per logger instance.

Note: This only works if the logger used by Annotators is obtained from the Annotator
base implementation class via the getLogger() method.

1.3. Building Aggregate Analysis Engines

1.3.1. Combining Annotators

The UIMA SDK makes it very easy to combine any sequence of Analysis Engines to form an
Aggregate Analysis Engine. This is done through an XML descriptor; no Java code is required!

If you go to the examples/descriptors/tutorial/ex3 folder (in Eclipse, it's in your uimaj-
examples project, under the descriptors/tutorial/ex3 folder), you will find a descriptor for
a TutorialDateTime annotator. This annotator detects dates and times. To see what this annotator
can do, try it out using the Document Analyzer. If you are curious as to how this annotator works,
the source code is included, but it is not necessary to understand the code at this time.

We are going to combine the TutorialDateTime annotator with the RoomNumberAnnotator to
create an aggregate Analysis Engine. This is illustrated in the following figure:

https://logging.apache.org/log4j
https://logging.apache.org/log4j

Combining Annotators

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 21

Figure 1.1. Combining Annotators to form an Aggregate Analysis Engine

The descriptor that does this is named RoomNumberAndDateTime.xml, which you can open
in the Component Descriptor Editor plug-in. This is in the uimaj-examples project in the folder
descriptors/tutorial/ex3.

The “Aggregate” page of the Component Descriptor Editor is used to define which components
make up the aggregate. A screen shot is shown below. (If you are not using Eclipse, see
Section 1.8, “Analysis Engine XML Descriptor” [41] for the actual XML syntax for Aggregate
Analysis Engine Descriptors.)

On the left side of the screen is the list of component engines that make up the aggregate – in this
case, the TutorialDateTime annotator and the RoomNumberAnnotator. To add a component, you
can click the “Add” button and browse to its descriptor. You can also click the “Find AE” button
and search for an Analysis Engine in your Eclipse workspace.

Combining Annotators

22 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

Note: The “AddRemote” button is used for adding components which run remotely (for
example, on another machine using a remote networking connection). This capability is
described in section Section 3.6.3, “Calling a UIMA Service”,

The order of the components in the left pane does not imply an order of execution. The order of
execution, or “flow” is determined in the “Component Engine Flow” section on the right. UIMA
supports different types of algorithms (including user-definable) for determining the flow. Here we
pick the simplest: FixedFlow. We have chosen to have the RoomNumberAnnotator execute first,
although in this case it doesn't really matter, since the RoomNumber and DateTime annotators do
not have any dependencies on one another.

If you look at the “Type System” page of the Component Descriptor Editor, you will see that it
displays the type system but is not editable. The Type System of an Aggregate Analysis Engine is
automatically computed by merging the Type Systems of all of its components.

Warning: If the components have different definitions for the same type name, The
Component Descriptor Editor will show a warning. It is possible to continue past this
warning, in which case your aggregate's type system will have the correct “merged” type
definition that contains all of the features defined on that type by all of your components.
However, it is not recommended to use this feature in conjunction with JCAS, since
the JCAS Java Class definitions cannot be so easily merged. See UIMA References
Section 5.5, “Merging Types” for more information.

The Capabilities page is where you explicitly declare the aggregate Analysis Engine's inputs and
outputs. Sofas and Languages are described later.

Note that it is not automatically assumed that all outputs of each component Analysis Engine (AE)
are passed through as outputs of the aggregate AE. If, for example, the TutorialDateTime annotator

AAEs can also contain CAS Consumers

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 23

also produced Word and Sentence annotations, but those were not of interest as output in this case,
we can exclude them from the list of outputs.

You can run this AE using the Document Analyzer in the same way that you run any other AE.
Just select the examples/descriptors/tutorial/ex3/ RoomNumberAndDateTime.xml
descriptor and click the Run button. You should see that RoomNumbers, Dates, and Times are all
shown:

1.3.2. AAEs can also contain CAS Consumers
In addition to aggregating Analysis Engines, Aggregates can also contain CAS Consumers
(see Chapter 2, Collection Processing Engine Developer's Guide, or even a mixture of these
components with regular Analysis Engines. The UIMA Examples has an example of an Aggregate
which contains both an analysis engine and a CAS consumer, in examples/descriptors/
MixedAggregate.xml.

Analysis Engines support the collectionProcessComplete method, which is particularly
important for many CAS Consumers. If an application (or a Collection Processing Engine)
calls collectionProcessComplete on an aggregate, the framework will deliver that call to
all of the components of the aggregate. If you use one of the built-in flow types (fixedFlow or
capabilityLanguageFlow), then the order specified in that flow will be the same order in which the
collectionProcessComplete calls are made to the components. If a custom flow is used, then
the calls will be made in arbitrary order.

Reading the Results of Previous Annotators

24 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

1.3.3. Reading the Results of Previous Annotators

So far, we have been looking at annotators that look directly at the document text. However,
annotators can also use the results of other annotators. One useful thing we can do at this point
is look for the co-occurrence of a Date, a RoomNumber, and two Times – and annotate that as a
Meeting.

The CAS maintains indexes of annotations, and from an index you can obtain an iterator that allows
you to step through all annotations of a particular type. Here's some example code that would
iterate over all of the TimeAnnot annotations in the JCas:

for (TimeAnnot : aJCas.<TimeAnnot>select(TimeAnnot.class)) {
 //do something
}

Note: You can also use the method aJCas.getAllIndexedFS(YourClass.type),
which returns an iterator over instances of YourClass in no particular order.

Now that we've explained the basics, let's take a look at the process method for
org.apache.uima.tutorial.ex4.MeetingAnnotator. Since we're looking for a
combination of a RoomNumber, a Date, and two Times, there are four nested iterators. (There's
surely a better algorithm for doing this, but to keep things simple we're just going to look at every
combination of the four items.)

For each combination of the four annotations, we compute the span of text that includes all of them,
and then we check to see if that span is smaller than a “window” size, a configuration parameter.
There are also some checks to make sure that we don't annotate the same span of text multiple
times. If all the checks pass, we create a Meeting annotation over the whole span. There's really
nothing to it!

The XML descriptor, located in examples/descriptors/tutorial/ex4/
MeetingAnnotator.xml , is also very straightforward. An important difference from previous
descriptors is that this is the first annotator we've discussed that has input requirements. This can be
seen on the “Capabilities” page of the Component Descriptor Editor:

Other examples

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 25

If we were to run the MeetingAnnotator on its own, it wouldn't detect anything because it
wouldn't have any input annotations to work with. The required input annotations can be produced
by the RoomNumber and DateTime annotators. So, we create an aggregate Analysis Engine
containing these two annotators, followed by the Meeting annotator. This aggregate is illustrated
in Figure 1.2, “An Aggregate Analysis Engine where an internal component uses output from
previous engines” [25]. The descriptor for this is in examples/descriptors/tutorial/
ex4/MeetingDetectorAE.xml . Give it a try in the Document Analyzer.

Figure 1.2. An Aggregate Analysis Engine where an
internal component uses output from previous engines

1.4. Other examples
The UIMA SDK include several other examples you may find interesting, including

• SimpleTokenAndSentenceAnnotator – a simple tokenizer and sentence annotator.
• XmlDetagger – A multi-sofa annotator that does XML detagging. Multiple Sofas (Subjects

of Analysis) are described in a later – see Chapter 6, Multiple CAS Views of an Artifact.
Reads XML data from the input Sofa (named "xmlDocument"); this data can be stored

Additional Topics

26 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

in the CAS as a string or array, or it can be a URI to a remote file. The XML is parsed
using the JVM's default parser, and the plain-text content is written to a new sofa called
"plainTextDocument".

• PersonTitleDBWriterCasConsumer – a sample CAS Consumer which populates a relational
database with some annotations. It uses JDBC and in this example, hooks up with the Open
Source Apache Derby database.

1.5. Additional Topics

1.5.1. Contract: Annotator Methods Called by the
Framework

The UIMA framework ensures that an Annotator instance is called by only one thread at a time. An
instance never has to worry about running some method on one thread, and then asynchronously
being called using another thread. This approach simplifies the design of annotators – they do
not have to be designed to support multi-threading. When multiple threading is wanted, for
performance, multiple instances of the Annotator are created, each one running on just one thread.

The following table defines the methods called by the framework, when they are called, and the
requirements annotator implementations must follow.

Method When Called by Framework Requirements

initialize Typically only called once, when
instance is created. Can be called
again if application does a reinitialize
call and the default behavior isn't
overridden (the default behavior
for reinitialize is to call destroy
followed by initialize

Normally does one-time
initialization, including reading of
configuration parameters. If the
application changes the parameters,
it can call initialize to have the
annotator re-do its initialization.

typeSystemInit Called before process whenever the
type system in the CAS being passed
in differs from what was previously
passed in a process call (and called
for the first CAS passed in, too).
The Type System being passed to an
annotator only changes in the case of
remote annotators that are active as
servers, receiving possibly different
type systems to operate on.

Typically, users of JCas do not
implement any method for this. An
annotator can use this call to read
the CAS type system and setup
any instance variables that make
accessing the types and features
convenient.

process Called once for each CAS. Called by
the application if not using Collection
Processing Manager (CPM); the
application calls the process method
on the analysis engine, which is then
delegated by the framework to all
the annotators in the engine. For
Collection Processing application,
the CPM calls the process method. If
the application creates and manages
your own Collection Processing

Process the CAS, adding and/or
modifying elements in it

Reporting errors from Annotators

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 27

Method When Called by Framework Requirements

Engine via API calls (see Javadocs),
the application calls this on the
Collection Processing Engine, and it
is delegated by the framework to the
components.

destroy This method can be called by
applications, and is also called by
the Collection Processing Manager
framework when the collection
processing completes. It is also called
on Aggregate delegate components,
if those components successfully
complete their initialize call,
if a subsequent delegate (or flow
controller) in the aggregate fails to
initialize. This allows components
which need to clean up things done
during initialization to do so. It is up
to the component writer to use a try/
finally construct during initialization
to cleanup from errors that occur
during initialization within one
component. The destroy call on
an aggregate is propagated to all
contained analysis engines.

An annotator should release all
resources, close files, close database
connections, etc., and return to a state
where another initialize call could be
received to restart. Typically, after a
destroy call, no further calls will be
made to an annotator instance.

reconfigure This method is never called by the
framework, unless an application
calls it on the Engine object –
in which case it the framework
propagates it to all annotators
contained in the Engine.

Its purpose is to signal that the
configuration parameters have
changed.

A default implementation of this
calls destroy, followed by initialize.
This is the only case where initialize
would be called more than once.
Users should implement whatever
logic is needed to return the annotator
to an initialized state, including re-
reading the configuration parameter
data.

1.5.2. Reporting errors from Annotators

There are two broad classes of errors that can occur: recoverable and unrecoverable. Because
Annotators are often expected to process very large numbers of artifacts (for example, text
documents), they should be written to recover where possible.

For example, if an upstream annotator created some input for an annotator which is invalid,
the annotator may want to log this event, ignore the bad input and continue. It may include a
notification of this event in the CAS, for further downstream annotators to consider. Or, it may
throw an exception (see next section) – but in this case, it cannot do any further processing on that
document.

Note: The choice of what to do can be made configurable, using the configuration
parameters.

Throwing Exceptions from Annotators

28 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

1.5.3. Throwing Exceptions from Annotators

Let's say an invalid regular expression was passed as a parameter to the RoomNumberAnnotator.
Because this is an error related to the overall configuration, and not something we could expect to
ignore, we should throw an appropriate exception, and most Java programmers would expect to do
so like this:

throw new ResourceInitializationException(
 "The regular expression " + x + " is not valid.");

UIMA, however, does not do it this way. All UIMA exceptions are internationalized, meaning
that they support translation into other languages. This is accomplished by eliminating hardcoded
message strings and instead using external message digests. Message digests are files containing
(key, value) pairs. The key is used in the Java code instead of the actual message string. This
allows the message string to be easily translated later by modifying the message digest file,
not the Java code. Also, message strings in the digest can contain parameters that are filled
in when the exception is thrown. The format of the message digest file is described in the
Javadocs for the Java class java.util.PropertyResourceBundle and in the load method of
java.util.Properties.

The first thing an annotator developer must choose is what Exception class to use. There are three
to choose from:

1. ResourceConfigurationException should be thrown from the annotator's reconfigure()
method if invalid configuration parameter values have been specified.

2. ResourceInitializationException should be thrown from the annotator's initialize() method if
initialization fails for any reason (including invalid configuration parameters).

3. AnalysisEngineProcessException should be thrown from the annotator's process() method if
the processing of a particular document fails for any reason.

Generally you will not need to define your own custom exception classes, but if you do they
must extend one of these three classes, which are the only types of Exceptions that the annotator
interface permits annotators to throw.

All of the UIMA Exception classes share common constructor varieties. There are four possible
arguments:

The name of the message digest to use (optional – if not specified the default UIMA message digest
is used).

The key string used to select the message in the message digest.

An object array containing the parameters to include in the message. Messages can have
substitutable parts. When the message is given, the string representation of the objects passed are
substituted into the message. The object array is often created using the syntax new Object[]{x, y}.

Another exception which is the “cause” of the exception you are throwing. This feature is
commonly used when you catch another exception and rethrow it. (optional)

If you look at source file (folder: src in Eclipse)
org.apache.uima.tutorial.ex5.RoomNumberAnnotator, you will see the following code:

Throwing Exceptions from Annotators

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 29

try {
 mPatterns[i] = Pattern.compile(patternStrings[i]);
}
catch (PatternSyntaxException e) {
 throw new ResourceInitializationException(
 MESSAGE_DIGEST, "regex_syntax_error",
 new Object[]{patternStrings[i]}, e);
}

where the MESSAGE_DIGEST constant has the value
"org.apache.uima.tutorial.ex5.RoomNumberAnnotator_Messages".

Message digests are specified using a dotted name, just like Java classes. This file, with
the .properties extension, must be present in the class path. In Eclipse, you find this
file under the src folder, in the package org.apache.uima.tutorial.ex5, with the name
RoomNumberAnnotator_Messages.properties. Outside of Eclipse, you can find this
in the uimaj-examples.jar with the name org/apache/uima/tutorial/ex5/
RoomNumberAnnotator_Messages.properties. If you look in this file you will see the line:

regex_syntax_error = {0} is not a valid regular expression.

which is the error message for the example exception we showed above. The placeholder {0}
will be filled by the toString() value of the argument passed to the exception constructor – in this
case, the regular expression pattern that didn't compile. If there were additional arguments, their
locations in the message would be indicated as {1}, {2}, and so on.

If a message digest is not specified in the call to the exception constructor, the
default is UIMAException.STANDARD_MESSAGE_CATALOG (whose value is
“org.apache.uima.UIMAException_Messages ” in the current release but may
change). This message digest is located in the uima-core.jar file at org/apache/uima/
UIMAException_messages.properties – you can take a look to see if any of these exception
messages are useful to use.

To try out the regex_syntax_error exception, just use the Document Analyzer to run examples/
descriptors/tutorial/ex5/RoomNumberAnnotator.xml , which happens to have an
invalid regular expression in its configuration parameter settings.

To summarize, here are the steps to take if you want to define your own exception message:

Create a file with the .properties extension, where you declare message keys and their associated
messages, using the same syntax as shown above for the regex_syntax_error exception. The
properties file syntax is more completely described in the Javadocs for the load6 method of the
java.util.Properties class.

Put your properties file somewhere in your class path (it can be in your annotator's .jar file).

Define a String constant (called MESSAGE_DIGEST for example) in your annotator code whose
value is the dotted name of this properties file. For example, if your properties file is inside your jar
file at the location org/myorg/myannotator/Messages.properties, then this String constant
should have the value org.myorg.myannotator.Messages. Do not include the .properties
extension. In Java Internationalization terminology, this is called the Resource Bundle name. For
more information see the Javadocs for the PropertyResourceBundle7 class.

6 http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
7 http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html

Accessing External Resources

30 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

In your annotator code, throw an exception like this:

throw new ResourceInitializationException(
 MESSAGE_DIGEST, "your_message_name",
 new Object[]{param1,param2,...});

You may also wish to look at the Javadocs for the UIMAException class.

For more information on Java's internationalization features, see the Java Internationalization
Guide8.

1.5.4. Accessing External Resources

External Resources are Java objects that have a life cycle where they are (optionally) initialized
at startup time by reading external data from a file or via a URL (which can access information
over the http protocol, for instance). It is not required that Extermal Resource objects do any
external data reading to initialize themselves. However, this is such a common use case, that we
will presume this mode of operation in the description below.

Sometimes you may want an annotator to read from an external resource, such as a URL or a file –
for example, a long list of keys and values that you are going to build into a HashMap. You could,
of course, just introduce a configuration parameter that holds the absolute path or URL to this
resource, and build the HashMap in your annotator's initialize method. However, this is not the best
solution for three reasons:

1. Including an absolute path in your descriptor to specify the initialization data makes your
annotator difficult for others to use. Each user will need to edit this descriptor and set the
absolute path to a value appropriate for his or her installation.

2. You cannot share the created Java object(s), e.g., a HashMap, between multiple annotators.
Also, in some deployment scenarios there may be more than one instance of your annotator,
and you would like to have the option for them to share the same Java Object(s).

3. Your annotator would become dependent on a particular implementation of the Java
Object(s). It would be better if there was a decoupling between the actual implementation,
and the API used to access it.

A better way to create these sharable Java objects and initialize them via external disk or URL
sources is through the ResourceManager component. In this section we are going to show an
example of how to use the Resource Manager.

This example annotator will annotate UIMA acronyms (e.g. UIMA, AE, CAS, JCas) and store the
acronym's expanded form as a feature of the annotation. The acronyms and their expanded forms
are stored in an external file.

First, look at the examples/descriptors/tutorial/ex6/UimaAcronymAnnotator.xml
descriptor.

8 http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html

http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html

Accessing External Resources

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 31

The values of the rows in the two tables are longer than can be easily shown. You can click the
small button at the top right to shift the layout from two side-by-side tables, to a vertically stacked
layout. You can also click the small twisty on the “Imports for External Resources and Bindings” to
collapse this section, because it's not used here. Then the same screen will appear like this:

The top window has a scroll bar allowing you to see the rest of the line.

1.5.4.1. Declaring Resource Dependencies

The bottom window is where an annotator declares an external resource dependency. The XML for
this is as follows:

<externalResourceDependency>

Accessing External Resources

32 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

 <key>AcronymTable</key>
 <description>Table of acronyms and their expanded forms.</description>
 <interfaceName>
 org.apache.uima.tutorial.ex6.StringMapResource
 </interfaceName>
</externalResourceDependency>

The <key> value (AcronymTable) is the name by which the annotator identifies this
resource. The key must be unique for all resources that this annotator accesses, but the same
key could be used by different annotators to mean different things. The interface name
(org.apache.uima.tutorial.ex6.StringMapResource) is the Java interface through which
the annotator accesses the data. Specifying an interface name is optional. If you do not specify an
interface name, annotators will instead get an interface which can provide direct access to the data
resource (file or URL) that is associated with this external resource.

1.5.4.2. Accessing the Resource from the UimaContext

If you look at the org.apache.uima.tutorial.ex6.UimaAcronymAnnotator source, you
will see that the annotator accesses this resource from the UimaContext by calling:

StringMapResource mMap =
 (StringMapResource)getContext().getResourceObject("AcronymTable");

The object returned from the getResourceObject method will implement the interface
declared in the <interfaceName> section of the descriptor, StringMapResource in this
case. The annotator code does not need to know the location of external data that may be used
to initilize this object, nor the Java class that might be used to read the data and implement the
StringMapResource interface.

Note that if we did not specify a Java interface in our descriptor, our annotator could directly access
the resource data as follows:

InputStream stream = getContext().getResourceAsStream("AcronymTable");

If necessary, the annotator could also determine the location of the resource file, by calling:

URI uri = getContext().getResourceURI("AcronymTable");

These last two options are only available in the case where the descriptor does not declare a Java
interface.

Note: The methods for getting access to resources include getResourceURL. That
method returns a URL, which may contain spaces encoded as %20. url.getPath() would
return the path without decoding these %20 into spaces. getResourceURI on the other
hand, returns a URI, and the uri.getPath() does do the conversion of %20 into spaces. See
also getResourceFilePath, which does a getResourceURI followed by uri.getPath().

1.5.4.3. Declaring Resources and Bindings

Refer back to the top window in the Resources page of the Component Descriptor Editor. This is
where we specify the location of the resource data, and the Java class used to read the data. For the
example, this corresponds to the following section of the descriptor:

<resourceManagerConfiguration>
 <externalResources>

Accessing External Resources

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 33

 <externalResource>
 <name>UimaAcronymTableFile</name>
 <description>
 A table containing UIMA acronyms and their expanded forms.
 </description>
 <fileResourceSpecifier>
 <fileUrl>file:org/apache/uima/tutorial/ex6/uimaAcronyms.txt
 </fileUrl>
 </fileResourceSpecifier>
 <implementationName>
 org.apache.uima.tutorial.ex6.StringMapResource_impl
 </implementationName>
 </externalResource>
 </externalResources>

 <externalResourceBindings>
 <externalResourceBinding>
 <key>AcronymTable</key>
 <resourceName>UimaAcronymTableFile</resourceName>
 </externalResourceBinding>
 </externalResourceBindings>
</resourceManagerConfiguration>

The first section of this XML declares an externalResource, the UimaAcronymTableFile. With
this, the fileUrl element specifies the path to the data file. This can be a file on the file system,
but can also be a remote resource access via, e.g., the http protocol. The fileUrl element doesn't
have to be a "file", it can be a URL. This can be an absolute URL (e.g. one that starts with file:/
or file:///, or file://my.host.org/), but that is not recommended because it makes installation of
your component more difficult, as noted earlier. Better is a relative URL, which will be looked up
within the classpath (and/or datapath), as used in this example. In this case, the file org/apache/
uima/tutorial/ex6/uimaAcronyms.txt is located in uimaj-examples.jar, which is in the
classpath. If you look in this file you will see the definitions of several UIMA acronyms.

The second section of the XML declares an externalResourceBinding, which connects the key
AcronymTable, declared in the annotator's external resource dependency, to the actual resource
name UimaAcronymTableFile. This is rather trivial in this case; for more on bindings see
the example UimaMeetingDetectorAE.xml below. There is no global repository for external
resources; it is up to the user to define each resource needed by a particular set of annotators.

In the Component Descriptor Editor, bindings are indicated below the external resource. To create
a new binding, you select an external resource (which must have previously been defined), and
an external resource dependency, and then click the Bind button, which only enables if you have
selected two things to bind together.

When the Analysis Engine is initialized, it creates a single instance of
StringMapResource_impl and loads it with the contents of the data file. This means that the
framework calls the instance's load method, passing it an instance of DataResource, from which
you can obtain a stream or URI/URL of the external resource that was declared in the external
resource; for resources where loading does not make sense, you can implement a load method
which ignores its argument and just returns, or performes whatever initialization is appropriate at
startup time. See the Javadocs for SharedResourceObject for details on this.

The UimaAcronymAnnotator then accesses the data through the StringMapResource interface.
This single instance could be shared among multiple annotators, as will be explained later.

Warning: Because the implementation of the resource is shared, you should insure your
implementation is thread-safe, as it could be called multiple times on multiple threads,
simultaneously.

Accessing External Resources

34 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

Note that all resource implementation classes (e.g. StringMapResource_impl in the provided
example) must be declared public must not be declared abstract, and must have public, 0-argument
constructors, so that they can be instantiated by the framework. (Although Java classes in which
you do not define any constructor will, by default, have a 0-argument constructor that doesn't
do anything, a class in which you have defined at least one constructor does not get a default 0-
argument constructor.)

All resource implementation classes that provide access to resource data must also implement the
interface org.apache.uima.resource.SharedResourceObject. The UIMA Framework will invoke this
interface's only method, load, after this object has been instantiated. The implementation of this
method can then read data from the specified DataResource and use that data to initialize this
object. It can also do whatever resource initialization might be appropriate to do at startup time.

This annotator is illustrated in Figure 1.3, “External Resource Binding” [34]. To see it in
action, just run it using the Document Analyzer. When it finishes, open up the UIMA_Seminars
document in the processed results window, (double-click it), and then left-click on one of the
highlighted terms, to see the expandedForm feature's value.

Figure 1.3. External Resource Binding

By designing our annotator in this way, we have gained some flexibility. We can freely replace
the StringMapResource_impl class with any other implementation that implements the simple
StringMapResource interface. (For example, for very large resources we might not be able to have
the entire map in memory.) We have also made our external resource dependencies explicit in the
descriptor, which will help others to deploy our annotator.

1.5.4.4. Sharing Resources among Annotators

Another advantage of the Resource Manager is that it allows our data to be shared between
annotators. To demonstrate this we have developed another annotator that will use the same
acronym table. The UimaMeetingAnnotator will iterate over Meeting annotations discovered
by the Meeting Detector we previously developed and attempt to determine whether the
topic of the meeting is related to UIMA. It will do this by looking for occurrences of UIMA
acronyms in close proximity to the meeting annotation. We could implement this by using
the UimaAcronymAnnotator, of course, but for the sake of this example we will have the
UimaMeetingAnnotator access the acronym map directly.

The Java code for the UimaMeetingAnnotator in example 6 creates a new type, UimaMeeting, if it
finds a meeting within 50 characters of the UIMA acronym.

Accessing External Resources

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 35

We combine three analysis engines, the UimaAcronymAnnotator to annotate UIMA acronyms,
the MeetingDectector from example 4 to find meetings and finally the UimaMeetingAnnotator
to annotate just meetings about UIMA. Together these are assembled to form the new aggregate
analysis engine, UimaMeetingDectector. This aggregate and the sharing of a common resource are
illustrated in Figure 1.4, “Component engines of an aggregate share a common resource” [35].

Figure 1.4. Component engines of an aggregate share a common resource

The important thing to notice is in the UimaMeetingDetectorAE.xml aggregate descriptor. It
includes both the UimaMeetingAnnotator and the UimaAcronymAnnotator, and contains a single
declaration of the UimaAcronymTableFile resource. (The actual example has the order of the first
two annotators reversed versus the above picture, which is OK since they do not depend on one
another).

It also binds the resources as follows:

Accessing External Resources

36 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

<externalResourceBindings>
 <externalResourceBinding>
 <key>UimaAcronymAnnotator/AcronymTable</key>
 <resourceName>UimaAcronymTableFile</resourceName>
 </externalResourceBinding>

 <externalResourceBinding>
 <key>UimaMeetingAnnotator/UimaTermTable</key>
 <resourceName>UimaAcronymTableFile</resourceName>
 </externalResourceBinding>
</externalResourceBindings>

This binds the resource dependencies of both the UimaAcronymAnnotator (which uses the name
AcronymTable) and UimaMeetingAnnotator (which uses UimaTermTable) to the single declared
resource named UimaAcronymFile. Therefore they will share the same instance. Resource bindings
in the aggregate descriptor override any resource declarations in individual annotator descriptors.

If we wanted to have the annotators use different acronym tables, we could easily do that. We
would simply have to change the resourceName elements in the bindings so that they referred to
two different resources. The Resource Manager gives us the flexibility to make this decision at
deployment time, without changing any Java code.

1.5.4.5. Threading and Shared Resources

Sharing can also occur when multiple instances of an annotator are created by the framework in
response to run-time deployment specifications. If an implementation class is specified in the

Result Specifications

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 37

external resource, only one instance of that implementation class is created for a given binding, and
is shared among all annotators. Because of this, the implementation of that shared instance must
be written to be thread-safe - that is, to operate correctly when called at arbitrary times by multiple
threads. Writing thread-safe code in Java is addressed in several books, such as Brian Goetz's Java
Concurrency in Practice.

If no implementation class is specified, then the getResource method returns a DataResource
object, from which each annotator instance can obtain their own (non-shared) input stream; so
threading is not an issue in this case.

1.5.5. Result Specifications
Annotators often are written to do a lot of computation and produce a lot of different outputs.
For example, a tokenizer can, in addition to identifying tokens, look them up in dictionaries,
create lemma forms (dropping suffexes and prefixes), etc. Result Specifications provide a way to
dynamically specify what results are desired for a particular CAS being processed.

It is up to the annotator writer to take advantage of the result specification; using it is optional.
If it is used, the annotator writer checks if a particular output is wanted, by asking the result
specification if it contains a specific Type and/or Feature. If it does, then the annotator produces
that type/feature; if not, it skips the computations for producing that type/feature.

The Result Specification querying may include the language. A typical use case: The CAS contains
a document written in some language, and some upstream Annotator has discovered what this
language is. The Annotator extracts the previously discovered language specification from the
CAS and then includes it when querying the Result Specification. The exact method of encoding
language specifications in the CAS is left up to annotator developers; however, the framework
provides a commonly used type for this - the org.apache.uima.tcas.DocumentAnnotation type.

The Result Specification is passed to the annotator instance by calling its setResultSpecificaiton
method (this call is typically done by the framework, based on Capability specifications).
When called, the default implementation saves the result specification in an instance variable
of the Annotator instance, which can be accessed by the annotator using the protected
getResultSpecification() method.

A Result Specification is a list of output types and / or type:feature names, catagorized by
language(s), which are expected to be output from (produced by) the annotator. Annotators may use
this to optimize their operations, when possible, for those cases where only particular outputs are
wanted. The interface to the Result Specification object (see the Javadocs) allows querying both
types and particular features of types.

The languages specifications used by Result Specifications are the same that are specifiable in
Capability Specifications; examples include "en" for English, "en-uk" for British English, etc.
There is also a language type, "x-unspecified", which is presumed if no language specification(s)
are given.

If a query of the Result Specification doesn't include a language, it is treated as if the language
"x-unspecified" was specified. Language matching is hierarchically defaulted, in one direction:
if a query includes the language "en-uk", meaning that the document being processed is in that
language, it will match Result Specifications whose languages "en-uk", "en", or "x-unspecified".
In other words, if the Result Specifications say to produce output if the actual document's language
is en-uk, or en, or x-unspecified, then having the actual document's language be en-uk would
"match" any of these Result Specifications. However the reverse is not true: If the query asks about
producing output if the actual document's language is "x-unspecified", then it would not match

Result Specifications

38 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

if the Result Specification said to produce output only if the actual document is en-uk or en; the
Result Specification would need to say to produce output for "x-unspecified).

If the Result Specification indicates it wants output produced for "en-uk", but the annotator is given
a language which is unknown, or one that is known, but isn't "en-uk", then the query (using the
language of the document) will return false. This is true even if the language is "en". However, if
the Result Specification indicates it wants output for "en", and the query is for a document whose
language is "en-uk" then the query will return true.

Sometimes you can specify the Result Specification; othertimes, you cannot (for instance, inside a
Collection Processing Engine, you cannot). When you cannot specify it, or choose not to specify it
(for example, using the form of the process(...) call on an Analysis Engine that doesn't include the
Result Specification), a “Default” Result Specification is used.

1.5.5.1. Default ResultSpecification

The default Result Specification is taken from the Engine's output Capability Specification.
Remember that a Capability Specification has both inputs and outputs, can specify types and / or
features, and there can be more than one Capability Set. If there is more than one set, the logical
union by language of these sets is used. Each set can have a different "language(s)" specified;
the default Result Specification will have the outputs by language(s), so that the annotator can
query which outputs should be provided for particular languages. The methods to query the Result
Specification take a type and (optionally) a feature, and optionally, a language. If the queried type
is a subtype of some otherwise matching type in the Result Specification, it will match the query.
See the Javadocs for more details on this.

1.5.5.2. Passing Result Specifications to Annotators

If you are not using a Collection Processing Engine, you can specify
a Result Specification for your AnalysisEngine(s) by calling the
AnalysisEngine.setResultSpecification(ResultSpecification) method.

It is also possible to pass a Result Specification on each call to AnalysisEngine.process(CAS,
ResultSpecification). However, this is not recommended if your Result Specification
will stay constant across multiple calls to process. In that case it will be more efficient to call
AnalysisEngine.setResultSpecification(ResultSpecification) only when the
Result Specification changes.

For primitive Analysis Engines, whatever Result Specification you pass in is passed along to the
annotator's setResultSpecification(ResultSpecification) method. For aggregate
Analysis Engines, see below.

1.5.5.3. Aggregates

For aggregate engines, the Result Specification passed to the
AnalysisEngine.setResultSpecification(ResultSpecification) method is intended
to specify the set of output types/features that the aggregate should produce. This is not necessarily
equivalent to the set of output types/features that each annotator should produce. For example,
an annotator may need to produce an intermediate type that is then consumed by a downstream
annotator, even though that intermediate type is not part of the Result Specification.

To handle this situation, when
AnalysisEngine.setResultSpecification(ResultSpecification) is called on an
aggregate, the framework computes the union of the passed Result Specification with the set of all
input types and features of all component AnalysisEngines within that aggregate. This forms the

Class path setup when using JCas

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 39

complete set of types and features that any component of the aggregate might need to produce. This
derived Result Specification is then intersected with the delegate's output capabilities, and the result
is passed to the AnalysisEngine.setResultSpecification(ResultSpecification)
of each component AnalysisEngine. In the case of nested aggregates, this procedure is applied
recursively.

1.5.5.4. Collection Proessing Engines
The Default Result Specification is always used for all components of a Collection Processing
Engine.

1.5.6. Class path setup when using JCas
JCas provides Java classes that correspond to each CAS type in an application. These classes
are generated by the JCasGen utility (which can be automatically invoked from the Component
Descriptor Editor).

The Java source classes generated by the JCasGen utility are typically compiled and packaged into
a JAR file. This JAR file must be present in the classpath of the UIMA application.

For more details on issues around setting up this class path, including deployment issues where
class loaders are being used to isolate multiple UIMA applications inside a single running Java
Virtual Machine, please see UIMA References Section 5.6.6, “Class Loaders in UIMA” .

1.5.7. Using the Shell Scripts
The SDK includes a /bin subdirectory containing shell scripts, for Windows (.bat files) and Unix
(.sh files). Many of these scripts invoke sample Java programs which require a class path; they call
a common shell script, setUimaClassPath to set up the UIMA required files and directories on
the class path.

If you need to include files on the class path, the scripts will add anything you specify in the
environment variables CLASSPATH or UIMA_CLASSPATH to the classpath. So, for example,
if you are running the document analyzer, and wanted it to find a Java class file named (on
Windows) c:\a\b\c\myProject\myJarFile.jar, you could first issue a set command to set the
UIMA_CLASSPATH to this file, followed by the documentAnalyzer script:

set UIMA_CLASSPATH=c:\a\b\c\myProject\myJarFile.jar
documentAnalyzer

Other environment variables are used by the shell scripts, as follows:

Table 1.1. Environment variables used by the shell scripts

Environment Variable Description

UIMA_HOME Path where the UIMA SDK was installed.

JAVA_HOME (Optional) Path to a Java Runtime
Environment. If not set, the Java JRE that is in
your system PATH is used.

UIMA_CLASSPATH (Optional) if specified, a path specification to
use as the default ClassPath. You can also set
the CLASSPATH variable. If you set both,
they will be concatenated.

Common Pitfalls

40 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

Environment Variable Description

UIMA_DATAPATH (Optional) if specified, a path specification
to use as the default DataPath (see UIMA
References Section 2.2, “Imports”)

UIMA_LOGGER_CONFIG_FILE (Optional) if specified, a path to a Java Logger
properties file (see Section 1.2, “Configuration
and Logging” [13])

UIMA_JVM_OPTS (Optional) if specified, the JVM arguments to
be used when the Java process is started. This
can be used for example to set the maximum
Java heap size or to define system properties.

VNS_PORT (Optional) if specified, the network IP port
number of the Vinci Name Server (VNS) (see
Section 3.6.5, “The Vinci Naming Services
(VNS)”)

ECLIPSE_HOME (Optional) Needs to be set to the root of your
Eclipse installation when using shell scripts
that invoke Eclipse (e.g. jcasgen_merge)

1.6. Common Pitfalls
Here are some things to avoid doing in your annotator code:

Retaining references to JCas objects between calls to process()

The JCas will be cleared between calls to your annotator's process() method. All of the analysis
results related to the previous document will be deleted to make way for analysis of a new
document. Therefore, you should never save a reference to a JCas Feature Structure object (i.e.
an instance of a class created using JCasGen) and attempt to reuse it in a future invocation of the
process() method. If you do so, the results will be undefined.

Careless use of static data

Always keep in mind that an application that uses your annotator may create multiple instances
of your annotator class. A multithreaded application may attempt to use two instances of your
annotator to process two different documents simultaneously. This will generally not cause any
problems as long as your annotator instances do not share static data.

In general, you should not use static variables other than static final constants of primitive data
types (String, int, float, etc). Other types of static variables may allow one annotator instance to set
a value that affects another annotator instance, which can lead to unexpected effects. Also, static
references to classes that aren't thread-safe are likely to cause errors in multithreaded applications.

1.7. Viewing UIMA objects in the Eclipse debugger
Eclipse (as of version 3.1 or later) has a new feature for viewing Java Logical Structures. When
enabled, it will permit you to see a view of UIMA objects (such as feature structure instances, CAS
or JCas instances, etc.) which displays the logical subparts. For example, here is a view of a feature
structure for the RoomNumber annotation, from the tutorial example 1:

Analysis Engine XML Descriptor

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 41

The “annotation” object in Java shows as a 2 element object, not very convenient for seeing
the features or the part of the input that is being annotatoed. But if you turn on the Java Logical
Structure mode by pushing this button:

the features of the FeatureStructure instance will be shown:

1.8. Introduction to Analysis Engine Descriptor XML
Syntax

This section is an introduction to the syntax used for Analysis Engine Descriptors. Most users do
not need to understand these details; they can use the Component Descriptor Editor Eclipse plugin
to edit Analysis Engine Descriptors rather than editing the XML directly.

This section walks through the actual XML descriptor for the RoomNumberAnnotator example
introduced in section Section 1.1, “Getting Started” [2]. The discussion is divided into several
logical sections of the descriptor.

The full specification for Analysis Engine Descriptors is defined in UIMA References Chapter 2,
Component Descriptor Reference .

1.8.1. Header and Annotator Class Identification
<?xml version="1.0" encoding="UTF-8" ?>
<!-- Descriptor for the example RoomNumberAnnotator. -->

Simple Metadata Attributes

42 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

<analysisEngineDescription xmlns="http://uima.apache.org/resourceSpecifier">
 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>
 <primitive>true</primitive>
 <annotatorImplementationName>
 org.apache.uima.tutorial.ex1.RoomNumberAnnotator
 </annotatorImplementationName>

The document begins with a standard XML header and a comment. The root element of the
document is named <analysisEngineDescription>, and must specify the XML namespace
http://uima.apache.org/resourceSpecifier.

The first subelement, <frameworkImplementation>, must contain the value
org.apache.uima.java. The second subelement, <primitive>, contains the Boolean value
true, indicating that this XML document describes a Primitive Analysis Engine. A Primitive
Analysis Engine is comprised of a single annotator. It is also possible to construct XML descriptors
for non-primitive or Aggregate Analysis Engines; this is covered later.

The next element, <annotatorImplementationName>, contains the fully-qualified class name
of our annotator class. This is how the UIMA framework determines which annotator class to
instantiate.

1.8.2. Simple Metadata Attributes

<analysisEngineMetaData>
 <name>Room Number Annotator</name>
 <description>An example annotator that searches for room numbers in
 the IBM Watson research buildings.</description>
 <version>1.0</version>
 <vendor>The Apache Software Foundation</vendor></para>

Here are shown four simple metadata fields – name, description, version, and vendor. Providing
values for these fields is optional, but recommended.

1.8.3. Type System Definition

<typeSystemDescription>
 <imports>
 <import location="TutorialTypeSystem.xml"/>
 </imports>
</typeSystemDescription>

This section of the XML descriptor defines which types the annotator works with. The
recommended way to do this is to import the type system definition from a separate file, as shown
here. The location specified here should be a relative path, and it will be resolved relative to the
location of the aggregate descriptor. It is also possible to define types directly in the Analysis
Engine descriptor, but these types will not be easily shareable by others.

1.8.4. Capabilities

<capabilities>
 <capability>
 <inputs />
 <outputs>
 <type>org.apache.uima.tutorial.RoomNumber</type>
 <feature>org.apache.uima.tutorial.RoomNumber:building</feature>
 </outputs>

Configuration Parameters (Optional)

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 43

 </capability>
</capabilities>

The last section of the descriptor describes the Capabilities of the annotator – the Types/Features
it consumes (input) and the Types/Features that it produces (output). These must be the names of
types and features that exist in the ANALYSIS ENGINE descriptor's type system definition.

Our annotator outputs only one Type, RoomNumber and one feature, RoomNumber:building. The
fully-qualified names (including namespace) are needed.

The building feature is listed separately here, but clearly specifying every feature for a complex
type would be cumbersome. Therefore, a shortcut syntax exists. The <outputs> section above could
be replaced with the equivalent section:

<outputs>
 <type allAnnotatorFeatures ="true">
 org.apache.uima.tutorial.RoomNumber
 </type>
</outputs>

1.8.5. Configuration Parameters (Optional)

1.8.5.1. Configuration Parameter Declarations

<configurationParameters>
 <configurationParameter>
 <name>Patterns</name>
 <description>List of room number regular expression patterns.
 </description>
 <type>String</type>
 <multiValued>true</multiValued>
 <mandatory>true</mandatory>
 </configurationParameter>
 <configurationParameter>
 <name>Locations</name>
 <description>List of locations corresponding to the room number
 expressions specified by the Patterns parameter.
 </description>
 <type>String</type>
 <multiValued>true</multiValued>
 <mandatory>true</mandatory>
 </configurationParameter>
</configurationParameters>

The <configurationParameters> element contains the definitions of the configuration
parameters that our annotator accepts. We have declared two parameters. For each configuration
parameter, the following are specified:

• name – the name that the annotator code uses to refer to the parameter

• description – a natural language description of the intent of the parameter

• type – the data type of the parameter's value – must be one of String, Integer, Float, or
Boolean.

• multiValued – true if the parameter can take multiple-values (an array), false if the
parameter takes only a single value.

Configuration Parameters (Optional)

44 Annotator & AE Developer's Guide UIMA Version 3.0.0-alpha02

• mandatory – true if a value must be provided for the parameter

Both of our parameters are mandatory and accept an array of Strings as their value.

1.8.5.2. Configuration Parameter Settings

<configurationParameterSettings>
 <nameValuePair>
 <name>Patterns</name>
 <value>
 <array>
 <string>b[0-4]d-[0-2]ddb</string>
 <string>b[G1-4][NS]-[A-Z]ddb</string>
 <string>bJ[12]-[A-Z]ddb</string>
 </array>
 </value>
 </nameValuePair>
 <nameValuePair>
 <name>Locations</name>
 <value>
 <array>
 <string>Watson - Yorktown</string>
 <string>Watson - Hawthorne I</string>
 <string>Watson - Hawthorne II</string>
 </array>
 </value>
 </nameValuePair>
</configurationParameterSettings>

1.8.5.3. Aggregate Analysis Engine Descriptor

<?xml version="1.0" encoding="UTF-8" ?>
<analysisEngineDescription xmlns="http://uima.apache.org/resourceSpecifier">
 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>
 <primitive>false</primitive>

 <delegateAnalysisEngineSpecifiers>
 <delegateAnalysisEngine key="RoomNumber">
 <import location="../ex2/RoomNumberAnnotator.xml"/>
 </delegateAnalysisEngine>
 <delegateAnalysisEngine key="DateTime">
 <import location="TutorialDateTime.xml" />
 </delegateAnalysisEngine>
 </delegateAnalysisEngineSpecifiers>

The first difference between this descriptor and an individual annotator's descriptor is that the
<primitive> element contains the value false. This indicates that this Analysis Engine (AE) is
an aggregate AE rather than a primitive AE.

Then, instead of a single annotator class name, we have a list of
delegateAnalysisEngineSpecifiers. Each specifies one of the components that constitute
our Aggregate . We refer to each component by the relative path from this XML descriptor to the
component AE's XML descriptor.

This list of component AEs does not imply an ordering of them in the execution pipeline. Ordering
is done by another section of the descriptor:

<analysisEngineMetaData>
 <name>Aggregate AE - Room Number and DateTime Annotators</name>

Configuration Parameters (Optional)

UIMA Version 3.0.0-alpha02 Annotator & AE Developer's Guide 45

 <description>Detects Room Numbers, Dates, and Times</description>
 <flowConstraints>
 <fixedFlow>
 <node>RoomNumber</node>
 <node>DateTime</node>
 </fixedFlow>
 </flowConstraints>

Here, a fixedFlow is adequate, and we specify the exact ordering in which the AEs will be
executed. In this case, it doesn't really matter, since the RoomNumber and DateTime annotators do
not have any dependencies on one another.

Finally, the descriptor has a capabilities section, which has exactly the same syntax as a primitive
AE's capabilities section:

<capabilities>
 <capability>
 <inputs />
 <outputs>
 <type allAnnotatorFeatures="true">
 org.apache.uima.tutorial.RoomNumber
 </type>
 <type allAnnotatorFeatures="true">
 org.apache.uima.tutorial.DateAnnot
 </type>
 <type allAnnotatorFeatures="true">
 org.apache.uima.tutorial.TimeAnnot
 </type>
 </outputs>
 <languagesSupported>
 <language>en</language>
 </languagesSupported>
 </capability>
</capabilities>

CPE Developer's Guide 47

Chapter 2. Collection Processing Engine
Developer's Guide

Note: The CPE (Collection Processing Engine) was an early approach to supporting some
scale-out use cases. It is an older approach that doesn't support some of the newer features
of CASes such as multiple views and CAS Multipliers. It has been supplanted by UIMA-
AS, which has full support for the new features.

The UIMA Analysis Engine interface provides support for developing and integrating algorithms
that analyze unstructured data. Analysis Engines are designed to operate on a per-document
basis. Their interface handles one CAS at a time. UIMA provides additional support for applying
analysis engines to collections of unstructured data with its Collection Processing Architecture.
The Collection Processing Architecture defines additional components for reading raw data
formats from data collections, preparing the data for processing by Analysis Engines, executing
the analysis, extracting analysis results, and deploying the overall flow in a variety of local and
distributed configurations.

The functionality defined in the Collection Processing Architecture is implemented by a Collection
Processing Engine (CPE). A CPE includes an Analysis Engine and adds a Collection Reader,
a CAS Initializer (deprecated as of version 2), and CAS Consumers. The part of the UIMA
Framework that supports the execution of CPEs is called the Collection Processing Manager, or
CPM.

A Collection Reader provides the interface to the raw input data and knows how to iterate over
the data collection. Collection Readers are discussed in Section 2.4.1, “Developing Collection
Readers” [55]. The CAS Initializer 1 prepares an individual data item for analysis and
loads it into the CAS. CAS Initializers are discussed in Section 2.4.2, “Developing CAS
Initializers” [60] A CAS Consumer extracts analysis results from the CAS and may also
perform collection level processing, or analysis over a collection of CASes. CAS Consumers are
discussed in Section 2.4.3, “Developing CAS Consumers” [61].

Analysis Engines and CAS Consumers are both instances of CAS Processors. A Collection
Processing Engine (CPE) may contain multiple CAS Processors. An Analysis Engine contained in
a CPE may itself be a Primitive or an Aggregate (composed of other Analysis Engines). Aggregates
may contain Cas Consumers. While Collection Readers and CAS Initializers always run in the
same JVM as the CPM, a CAS Processor may be deployed in a variety of local and distributed
modes, providing a number of options for scalability and robustness. The different deployment
options are covered in detail in Section 2.5, “Deploying a CPE” [64].

Each of the components in a CPE has an interface specified by the UIMA Collection Processing
Architecture and is described by a declarative XML descriptor file. Similarly, the CPE itself has a
well defined component interface and is described by a declarative XML descriptor file.

A user creates a CPE by assembling the components mentioned above. The UIMA SDK provides a
graphical tool, called the CPE Configurator, for assisting in the assembly of CPEs. Use of this tool
is summarized in Section 2.2.1, “Using the CPE Configurator” [49], and more details can be
found in UIMA Tools Guide and Reference Chapter 2, Collection Processing Engine Configurator
User's Guide. Alternatively, a CPE can be assembled by writing an XML CPE descriptor. Details
on the CPE descriptor, including its syntax and content, can be found in the UIMA References
Chapter 3, Collection Processing Engine Descriptor Reference. The individual components have

1CAS Initializers are deprecated in favor of a more general mechanism, multiple subjects of analysis.

CPE Concepts

48 CPE Developer's Guide UIMA Version 3.0.0-alpha02

associated XML descriptors, each of which can be created and / or edited using the Component
Description Editor.

A CPE is executed by a UIMA infrastructure component called the Collection Processing
Manager (CPM). The CPM provides a number of services and deployment options that cover
instantiation and execution of CPEs, error recovery, and local and distributed deployment of the
CPE components.

2.1. CPE Concepts
Figure 2.1, “CPE Components” [48] illustrates the data flow that occurs between the different
types of components that make up a CPE.

Figure 2.1. CPE Components

The components of a CPE are:

• Collection Reader – interfaces to a collection of data items (e.g., documents) to be analyzed.
Collection Readers return CASes that contain the documents to analyze, possibly along with
additional metadata.

• Analysis Engine – takes a CAS, analyzes its contents, and produces an enriched CAS.
Analysis Engines can be recursively composed of other Analysis Engines (called an
Aggregate Analysis Engine). Aggregates may also contain CAS Consumers.

• CAS Consumer – consume the enriched CAS that was produced by the sequence of Analysis
Engines before it, and produce an application-specific data structure, such as a search engine
index or database.

A fourth type of component, the CAS Initializer, may be used by a Collection Reader to populate
a CAS from a document. However, as of UIMA version 2 CAS Initializers are now deprecated in
favor of a more general mechsanism, multiple Subjects of Analysis.

CPE Configurator and CAS viewer

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 49

The Collection Processing Manager orchestrates the data flow within a CPE, monitors status,
optionally manages the life-cycle of internal components and collects statistics.

CASes are not saved in a persistent way by the framework. If you want to save CASes, then you
have to save each CAS as it comes through (for example) using a CAS Consumer you write to do
this, in whatever format you like. The UIMA SDK supplies an example CAS Consumer to save
CASes to XML files, either in the standard XMI format or in an older format called XCAS. It also
supplies an example CAS Consumer to extract information from CASes and store the results into a
relational Database, using Java's JDBC APIs.

2.2. CPE Configurator and CAS viewer

2.2.1. Using the CPE Configurator

A CPE can be assembled by writing an XML CPE descriptor. Details on the CPE descriptor,
including its syntax and content, can be found in UIMA References Chapter 3, Collection
Processing Engine Descriptor Reference. Rather than edit raw XML, you may develop a CPE
Descriptor using the CPE Configurator tool. The CPE Configurator tool is described briefly in this
section, and in more detail in UIMA Tools Guide and Reference Chapter 2, Collection Processing
Engine Configurator User's Guide.

The CPE Configurator tool can be run from Eclipse (see Section 2.2.2, “Running the CPE
Configurator from Eclipse” [53], or using the cpeGui shell script (cpeGui.bat on Windows,
cpeGui.sh on Unix), which is located in the bin directory of the UIMA SDK installation.
Executing this batch file will display the window shown here:

Using the CPE Configurator

50 CPE Developer's Guide UIMA Version 3.0.0-alpha02

The window is divided into three sections, one each for the Collection Reader, Analysis Engines,
and CAS Consumers.2 In each section, you select the component(s) you want to include in the
CPE by browsing to their XML descriptors. The configuration parameters present in the XML
descriptors will then be displayed in the GUI; these can be modified to override the values present
in the descriptor. For example, the screen shot below shows the CPE Configurator after the
following components have been chosen:

Collection Reader:
 %UIMA_HOME%/examples/descriptors/collection_reader/
 FileSystemCollectionReader.xml

Analysis Engine:
 %UIMA_HOME%/examples/descriptors/analysis_engine/
 NamesAndPersonTitles_TAE.xml

CAS Consumer:
 %UIMA_HOME%/examples/descriptors/cas_consumer/
 XmiWriterCasConsumer.xml

2There is also a fourth pane, for the CAS Initializer, but it is hidden by default. To enable it click the View → CAS Initializer
Panel menu item.

Using the CPE Configurator

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 51

For the File System Collection Reader, ensure that the Input Directory is set to %UIMA_HOME
%\examples\data3. The other parameters may be left blank. For the External CAS Writer
CAS Consumer, ensure that the Output Directory is set to %UIMA_HOME%\examples\data
\processed.

After selecting each of the components and providing configuration settings, click the play
(forward arrow) button at the bottom of the screen to begin processing. A progress bar should
be displayed in the lower left corner. (Note that the progress bar will not begin to move until all
components have completed their initialization, which may take several seconds.) Once processing
has begun, the pause and stop buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes successfully,
you will be presented with a performance report.

Using the File menu, you can select Save CPE Descriptor to create an .xml descriptor file that
defines the CPE you have constructed. Later, you can use Open CPE Descriptor to restore the
CPE Configurator to the saved state. Also, CPE descriptors can be used to run a CPE from a Java
program – see section Section 2.3, “Running a CPE from Your Own Java Application” [54].
CPE Descriptors allow specifying operational parameters, such as error handling options, that are
not currently available for configuration through the CPE Configurator. For more information on

3Replace %UIMA_HOME% with the path to where you installed UIMA.

Using the CPE Configurator

52 CPE Developer's Guide UIMA Version 3.0.0-alpha02

manually creating a CPE Descriptor, see the UIMA References Chapter 3, Collection Processing
Engine Descriptor Reference.

The CPE configured above runs a simple name and title annotator on the sample data provided
with the UIMA SDK and stores the results using the XMI Writer CAS Consumer. To view the
results, start the External CAS Annotation Viewer by running the annotationViewer batch file
(annotationViewer.bat on Windows, annotationViewer.sh on Unix), which is located in
the bin directory of the UIMA SDK installation. Executing this batch file will display the window
shown here:

Ensure that the Input Directory is the same as the Output Directory specified for the XMI Writer
CAS Consumer in the CPE configured above (e.g., %UIMA_HOME%\examples\data\processed)
and that the TAE Descriptor File is set to the Analysis Engine used in the CPE configured above
(e.g., examples\descriptors\analysis_engine\NamesAndPersonTitles_TAE.xml).

Click the View button to display the Analyzed Documents window:

Double click on any document in the list to view the analyzed document. Double clicking the first
document, IBM_LifeSciences.txt, will bring up the following window:

Running the CPE Configurator from Eclipse

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 53

This window shows the analysis results for the document. Clicking on any highlighted annotation
causes the details for that annotation to be displayed in the right-hand pane. Here the annotation
spanning “John M. Thompson” has been clicked.

Congratulations! You have successfully configured a CPE, saved its descriptor, run the CPE, and
viewed the analysis results.

2.2.2. Running the CPE Configurator from Eclipse

If you have followed the instructions in UIMA Overview & SDK Setup Chapter 3, Setting up the
Eclipse IDE to work with UIMA and imported the example Eclipse project, then you should already
have a Run configuration for the CPE Configurator tool (called UIMA CPE GUI) configured to run
in the example project. Simply run that configuration to start the CPE Configurator.

If you haven't followed the Eclipse setup instructions and wish to run the CPE Configurator tool
from Eclipse, you will need to do the following. As installed, this Eclipse launch configuration
is associated with the “uimaj-examples” project. If you've not already done so, you may wish
to import that project into your Eclipse workspace. It's located in %UIMA_HOME%/docs/
examples. Doing this will supply the Eclipse launcher with all the class files it needs to run the
CPE configurator. If you don't do this, please manually add the JAR files for UIMA to the launch
configuration.

Also, you need to add any projects or JAR files for any UIMA components you will be running to
the launch class path.

Note: A simpler alternative may be to change the CPE launch configuration to be based
on your project. If you do that, it will pick up all the files in your project's class path,

Running a CPE from Your Own Java Application

54 CPE Developer's Guide UIMA Version 3.0.0-alpha02

which you should set up to include all the UIMA framework files. An easy way to do
this is to specify in your project's properties' build-path that the uimaj-examples project is
on the build path, because the uimaj-examples project is set up to include all the UIMA
framework classes in its classpath already.

Next, in the Eclipse menu select Run → Run..., which brings up the Run configuration screen.

In the Main tab, set the main class to org.apache.uima.tools.cpm.CpmFrame

In the arguments tab, add the following to the VM arguments:

-Xms128M -Xmx256M
-Duima.home="C:\Program Files\Apache\uima"

(or wherever you installed the UIMA SDK)

Click the Run button to launch the CPE Configurator, and use it as previously described in this
section.

2.3. Running a CPE from Your Own Java
Application

The simplest way to run a CPE from a Java application is to first create a CPE descriptor as
described in the previous section. Then the CPE can be instantiated and run using the following
code:

 //parse CPE descriptor in file specified on command line
CpeDescription cpeDesc = UIMAFramework.getXMLParser().
 parseCpeDescription(new XMLInputSource(args[0]));

 //instantiate CPE
mCPE = UIMAFramework.produceCollectionProcessingEngine(cpeDesc);

 //Create and register a Status Callback Listener
mCPE.addStatusCallbackListener(new StatusCallbackListenerImpl());

 //Start Processing
mCPE.process();

This will start the CPE running in a separate thread.

Note: The process() method for a CPE can only be called once. If you need to call it
again, you have to instantiate a new CPE, and call that new CPE's process method.

2.3.1. Using Listeners

Updates of the CPM's progress, including any errors that occur, are sent to the callback handler
that is registered by the call to addStatusCallbackListener, above. The callback handler is
a class that implements the CPM's StatusCallbackListener interface. It responds to events
by printing messages to the console. The source code is fairly straightforward and is not included
in this chapter – see the org.apache.uima.examples.cpe.SimpleRunCPE.java in the
%UIMA_HOME%\examples\src directory for the complete code.

Developing Collection Processing Components

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 55

If you need more control over the information in the CPE descriptor, you can manually configure it
via its API. See the Javadocs for package org.apache.uima.collection for more details.

2.4. Developing Collection Processing Components
This section is an introduction to the process of developing Collection Readers, CAS Initializers,
and CAS Consumers. The code snippets refer to the classes that can be found in %UIMA_HOME%
\examples\src example project.

In the following sections, classes you write to represent components need to be public and have
public, 0-argument constructors, so that they can be instantiated by the framework. (Although Java
classes in which you do not define any constructor will, by default, have a 0-argument constructor
that doesn't do anything, a class in which you have defined at least one constructor does not get a
default 0-argument constructor.)

2.4.1. Developing Collection Readers

A Collection Reader is responsible for obtaining documents from the collection and returning each
document as a CAS. Like all UIMA components, a Collection Reader consists of two parts — the
code and an XML descriptor.

A simple example of a Collection Reader is the “File System Collection Reader,” which
simply reads documents from files in a specified directory. The Java code is in the class
org.apache.uima.examples.cpe.FileSystemCollectionReader and the XML
descriptor is %UIMA_HOME%/examples/src/main/descriptors/collection_reader/
FileSystemCollectionReader.xml.

2.4.1.1. Java Class for the Collection Reader

The Java class for a Collection Reader must implement the
org.apache.uima.collection.CollectionReader interface. You may build your
Collection Reader from scratch and implement this interface, or you may extend the convenience
base class org.apache.uima.collection.CollectionReader_ImplBase .

The convenience base class provides default implementations for many of the methods defined in
the CollectionReader interface, and provides abstract definitions for those methods that you
are required to implement in your new Collection Reader. Note that if you extend this base class,
you do not need to declare that your new Collection Reader implements the CollectionReader
interface.

Tip: Eclipse tip – if you are using Eclipse, you can quickly create the
boiler plate code and stubs for all of the required methods by clicking File

→ New → Class to bring up the “New Java Class” dialogue, specifying
org.apache.uima.collection.CollectionReader_ImplBase as the Superclass,
and checking “Inherited abstract methods” in the section “Which method stubs would you
like to create?”, as in the screenshot below:

Developing Collection Readers

56 CPE Developer's Guide UIMA Version 3.0.0-alpha02

For the rest of this section we will assume that your new Collection Reader extends
the CollectionReader_ImplBase class, and we will show examples from the
org.apache.uima.examples.cpe.FileSystemCollectionReader . If you must inherit
from a different superclass, you must ensure that your Collection Reader implements the
CollectionReader interface – see the Javadocs for CollectionReader for more details.

2.4.1.2. Required Methods in the Collection Reader class

The following abstract methods must be implemented:

initialize()

The initialize() method is called by the framework when the Collection Reader is first
created. CollectionReader_ImplBase actually provides a default implementation of this
method (i.e., it is not abstract), so you are not strictly required to implement this method. However,
a typical Collection Reader will implement this method to obtain parameter values and perform
various initialization steps.

In this method, the Collection Reader class can access the values of its configuration parameters
and perform other initialization logic. The example File System Collection Reader reads its
configuration parameters and then builds a list of files in the specified input directory, as follows:

Developing Collection Readers

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 57

public void initialize() throws ResourceInitializationException {
 File directory = new File(
 (String)getConfigParameterValue(PARAM_INPUTDIR));
 mEncoding = (String)getConfigParameterValue(PARAM_ENCODING);
 mDocumentTextXmlTagName = (String)getConfigParameterValue(PARAM_XMLTAG);
 mLanguage = (String)getConfigParameterValue(PARAM_LANGUAGE);
 mCurrentIndex = 0;

 //get list of files (not subdirectories) in the specified directory
 mFiles = new ArrayList();
 File[] files = directory.listFiles();
 for (int i = 0; i < files.length; i++) {
 if (!files[i].isDirectory()) {
 mFiles.add(files[i]);
 }
 }
}

Note: This is the zero-argument version of the initialize method. There is also a method on
the Collection Reader interface called initialize(ResourceSpecifier, Map) but
it is not recommended that you override this method in your code. That method performs
internal initialization steps and then calls the zero-argument initialize().

hasNext()

The hasNext() method returns whether or not there are any documents remaining to be read from
the collection. The File System Collection Reader's hasNext() method is very simple. It just
checks if there are any more files left to be read:

public boolean hasNext() {
 return mCurrentIndex < mFiles.size();
}

getNext(CAS)

The getNext() method reads the next document from the collection and populates a CAS. In the
simple case, this amounts to reading the file and calling the CAS's setDocumentText method.
The example File System Collection Reader is slightly more complex. It first checks for a CAS
Initializer. If the CPE includes a CAS Initializer, the CAS Initializer is used to read the document,
and initialize() the CAS. If the CPE does not include a CAS Initializer, the File System
Collection Reader reads the document and sets the document text in the CAS.

The File System Collection Reader also stores additional metadata about the document
in the CAS. In particular, it sets the document's language in the special built-in feature
structure uima.tcas.DocumentAnnotation (see UIMA References Section 4.3,
“Built-in CAS Types” for details about this built-in type) and creates an instance of
org.apache.uima.examples.SourceDocumentInformation , which stores information
about the document's source location. This information may be useful to downstream components
such as CAS Consumers. Note that the type system descriptor for this type can be found in
org.apache.uima.examples.SourceDocumentInformation.xml , which is located in the
examples/src directory.

The getNext() method for the File System Collection Reader looks like this:

 public void getNext(CAS aCAS) throws IOException, CollectionException {
 JCas jcas;

Developing Collection Readers

58 CPE Developer's Guide UIMA Version 3.0.0-alpha02

 try {
 jcas = aCAS.getJCas();
 } catch (CASException e) {
 throw new CollectionException(e);
 }

 // open input stream to file
 File file = (File) mFiles.get(mCurrentIndex++);
 BufferedInputStream fis =
 new BufferedInputStream(new FileInputStream(file));
 try {
 byte[] contents = new byte[(int) file.length()];
 fis.read(contents);
 String text;
 if (mEncoding != null) {
 text = new String(contents, mEncoding);
 } else {
 text = new String(contents);
 }
 // put document in CAS
 jcas.setDocumentText(text);
 } finally {
 if (fis != null)
 fis.close();
 }

 // set language if it was explicitly specified
 //as a configuration parameter
 if (mLanguage != null) {
 ((DocumentAnnotation) jcas.getDocumentAnnotationFs()).
 setLanguage(mLanguage);
 }

 // Also store location of source document in CAS.
 // This information is critical if CAS Consumers will
 // need to know where the original document contents
 // are located.
 // For example, the Semantic Search CAS Indexer
 // writes this information into the search index that
 // it creates, which allows applications that use the
 // search index to locate the documents that satisfy
 //their semantic queries.
 SourceDocumentInformation srcDocInfo =
 new SourceDocumentInformation(jcas);
 srcDocInfo.setUri(
 file.getAbsoluteFile().toURL().toString());
 srcDocInfo.setOffsetInSource(0);
 srcDocInfo.setDocumentSize((int) file.length());
 srcDocInfo.setLastSegment(
 mCurrentIndex == mFiles.size());
 srcDocInfo.addToIndexes();
 }

The Collection Reader can create additional annotations in the CAS at this point, in the same way
that annotators create annotations.

getProgress()

The Collection Reader is responsible for returning progress information; that is, how much of
the collection has been read thus far and how much remains to be read. The framework defines
progress very generally; the Collection Reader simply returns an array of Progress objects, where

Developing Collection Readers

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 59

each object contains three fields — the amount already completed, the total amount (if known), and
a unit (e.g. entities (documents), bytes, or files). The method returns an array so that the Collection
Reader can report progress in multiple different units, if that information is available. The File
System Collection Reader's getProgress() method looks like this:

public Progress[] getProgress() {
 return new Progress[]{
 new ProgressImpl(mCurrentIndex,mFiles.size(),Progress.ENTITIES)};
}

In this particular example, the total number of files in the collection is known, but the total size
of the collection is not known. As such, a ProgressImpl object for Progress.ENTITIES is
returned, but a ProgressImpl object for Progress.BYTES is not.

close()

The close method is called when the Collection Reader is no longer needed. The Collection Reader
should then release any resources it may be holding. The FileSystemCollectionReader does not
hold resources and so has an empty implementation of this method:

public void close() throws IOException { }

Optional Methods

The following methods may be implemented:

reconfigure()

This method is called if the Collection Reader's configuration parameters change.

typeSystemInit()

If you are only setting the document text in the CAS, or if you are using the JCas (recommended,
as in the current example, you do not have to implement this method. If you are directly using the
CAS API, this method is used in the same way as it is used for an annotator – see Section 1.5.1,
“Annotator Methods” for more information.

Threading considerations

Collection readers do not have to be thread safe; they are run with a single thread per instance, and
only one instance per instance of the Collection Processing Manager (CPM) is made.

XML Descriptor for a Collection Reader

You can use the Component Description Editor to create and / or edit the File System Collection
Reader's descriptor. Here is its descriptor (abbreviated somewhat), which is very similar to an
Analysis Engine descriptor:

<collectionReaderDescription
 xmlns="http://uima.apache.org/resourceSpecifier">
 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>
 <implementationName>
 org.apache.uima.examples.cpe.FileSystemCollectionReader
 </implementationName>
 <processingResourceMetaData>
 <name>File System Collection Reader</name>
 <description>Reads files from the filesystem.</description>

Developing CAS Initializers

60 CPE Developer's Guide UIMA Version 3.0.0-alpha02

 <version>1.0</version>
 <vendor>The Apache Software Foundation</vendor>
 <configurationParameters>
 <configurationParameter>
 <name>InputDirectory</name>
 <description>Directory containing input files</description>
 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>true</mandatory>
 </configurationParameter>
 <configurationParameter>
 <name>Encoding</name>
 <description>Character encoding for the documents.</description>
 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>false</mandatory>
 </configurationParameter>
 <configurationParameter>
 <name>Language</name>
 <description>ISO language code for the documents</description>
 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>false</mandatory>
 </configurationParameter>
 </configurationParameters>
 <configurationParameterSettings>
 <nameValuePair>
 <name>InputDirectory</name>
 <value>
 <string>C:/Program Files/apache/uima/examples/data</string>
 </value>
 </nameValuePair>
 </configurationParameterSettings>

 <!-- Type System of CASes returned by this Collection Reader -->

 <typeSystemDescription>
 <imports>
 <import name="org.apache.uima.examples.SourceDocumentInformation"/>
 </imports>
 </typeSystemDescription>

 <capabilities>
 <capability>
 <inputs/>
 <outputs>
 <type allAnnotatorFeatures="true">
 org.apache.uima.examples.SourceDocumentInformation
 </type>
 </outputs>
 </capability>
 </capabilities>
 <operationalProperties>
 <modifiesCas>true</modifiesCas>
 <multipleDeploymentAllowed>false</multipleDeploymentAllowed>
 <outputsNewCASes>true</outputsNewCASes>
 </operationalProperties>
 </processingResourceMetaData>
</collectionReaderDescription>

2.4.2. Developing CAS Initializers
Note: CAS Initializers are now deprecated (as of version 2.1). For complex initialization,
please use instead the capabilities of creating additional Subjects of Analysis (see
Chapter 6, Multiple CAS Views of an Artifact).

Developing CAS Consumers

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 61

In UIMA 1.x, the CAS Initializer component was intended to be used as a plug-in to the Collection
Reader for when the task of populating the CAS from a raw document is complex and might be
reusable with other data collections.

A CAS Initializer Java class must implement the interface
org.apache.uima.collection.CasInitializer, and will also generally extend from the
convenience base class org.apache.uima.collection.CasInitializer_ImplBase. A
CAS Initializer also must have an XML descriptor, which has the exact same form as a Collection
Reader Descriptor except that the outer tag is <casInitializerDescription>.

CAS Initializers have optional initialize(), reconfigure(), and typeSystemInit()
methods, which perform the same functions as they do for Collection Readers. The only required
method for a CAS Initializer is initializeCas(Object, CAS). This method takes the raw
document (for example, an InputStream object from which the document can be read) and a
CAS, and populates the CAS from the document.

2.4.3. Developing CAS Consumers
Note: In version 2, there is no difference in capability between CAS Consumers and
ordinary Analysis Engines, except for the default setting of the XML parameters for
multipleDeploymentAllowed and modifiesCas. We recommend for future work that
users implement and use Analysis Engine components instead of CAS Consumers.

A CAS Consumer receives each CAS after it has been analyzed by the Analysis Engine. CAS
Consumers typically do not update the CAS; they typically extract data from the CAS and persist
selected information to aggregate data structures such as search engine indexes or databases.

A CAS Consumer Java class must implement the interface
org.apache.uima.collection.CasConsumer, and will also generally extend from the
convenience base class org.apache.uima.collection.CasConsumer_ImplBase. A CAS
Consumer also must have an XML descriptor, which has the exact same form as a Collection
Reader Descriptor except that the outer tag is <casConsumerDescription>.

CAS Consumers have optional initialize(), reconfigure(), and typeSystemInit()
methods, which perform the same functions as they do for Collection Readers and CAS Initializers.
The only required method for a CAS Consumer is processCas(CAS), which is where the CAS
Consumer does the bulk of its work (i.e., consume the CAS).

The CasConsumer interface (as well as the version 2 Analysis Engine interface) additionally
defines batch and collection level processing methods. The CAS Consumer or Analysis Engine can
implement the batchProcessComplete() method to perform processing that should occur at the
end of each batch of CASes. Similarly, the CAS Consumer or Analysis Engine can implement the
collectionProcessComplete() method to perform any collection level processing at the end
of the collection.

A very simple example of a CAS Consumer, which writes an XML representation
of the CAS to a file, is the XMI Writer CAS Consumer. The Java code is in the class
org.apache.uima.examples.cpe.XmiWriterCasConsumer and the descriptor is in
%UIMA_HOME%/examples/descriptors/cas_consumer/XmiWriterCasConsumer.xml .

2.4.3.1. Required Methods for a CAS Consumer

When extending the convenience class
org.apache.uima.collection.CasConsumer_ImplBase, the following abstract methods
must be implemented:

Developing CAS Consumers

62 CPE Developer's Guide UIMA Version 3.0.0-alpha02

initialize()

The initialize() method is called by the framework when the CAS Consumer is first created.
CasConsumer_ImplBase actually provides a default implementation of this method (i.e., it is
not abstract), so you are not strictly required to implement this method. However, a typical CAS
Consumer will implement this method to obtain parameter values and perform various initialization
steps.

In this method, the CAS Consumer can access the values of its configuration parameters and
perform other initialization logic. The example XMI Writer CAS Consumer reads its configuration
parameters and sets up the output directory:

public void initialize() throws ResourceInitializationException {
 mDocNum = 0;
 mOutputDir = new File((String) getConfigParameterValue(PARAM_OUTPUTDIR));
 if (!mOutputDir.exists()) {
 mOutputDir.mkdirs();
 }
}

processCas()

The processCas() method is where the CAS Consumer does most of its work. In our example,
the XMI Writer CAS Consumer obtains an iterator over the document metadata in the CAS (in
the SourceDocumentInformation feature structure, which is created by the File System Collection
Reader) and extracts the URI for the current document. From this the output filename is constructed
in the output directory and a subroutine (writeXmi) is called to generate the output file. The
writeXmi subroutine uses the XmiCasSerializer class provided with the UIMA SDK to
serialize the CAS to the output file (see the example source code for details).

public void processCas(CAS aCAS) throws ResourceProcessException {
 String modelFileName = null;

 JCas jcas;
 try {
 jcas = aCAS.getJCas();
 } catch (CASException e) {
 throw new ResourceProcessException(e);
 }

 // retreive the filename of the input file from the CAS
 FSIterator it = jcas
 .getAnnotationIndex(SourceDocumentInformation.type)
 .iterator();
 File outFile = null;
 if (it.hasNext()) {
 SourceDocumentInformation fileLoc =
 (SourceDocumentInformation) it.next();
 File inFile;
 try {
 inFile = new File(new URL(fileLoc.getUri()).getPath());
 String outFileName = inFile.getName();
 if (fileLoc.getOffsetInSource() > 0) {
 outFileName += ("_" + fileLoc.getOffsetInSource());
 }
 outFileName += ".xmi";
 outFile = new File(mOutputDir, outFileName);
 modelFileName = mOutputDir.getAbsolutePath() +
 "/" + inFile.getName() + ".ecore";

Deploying a CPE

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 63

 } catch (MalformedURLException e1) {
 // invalid URL, use default processing below
 }
 }
 if (outFile == null) {
 outFile = new File(mOutputDir, "doc" + mDocNum++);
 }
 // serialize XCAS and write to output file
 try {
 writeXmi(jcas.getCas(), outFile, modelFileName);
 } catch (IOException e) {
 throw new ResourceProcessException(e);
 } catch (SAXException e) {
 throw new ResourceProcessException(e);
 }
}

Optional Methods

The following methods are optional in a CAS Consumer, though they are often used.

batchProcessComplete()

The framework calls the batchProcessComplete() method at the end of each batch of CASes. This
gives the CAS Consumer or Analysis Engine an opportunity to perform any batch level processing.
Our simple XMI Writer CAS Consumer does not perform any batch level processing, so this
method is empty. Batch size is set in the Collection Processing Engine descriptor.

collectionProcessComplete()

The framework calls the collectionProcessComplete() method at the end of the collection (i.e.,
when all objects in the collection have been processed). At this point in time, no CAS is passed
in as a parameter. This gives the CAS Consumer or Analysis Engine an opportunity to perform
collection processing over the entire set of objects in the collection. Our simple XMI Writer CAS
Consumer does not perform any collection level processing, so this method is empty.

2.5. Deploying a CPE
The CPM provides a number of service and deployment options that cover instantiation and
execution of CPEs, error recovery, and local and distributed deployment of the CPE components.
The behavior of the CPM (and correspondingly, the CPE) is controlled by various options and
parameters set in the CPE descriptor. The current version of the CPE Configurator tool, however,
supports only default error handling and deployment options. To change these options, you must
manually edit the CPE descriptor.

Eventually the CPE Configurator tool will support configuring these options and a detailed tutorial
for these settings will be provided. In the meantime, we provide only a high-level, conceptual
overview of these advanced features in the rest of this chapter, and refer the advanced user to
UIMA References Chapter 3, Collection Processing Engine Descriptor Reference for details on
setting these options in the CPE Descriptor.

Figure 2.2, “CPE Instantiation” [64] shows a logical view of how an application uses the
UIMA framework to instantiate a CPE from a CPE descriptor. The CPE descriptor identifies the
CPE components (referencing their corresponding descriptors) and specifies the various options for
configuring the CPM and deploying the CPE components.

Deploying a CPE

64 CPE Developer's Guide UIMA Version 3.0.0-alpha02

Figure 2.2. CPE Instantiation

There are three deployment modes for CAS Processors (Analysis Engines and CAS Consumers) in
a CPE:

1. Integrated (runs in the same Java instance as the CPM)

2. Managed (runs in a separate process on the same machine), and

3. Non-managed (runs in a separate process, perhaps on a different machine).

An integrated CAS Processor runs in the same JVM as the CPE. A managed CAS Processor runs
in a separate process from the CPE, but still on the same computer. The CPE controls startup,
shutdown, and recovery of a managed CAS Processor. A non-managed CAS Processor runs as a
service and may be on the same computer as the CPE or on a remote computer. A non-managed
CAS Processor service is started and managed independently from the CPE.

For both managed and non-managed CAS Processors, the CAS must be transmitted between
separate processes and possibly between separate computers. This is accomplished using Vinci,
a communication protocol used by the CPM and which is provided as a part of Apache UIMA.
Vinci handles service naming and location and data transport (see Section 3.6.2, “Deploying as
a Vinci Service” for more information). Service naming and location are provided by a Vinci
Naming Service, or VNS. For managed CAS Processors, the CPE uses its own internal VNS. For
non-managed CAS Processors, a separate VNS must be running.

Note: The UIMA SDK also supports using unmanaged remote services via the web-
standard SOAP communications protocol (see Section 3.6.1, “Deploying as SOAP
Service”. This approach is based on a proxy implementation, where the proxy is essentially
running in an integrated mode. To use this approach with the CPM, use the Integrated
mode, with the component being an Aggregate which, in turn, connects to a remote
service.

The CPE Configurator tool currently only supports constructing CPEs that deploy CAS Processors
in integrated mode. To deploy CAS Processors in any other mode, the CPE descriptor must be

Deploying Managed CAS Processors

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 65

edited by hand (better tooling may be provided later). Details on the CPE descriptor and the
required settings for various CAS Processor deployment modes can be found in UIMA References
Chapter 3, Collection Processing Engine Descriptor Reference . In the following sections we
merely summarize the various CAS Processor deployment options.

2.5.1. Deploying Managed CAS Processors
Managed CAS Processor deployment is shown in Figure 2.3, “CPE with Managed CAS
Processors” [65]. A managed CAS Processor is deployed by the CPE as a Vinci service. The
CPE manages the lifecycle of the CAS Processor including service launch, restart on failures,
and service shutdown. A managed CAS Processor runs on the same machine as the CPE, but in
a separate process. This provides the necessary fault isolation for the CPE to protect it from non-
robust CAS Processors. A fatal failure of a managed CAS Processor does not threaten the stability
of the CPE.

Figure 2.3. CPE with Managed CAS Processors

The CPE communicates with managed CAS Processors using the Vinci communication protocol.
A CAS Processor is launched as a Vinci service and its process() method is invoked remotely
via a Vinci command. The CPE uses its own internal VNS to support managed CAS processors.
The VNS, by default, listens on port 9005. If this port is not available, the VNS will increment its
listen port until it finds one that is available. All managed CAS Processors are internally configured
to “talk” to the CPE managed VNS. This internal VNS is transparent to the end user launching the
CPE.

To deploy a managed CAS Processor, the CPE deployer must change the CPE descriptor. The
following is a section from the CPE descriptor that shows an example configuration specifying a
managed CAS Processor.

<casProcessor deployment="local" name="Meeting Detector TAE">
 <descriptor>
 <include href="deploy/vinci/Deploy_MeetingDetectorTAE.xml"/>
 </descriptor>
 <runInSeparateProcess>
 <exec dir="." executable="java">
 <env key="CLASSPATH"

Deploying Non-managed CAS Processors

66 CPE Developer's Guide UIMA Version 3.0.0-alpha02

 value="src;
 C:/Program Files/apache/uima/lib/uima-core.jar;
 C:/Program Files/apache/uima/lib/uima-cpe.jar;
 C:/Program Files/apache/uima/lib/uima-examples.jar;
 C:/Program Files/apache/uima/lib/uima-adapter-vinci.jar;
 C:/Program Files/apache/uima/lib/jVinci.jar"/>
 <arg>-DLOG=C:/Temp/service.log</arg>
 <arg>org.apache.uima.reference_impl.collection.
 service.vinci.VinciAnalysisEnginerService_impl</arg>
 <arg>${descriptor}</arg>
 </exec>
 </runInSeparateProcess>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="1/100"/>
 <maxConsecutiveRestarts action="terminate" value="3"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="10000"/>
</casProcessor>

See UIMA References Chapter 3, Collection Processing Engine Descriptor Reference for details
and required settings.

2.5.2. Deploying Non-managed CAS Processors
Non-managed CAS Processor deployment is shown in Figure 2.4, “CPE with non-managed CAS
Processors” [66]. In non-managed mode, the CPE supports connectivity to CAS Processors
running on local or remote computers using Vinci. Non-managed processors are different from
managed processors in two aspects:

1. Non-managed processors are neither started nor stopped by the CPE.

2. Non-managed processors use an independent VNS, also neither started nor stopped by the
CPE.

Figure 2.4. CPE with non-managed CAS Processors

Deploying Integrated CAS Processors

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 67

While non-managed CAS Processors provide the same level of fault isolation and robustness as
managed CAS Processors, error recovery support for non-managed CAS Processors is much more
limited. In particular, the CPE cannot restart a non-managed CAS Processor after an error.

Non-managed CAS Processors also require a separate Vinci Naming Service running on the
network. This VNS must be manually started and monitored by the end user or application.
Instructions for running a VNS can be found in Section 3.6.5.1, “Starting VNS”.

To deploy a non-managed CAS Processor, the CPE deployer must change the CPE descriptor. The
following is a section from the CPE descriptor that shows an example configuration for the non-
managed CAS Processor.

<casProcessor deployment="remote" name="Meeting Detector TAE">
 <descriptor>
 <include href=
 "descriptors/vinciService/MeetingDetectorVinciService.xml"/>
 </descriptor>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="1/100"/>
 <maxConsecutiveRestarts action="terminate" value="3"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="10000"/>
</casProcessor>

See UIMA References Chapter 3, Collection Processing Engine Descriptor Reference for details
and required settings.

2.5.3. Deploying Integrated CAS Processors

Integrated CAS Processors are shown in Figure 2.5, “CPE with integrated CAS
Processor” [68]. Here the CAS Processors run in the same JVM as the CPE, just like
the Collection Reader and CAS Initializer. This deployment method results in minimal CAS
communication and transport overhead as the CAS is shared in the same process space of the
JVM. However, a CPE running with all integrated CAS Processors is limited in scalability by
the capability of the single computer on which the CPE is running. There is also a stability risk
associated with integrated processors because a poorly written CAS Processor can cause the JVM,
and hence the entire CPE, to abort.

Collection Processing Examples

68 CPE Developer's Guide UIMA Version 3.0.0-alpha02

Figure 2.5. CPE with integrated CAS Processor

The following is a section from a CPE descriptor that shows an example configuration for the
integrated CAS Processor.

<casProcessor deployment=“integrated” name=“Meeting Detector TAE”>
 <descriptor>
 <include href="descriptors/tutorial/ex4/MeetingDetectorTAE.xml"/>
 </descriptor>
 <deploymentParameters/>
 <filter/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="100/1000"/>
 <maxConsecutiveRestarts action="terminate" value="30"/>
 <timeout max="100000"/>
 </errorHandling>
 <checkpoint batch="10000"/>
</casProcessor>

See UIMA References Chapter 3, Collection Processing Engine Descriptor Reference for details
and required settings.

2.6. Collection Processing Examples
The UIMA SDK includes a set of examples illustrating the three modes of deployment,
integrated, managed, and non-managed. These are in the /examples/descriptors/
collection_processing_engine directory. There are three CPE descriptors that run an
example annotator (the Meeting Finder) in these modes.

To run either the integrated or managed examples, use the runCPE script in the /bin directory of
the UIMA installation, passing the appropriate CPE descriptor as an argument, or if you're using
Eclipse and have the uimaj-examples project in your workspace, you can use the Eclipse Menu

→ Run → Run... → and then pick the launch configuration “UIMA Run CPE”.

Note: The runCPE script must be run from the %UIMA_HOME%\examples directory,
because the example CPE descriptors use relative path names that are resolved relative to
this working directory. For instance,

Collection Processing Examples

UIMA Version 3.0.0-alpha02 CPE Developer's Guide 69

runCPE
descriptors\collection_processing_engine\MeetingFinderCPE_Integrated.xml

To run the non-managed example, there are some additional steps.

1. Start a VNS service by running the startVNS script in the /bin directory, or using the
Eclipse launcher “UIMA Start VNS”.

2. Deploy the Meeting Detector Analysis Engine as a Vinci service, by running the
startVinciService script in the /bin directory or using the Eclipse launcher for
this, and passing it the location of the descriptor to deploy, in this case %UIMA_HOME%/
examples/deploy/vinci/Deploy_MeetingDetectorTAE.xml, or if you're using
Eclipse and have the uimaj-examples project in your workspace, you can use the Eclipse

Menu → Run → Run... → and then pick the launch configuration “UIMA Start Vinci
Service”.

3. Now, run the runCPE script (or if in Eclipse, run the launch configuration “UIMA
Run CPE”), passing it the CPE for the non-managed version (%UIMA_HOME
%/examples/descriptors/collection_processing_engine/
MeetingFinderCPE_NonManaged.xml).

This assumes that the Vinci Naming Service, the runCPE application, and the
MeetingDetectorTAE service are all running on the same machine. Most of the scripts that need
information about VNS will look for values to use in environment variables VNS_HOST and
VNS_PORT; these default to “localhost” and “9000”. You may set these to appropriate values
before running the scripts, as needed; you can also pass the name of the VNS host as the second
argument to the startVinciService script.

Alternatively, you can edit the scripts and/or the XML files to specify alternatives
for the VNS_HOST and VNS_PORT. For instance, if the runCPE application is
running on a different machine from the Vinci Naming Service, you can edit the
MeetingFinderCPE_NonManaged.xml and change the vnsHost parameter: <parameter
name="vnsHost" value="localhost" type="string"/> to specify the VNS host instead
of “localhost”.

Application Developer's Guide 71

Chapter 3. Application Developer's Guide
This chapter describes how to develop an application using the Unstructured Information
Management Architecture (UIMA). The term application describes a program that provides end-
user functionality. A UIMA application incorporates one or more UIMA components such as
Analysis Engines, Collection Processing Engines, a Search Engine, and/or a Document Store and
adds application-specific logic and user interfaces.

3.1. The UIMAFramework Class
An application developer's starting point for accessing UIMA framework functionality is the
org.apache.uima.UIMAFramework class. The following is a short introduction to some
important methods on this class. Several of these methods are used in examples in the rest of this
chapter. For more details, see the Javadocs (in the docs/api directory of the UIMA SDK).

• UIMAFramework.getXMLParser(): Returns an instance of the UIMA XML Parser class,
which then can be used to parse the various types of UIMA component descriptors.
Examples of this can be found in the remainder of this chapter.

• UIMAFramework.produceXXX(ResourceSpecifier): There are various produce methods
that are used to create different types of UIMA components from their descriptors. The
argument type, ResourceSpecifier, is the base interface that subsumes all types of component
descriptors in UIMA. You can get a ResourceSpecifier from the XMLParser. Examples of
produce methods are:

• produceAnalysisEngine

• produceCasConsumer

• produceCasInitializer

• produceCollectionProcessingEngine

• produceCollectionReader
There are other variations of each of these methods that take additional, optional arguments.
See the Javadocs for details.

• UIMAFramework.getLogger(<optional-logger-name>): Gets a reference to the UIMA
Logger, to which you can write log messages. If no logger name is passed, the name of the
returned logger instance is “org.apache.uima”.

• UIMAFramework.getVersionString(): Gets the number of the UIMA version you are using.

• UIMAFramework.newDefaultResourceManager(): Gets an instance of the UIMA
ResourceManager. The key method on ResourceManager is setDataPath, which allows you
to specify the location where UIMA components will go to look for their external resources.
Once you've obtained and initialized a ResourceManager, you can pass it to any of the
produceXXX methods.

3.2. Using Analysis Engines
This section describes how to add analysis capability to your application by using Analysis Engines
developed using the UIMA SDK. An Analysis Engine (AE) is a component that analyzes artifacts
(e.g. documents) and infers information about them.

Instantiating an Analysis Engine

72 Application Developer's Guide UIMA Version 3.0.0-alpha02

An Analysis Engine consists of two parts - Java classes (typically packaged as one or more
JAR files) and AE descriptors (one or more XML files). You must put the Java classes in your
application's class path, but thereafter you will not need to directly interact with them. The UIMA
framework insulates you from this by providing a standard AnalysisEngine interfaces.

The term Text Analysis Engine (TAE) is sometimes used to describe an Analysis Engine that
analyzes a text document. In the UIMA SDK v1.x, there was a TextAnalysisEngine interface that
was commonly used. However, as of the UIMA SDK v2.0, this interface has been deprecated and
all applications should switch to using the standard AnalysisEngine interface.

The AE descriptor XML files contain the configuration settings for the Analysis Engine as well as
a description of the AE's input and output requirements. You may need to edit these files in order
to configure the AE appropriately for your application - the supplier of the AE may have provided
documentation (or comments in the XML descriptor itself) about how to do this.

3.2.1. Instantiating an Analysis Engine
The following code shows how to instantiate an AE from its XML descriptor:

 //get Resource Specifier from XML file
XMLInputSource in = new XMLInputSource("MyDescriptor.xml");
ResourceSpecifier specifier =
 UIMAFramework.getXMLParser().parseResourceSpecifier(in);

 //create AE here
AnalysisEngine ae =
 UIMAFramework.produceAnalysisEngine(specifier);

The first two lines parse the XML descriptor (for AEs with multiple descriptor files, one of them
is the “main” descriptor - the AE documentation should indicate which it is). The result of the
parse is a ResourceSpecifier object. The third line of code invokes a static factory method
UIMAFramework.produceAnalysisEngine, which takes the specifier and instantiates an
AnalysisEngine object.

There is one caveat to using this approach - the Analysis Engine instance that you create will
not support multiple threads running through it concurrently. If you need to support this, see
Section 3.2.5, “Multi-threaded Applications” [74].

3.2.2. Analyzing Text Documents
There are two ways to use the AE interface to analyze documents. You can either use the JCas
interface, which is described in detail in UIMA References Chapter 5, JCas Reference or you can
directly use the CAS interface, which is described in detail in UIMA References Chapter 4, CAS
Reference. Besides text documents, other kinds of artifacts can also be analyzed; see Chapter 5,
Annotations, Artifacts, and Sofas for more information.

The basic structure of your application will look similar in both cases:

Using the JCas

 //create a JCas, given an Analysis Engine (ae)
JCas jcas = ae.newJCas();

 //analyze a document
jcas.setDocumentText(doc1text);

Analyzing Non-Text Artifacts

UIMA Version 3.0.0-alpha02 Application Developer's Guide 73

ae.process(jcas);
doSomethingWithResults(jcas);
jcas.reset();

 //analyze another document
jcas.setDocumentText(doc2text);
ae.process(jcas);
doSomethingWithResults(jcas);
jcas.reset();
...
 //done
ae.destroy();

Using the CAS

//create a CAS
CAS aCasView = ae.newCAS();

//analyze a document
aCasView.setDocumentText(doc1text);
ae.process(aCasView);
doSomethingWithResults(aCasView);
aCasView.reset();

//analyze another document
aCasView.setDocumentText(doc2text);
ae.process(aCasView);
doSomethingWithResults(aCasView);
aCasView.reset();
...
//done
ae.destroy();

First, you create the CAS or JCas that you will use. Then, you repeat the following four steps for
each document:

1. Put the document text into the CAS or JCas.
2. Call the AE's process method, passing the CAS or JCas as an argument
3. Do something with the results that the AE has added to the CAS or JCas
4. Call the CAS's or JCas's reset() method to prepare for another analysis

3.2.3. Analyzing Non-Text Artifacts

Analyzing non-text artifacts is similar to analyzing text documents. The main difference is that
instead of using the setDocumentText method, you need to use the Sofa APIs to set the artifact
into the CAS. See Chapter 5, Annotations, Artifacts, and Sofas for details.

3.2.4. Accessing Analysis Results

Annotators (and applications) access the results of analysis via the CAS, using the CAS or JCas
interfaces. These results are accessed using the CAS Indexes. There is one built-in index for
instances of the built-in type uima.tcas.Annotation that can be used to retrieve instances of
Annotation or any subtype of Annotation. You can also define additional indexes over other
types.

Indexes provide a method to obtain an iterators over their contents; the iterator returns the matching
elements one at time from the CAS.

Multi-threaded Applications

74 Application Developer's Guide UIMA Version 3.0.0-alpha02

3.2.4.1. Accessing Analysis Results using the JCas

See:

• Section 1.3.3, “Reading the Results of Previous Annotators”

• UIMA References Chapter 5, JCas Reference

• The Javadocs for org.apache.uima.jcas.JCas.

3.2.4.2. Accessing Analysis Results using the CAS

See:

• UIMA References Chapter 4, CAS Reference

• The source code for org.apache.uima.examples.PrintAnnotations, which is in
examples\src.

• The Javadocs for the org.apache.uima.cas and org.apache.uima.cas.text
packages.

3.2.5. Multi-threaded Applications
You may be running on a multi-core system, and want to run multiple CASes at once through
your pipeline. To support this, UIMA provides multiple approaches. The most flexible and
recommended way to do this is to use the features of UIMA-AS, which not only allows scale-up
(multiple threads in one CPU), but also supports scale-out (exploiting a cluster of machines).

This section describes the simplest way to use an AE in a multi-threaded environment. First, note
that most Analysis Engines are written with the assumption that only one thread will be accessing
it at any one time; that is, Analysis Engines are not written to be thread safe. The writers of these
assume that multiple instances of the Annotator Engine class will be instantiated as needed to
support multiple threads.

If your application has multiple threads that might invoke an Analysis Engine, to insure that
only one thread at a time uses a CAS and runs in the pipeline, you can use the Java synchronized
keyword to ensure that only one thread is using an AE at any given time. For example:

public class MyApplication {
 private AnalysisEngine mAnalysisEngine;
 private CAS mCAS;

 public MyApplication() {
 //get Resource Specifier from XML file
 XMLInputSource in = new XMLInputSource("MyDescriptor.xml");
 ResourceSpecifier specifier =
 UIMAFramework.getXMLParser().parseResourceSpecifier(in);

 //create Analysis Engine here
 mAnalysisEngine = UIMAFramework.produceAnalysisEngine(specifier);
 mCAS = mAnalysisEngine.newCAS();
 }

 // Assume some other part of your multi-threaded application could
 // call “analyzeDocument” on different threads, asynchronously

Multi-threaded Applications

UIMA Version 3.0.0-alpha02 Application Developer's Guide 75

 public synchronized void analyzeDocument(String aDoc) {
 //analyze a document
 mCAS.setDocumentText(aDoc);
 mAnalysisEngine.process();
 doSomethingWithResults(mCAS);
 mCAS.reset();
 }
 ...
}

Without the synchronized keyword, this application would not be thread-safe. If multiple threads
called the analyzeDocument method simultaneously, they would both use the same CAS and
clobber each others' results. The synchronized keyword ensures that no more than one thread is
executing this method at any given time. For more information on thread synchronization in Java,
see http://docs.oracle.com/javase/tutorial/essential/concurrency/ .

The synchronized keyword ensures thread-safety, but does not allow you to process more than one
document at a time. If you need to process multiple documents simultaneously (for example, to
make use of a multiprocessor machine), you'll need to use more than one CAS instance.

Because CAS instances use memory and can take some time to construct, you don't want to create a
new CAS instance for each request. Instead, you should use a feature of the UIMA SDK called the
CAS Pool, implemented by the type CasPool.

A CAS Pool contains some number of CAS instances (you specify how many when you create
the pool). When a thread wants to use a CAS, it checks out an instance from the pool. When the
thread is done using the CAS, it must release the CAS instance back into the pool. If all instances
are checked out, additional threads will block and wait for an instance to become available. Here is
some example code:

public class MyApplication {
 private CasPool mCasPool;

 private AnalysisEngine mAnalysisEngine;

 public MyApplication()
 {
 //get Resource Specifier from XML file
 XMLInputSource in = new XMLInputSource("MyDescriptor.xml");
 ResourceSpecifier specifier =
 UIMAFramework.getXMLParser().parseResourceSpecifier(in);

 //Create multithreadable AE that will
 //Accept 3 simultaneous requests
 //The 3rd parameter specifies a timeout.
 //When the number of simultaneous requests exceeds 3,
 // additional requests will wait for other requests to finish.
 // This parameter determines the maximum number of milliseconds
 // that a new request should wait before throwing an
 // - a value of 0 will cause them to wait forever.
 mAnalysisEngine = UIMAFramework.produceAnalysisEngine(specifier,3,0);

 //create CAS pool with 3 CAS instances
 mCasPool = new CasPool(3, mAnalysisEngine);
 }

 // Notice this is no longer "synchronized"
 public void analyzeDocument(String aDoc) {
 //check out a CAS instance (argument 0 means no timeout)

http://docs.oracle.com/javase/tutorial/essential/concurrency/

Multiple AEs & Creating Shared CASes

76 Application Developer's Guide UIMA Version 3.0.0-alpha02

 CAS cas = mCasPool.getCas(0);
 try {
 //analyze a document
 cas.setDocumentText(aDoc);
 mAnalysisEngine.process(cas);
 doSomethingWithResults(cas);
 } finally {
 //MAKE SURE we release the CAS instance
 mCasPool.releaseCas(cas);
 }
 }
 ...
}

There is not much more code required here than in the previous example. First, there is one
additional parameter to the AnalysisEngine producer, specifying the number of annotator instances
to create1. Then, instead of creating a single CAS in the constructor, we now create a CasPool
containing 3 instances. In the analyze method, we check out a CAS, use it, and then release it.

Note: Frequently, the two numbers (number of CASes, and the number of AEs) will be the
same. It would not make sense to have the number of CASes less than the number of AEs
– the extra AE instances would always block waiting for a CAS from the pool. It could
make sense to have additional CASes, though – if you had other multi-threaded processes
that were using the CASes, other than the AEs.

The getCAS() method returns a CAS which is not specialized to any particular subject of analysis.
To process things other than this, please refer to Chapter 5, Annotations, Artifacts, and Sofas .

Note the use of the try...finally block. This is very important, as it ensures that the CAS we have
checked out will be released back into the pool, even if the analysis code throws an exception. You
should always use try...finally when using the CAS pool; if you do not, you risk exhausting the
pool and causing deadlock.

The parameter 0 passed to the CasPool.getCas() method is a timeout value. If this is set to a
positive integer, it is the maximum number of milliseconds that the thread will wait for an instance
to become available in the pool. If this time elapses, the getCas method will return null, and the
application can do something intelligent, like ask the user to try again later. A value of 0 will cause
the thread to wait for an available CAS, potentially forever.

All of this can better be done using UIMA-AS. Besides taking care of setting up the CAS pools,
etc., UIMA-AS allows a pipe line having several delegates to be scaled-up optimally for each
delegate; one delegate might have 5 instances, while another might have 3. It also does a different
kind of initialization, in that it creates a thread pool itself, and insures that each annotator instance
gets its process() method called using the same thread that was used for that annotator instance's
initialization call; some annotators could be written assuming that this is the case.

3.2.6. Using Multiple Analysis Engines and Creating
Shared CASes

In most cases, the easiest way to use multiple Analysis Engines from within an application is
to combine them into an aggregate AE. For instructions, see Section 1.3, “Building Aggregate
Analysis Engines”. Be sure that you understand this method before deciding to use the more
advanced feature described in this section.

1 Both the UIMA Collection Processing Manager framework and the remote deployment services framework have implementations which
use CAS pools in this manner, and thereby relieve the annotator developer of the necessity to make their annotators thread-safe.

Saving CASes to file systems or general Streams

UIMA Version 3.0.0-alpha02 Application Developer's Guide 77

If you decide that your application does need to instantiate multiple AEs and have those AEs share
a single CAS, then you will no longer be able to use the various methods on the AnalysisEngine
class that create CASes (or JCases) to create your CAS. This is because these methods create a
CAS with a data model specific to a single AE and which therefore cannot be shared by other AEs.
Instead, you create a CAS as follows:

Suppose you have two analysis engines, and one CAS Consumer, and you want to create one type
system from the merge of all of their type specifications. Then you can do the following:

AnalysisEngineDescription aeDesc1 =
 UIMAFramework.getXMLParser().parseAnalysisEngineDescription(...);

 AnalysisEngineDescription aeDesc2 =
 UIMAFramework.getXMLParser().parseAnalysisEngineDescription(...);

 CasConsumerDescription ccDesc =
 UIMAFramework.getXMLParser().parseCasConsumerDescription(...);

 List list = new ArrayList();

 list.add(aeDesc1);
 list.add(aeDesc2);
 list.add(ccDesc);

 CAS cas = CasCreationUtils.createCas(list);

 // (optional, if using the JCas interface)
 JCas jcas = cas.getJCas();

The CasCreationUtils class takes care of the work of merging the AEs' type systems and producing
a CAS for the combined type system. If the type systems are not compatible, an exception will be
thrown.

3.2.7. Saving CASes to file systems or general Streams
The UIMA framework provides multiple APIs to save and restore the contents of a CAS to streams.
Two common uses of this are to save CASes to the file system, and to send CASes to other
processes, running on remote systems.

The CASes can be serialized in multiple formats:

• Binary formats:

• plain binary: This is used to communicate with remote services, and also for
interfacing with annotators written in C/C++ or related languages via the JNI Java
interface, from Java

• Compressed binary: There are two forms of compressed binary. The recommend
one is form 6, which also allows type filtering. See Section 8.1, “Binary CAS
Compression overview”.

• XML formats: There are two forms of this format. The preferred form is the XMI form
(see Chapter 7, XMI CAS Serialization Reference). An older format is also available, called
XCAS.

• JSON formats (as of version 2.7.0): This is intended for exposing results in the CAS as
JSON objects for use by web applications. See Section 9.1, “JSON serialization support
overview”. For JSON, only serialization is supported.

Saving CASes to file systems or general Streams

78 Application Developer's Guide UIMA Version 3.0.0-alpha02

• Java Object serialization: There are APIs to convert a CAS to a Java object that can be
serialized and deserialized using standard Java object read and write Object methods. There
is also a way to include the CAS's type system and index definition.

Each of these serializations has different capabilities, summarized in the table below.

Table 3.1. Serialization Capabilities

 XCAS XMI JSON Binary Cmpr 4 Cmrp 6 JavaObj

Output Output
Stream

Output
Stream

Output
Stream,
File,
Writer

Output
Stream

Output
Stream,
Data
Output
Stream,
File

Output
Stream,
Data
Output
Stream,
File

-

Lists/Arrays
inline
formating?

- Yes Yes - - - -

Formated? - Yes Yes - - - -

Type
Filtering?

- Yes Yes - - Yes -

Delta Cas? - Yes - Yes Yes Yes -

OOTS? Yes Yes - - - - -

Only send
indexed +
reachable
FSs?

Yes Yes Yes send all send all Yes send all

Name
Space /
Schemas?

- Yes - - - - -

lenient
available?

Yes Yes - - - Yes -

optionally
include
embedded
Type
System and
Indexes
definition?

- - Just type
system

Yes Yes Yes Yes

In the above table, Cmpr 4 and Cmpr 6 refer to Compressed forms of the serialization, and JavaObj
refers to Java Object serialization.

For the XMI and JSON formats, lists and arrays can sometimes be formatted "inline". In this
representation, the elements are formatted directly as the value of a particular feature. This is only
done if the arrays and lists are not multiply-referenced.

Saving CASes to file systems or general Streams

UIMA Version 3.0.0-alpha02 Application Developer's Guide 79

Type Filtering support enables only a subset of the types and/or features to be serialized. An
additional type system object is used to specify the types to be included in the serialization. This
can be useful, for instance, when sending a CAS to a remote service, where the remote service only
uses a small number of the types and features, to reduce the size of the serialized CAS.

Delta Cas support makes use of a "mark" set in the CAS, and only serializes changes in the CAS,
both new and modified Feature Structures, that were added or changed after the mark was set. This
is useful for remote services, supporting the use-case where a large CAS is sent to the service,
which sets the mark in the received CAS, and then adds a small amount of information; the Delta
CAS then serializes only that small amount as the "reply" sent back to the sender.

OOTS means "Out of Type System" support, intended to support the use-case where a CAS is
being sent to a remote application. This supports deserializing an incoming CAS where some of the
types and/or features may not be present in the receiving CAS's type system. A "lenient" option on
the deserialization permits the deserialization to proceed, with the out-of-type-system information
preserved so that when the CAS is subsequently reserialized (in the use-case, to be returned back to
the sender), the out-of-type-system information is re-merged back into the output stream.

The Binary, Java Object, and Compressed Form 4 serializations send all the Feature Structures
in the CAS, in the order they were created in the CAS. The other methods only send Feature
Structures that are reachable, either by their being in some CAS index, or being referenced as a
feature of another Feature Structure which is reachable.

The NameSpace/Schema support allows specifying a set of schemas, each one corresponding to a
particular namespace, used in XMI serialization.

Lenient allows the receiving Type System to be missing types and/or features that being
deserialized. Normally this causes an exception, but with the lenient flag turned on, these extra
types and/or features are skipped over and ignored, with no error indicated.

Some formats optionally allow embedded type system and indexes definition to be saved; loaders
for these can use that information to replace the CAS's type system and indexes definition, or (for
compressed form 6) use the type system part to decode the serialized data. This is described in
detail in the Javadocs for CasIOUtils. JSON serialization has several alternatives for optionally
including portions of the type system, described in the reference document chapter on JSON.

To save an XMI representation of a CAS, use the save method in CasIOUtils or the
serialize method of the class org.apache.uima.util.XmlCasSerializer. To save
an XCAS representation of a CAS, use the save method in CasIOUtils class or use the
org.apache.uima.cas.impl.XCASSerializer instead; see the Javadocs for details.

All the external serialized forms (except JSON and the inline CAS approximate serialization) can
be read back in using the CasIOUtils load methods. The CasIOUtils load methods also
have API forms that support loading type system and index definition information at the same time
(from addition input sources); there is also a form for loading compressed form 6 where you can
pass the type system to use for decoding, when it is different from that of the receiving CAS. The
XCAS and XMI external forms can also be read back in using the deserialize method of the
class org.apache.uima.util.XmlCasDeserializer. All of these methods deserialize into a
pre-existing CAS, which you must create ahead of time. See the Javadocs for details.

The Serialization class has various static methods for serializing and deserializing Java Object
forms and compressed forms, with finer control over available options. See the Javadocs for that
class for details.

Several of the APIs use or return instances of SerialFormat, which is an enum specifying the
various forms of serialization.

Using Collection Processing Engines

80 Application Developer's Guide UIMA Version 3.0.0-alpha02

3.3. Using Collection Processing Engines
A Collection Processing Engine (CPE) processes collections of artifacts (documents) through
the combination of the following components: a Collection Reader, an optional CAS Initializer,
Analysis Engines, and CAS Consumers. Collection Processing Engines and their components are
described in Chapter 2, Collection Processing Engine Developer's Guide .

Like Analysis Engines, CPEs consist of a set of Java classes and a set of descriptors. You need to
make sure the Java classes are in your classpath, but otherwise you only deal with descriptors.

3.3.1. Running a Collection Processing Engine from a
Descriptor

Section 2.3, “Running a CPE from Your Own Java Application” describes how to use the APIs to
read a CPE descriptor and run it from an application.

3.3.2. Configuring a Collection Processing Engine
Descriptor Programmatically

For the finest level of control over the CPE descriptor settings, the CPE offers programmatic
access to the descriptor via an API. With this API, a developer can create a complete
descriptor and then save the result to a file. This also can be used to read in a descriptor (using
XMLParser.parseCpeDescription as shown in the previous section), modify it, and write it back
out again. The CPE Descriptor API allows a developer to redefine default behavior related to error
handling for each component, turn-on check-pointing, change performance characteristics of the
CPE, and plug-in a custom timer.

Below is some example code that illustrates how this works. See the Javadocs for package
org.apache.uima.collection.metadata for more details.

//Creates descriptor with default settings
CpeDescription cpe = CpeDescriptorFactory.produceDescriptor();

//Add CollectionReader
cpe.addCollectionReader([descriptor]);

//Add CasInitializer (deprecated)
cpe.addCasInitializer(<cas initializer descriptor>);

// Provide the number of CASes the CPE will use
cpe.setCasPoolSize(2);

// Define and add Analysis Engine
CpeIntegratedCasProcessor personTitleProcessor =
 CpeDescriptorFactory.produceCasProcessor (“Person”);

// Provide descriptor for the Analysis Engine
personTitleProcessor.setDescriptor([descriptor]);

//Continue, despite errors and skip bad Cas
personTitleProcessor.setActionOnMaxError(“continue”);

 //Increase amount of time in ms the CPE waits for response
//from this Analysis Engine
personTitleProcessor.setTimeout(100000);

Configuring a CPE Descriptor Programmatically

UIMA Version 3.0.0-alpha02 Application Developer's Guide 81

//Add Analysis Engine to the descriptor
cpe.addCasProcessor(personTitleProcessor);

// Define and add CAS Consumer
CpeIntegratedCasProcessor consumerProcessor =
CpeDescriptorFactory.produceCasProcessor(“Printer”);
consumerProcessor.setDescriptor([descriptor]);

//Define batch size
consumerProcessor.setBatchSize(100);

//Terminate CPE on max errors
consumerProcessor.setActionOnMaxError(“terminate”);

//Add CAS Consumer to the descriptor
cpe.addCasProcessor(consumerProcessor);

// Add Checkpoint file and define checkpoint frequency (ms)
cpe.setCheckpoint(“[path]/checkpoint.dat”, 3000);

// Plug in custom timer class used for timing events
cpe.setTimer(“org.apache.uima.internal.util.JavaTimer”);

// Define number of documents to process
cpe.setNumToProcess(1000);

// Dump the descriptor to the System.out
((CpeDescriptionImpl)cpe).toXML(System.out);

The CPE descriptor for the above configuration looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<cpeDescription xmlns="http://uima.apache.org/resourceSpecifier">
 <collectionReader>
 <collectionIterator>
 <descriptor>
 <include href="[descriptor]"/>
 </descriptor>
 <configurationParameterSettings>...
 </configurationParameterSettings>
 </collectionIterator>

 <casInitializer>
 <descriptor>
 <include href="[descriptor]"/>
 </descriptor>
 <configurationParameterSettings>...
 </configurationParameterSettings>
 </casInitializer>
 </collectionReader>

 <casProcessors casPoolSize="2" processingUnitThreadCount="1">
 <casProcessor deployment="integrated" name="Person">
 <descriptor>
 <include href="[descriptor]"/>
 </descriptor>
 <deploymentParameters/>
 <errorHandling>
 <errorRateThreshold action="terminate" value="100/1000"/>
 <maxConsecutiveRestarts action="terminate" value="30"/>
 <timeout max="100000"/>

Setting Configuration Parameters

82 Application Developer's Guide UIMA Version 3.0.0-alpha02

 </errorHandling>
 <checkpoint batch="100" time="1000ms"/>
 </casProcessor>

 <casProcessor deployment="integrated" name="Printer">
 <descriptor>
 <include href="[descriptor]"/>
 </descriptor>
 <deploymentParameters/>
 <errorHandling>
 <errorRateThreshold action="terminate"
 value="100/1000"/>
 <maxConsecutiveRestarts action="terminate"
 value="30"/>
 <timeout max="100000" default="-1"/>
 </errorHandling>
 <checkpoint batch="100" time="1000ms"/>
 </casProcessor>
 </casProcessors>

 <cpeConfig>
 <numToProcess>1000</numToProcess>
 <deployAs>immediate</deployAs>
 <checkpoint file="[path]/checkpoint.dat" time="3000ms"/>
 <timerImpl>
 org.apache.uima.reference_impl.util.JavaTimer
 </timerImpl>
 </cpeConfig>
</cpeDescription>

3.4. Setting Configuration Parameters
Configuration parameters can be set using APIs as well as configured using the XML descriptor
metadata specification (see Section 1.2.1, “Configuration Parameters”.

There are two different places you can set the parameters via the APIs.
• After reading the XML descriptor for a component, but before you produce the component

itself, and
• After the component has been produced.

Setting the parameters before you produce the component is done using the
ConfigurationParameterSettings object. You get an instance of this for a particular component
by accessing that component description's metadata. For instance, if you produced a component
description by using UIMAFramework.getXMLParser().parse... method, you can use
that component description's getMetaData() method to get the metadata, and then the metadata's
getConfigurationParameterSettings method to get the ConfigurationParameterSettings object.
Using that object, you can set individual parameters using the setParameterValue method. Here's an
example, for a CAS Consumer component:

// Create a description object by reading the XML for the descriptor

CasConsumerDescription casConsumerDesc =
 UIMAFramework.getXMLParser().parseCasConsumerDescription(new
 XMLInputSource("descriptors/cas_consumer/InlineXmlCasConsumer.xml"));

// get the settings from the metadata
ConfigurationParameterSettings consumerParamSettings =
 casConsumerDesc.getMetaData().getConfigurationParameterSettings();

Integrating Text Analysis and Search

UIMA Version 3.0.0-alpha02 Application Developer's Guide 83

// Set a parameter value
consumerParamSettings.setParameterValue(
 InlineXmlCasConsumer.PARAM_OUTPUTDIR,
 outputDir.getAbsolutePath());

Then you might produce this component using:

CasConsumer component =
 UIMAFramework.produceCasConsumer(casConsumerDesc);

A side effect of producing a component is calling the component's “initialize” method, allowing it
to read its configuration parameters. If you want to change parameters after this, use

component.setConfigParameterValue(
 “<parameter-name>”,
 “<parameter-value>”);

and then signal the component to re-read its configuration by calling the component's reconfigure
method:

component.reconfigure();

Although these examples are for a CAS Consumer component, the parameter APIs also work for
other kinds of components.

3.5. Integrating Text Analysis and Search
The UIMA SDK on IBM's alphaWorks http://www.alphaworks.ibm.com/tech/uima includes a
semantic search engine that you can use to build a search index that includes the results of the
analysis done by your AE. This combination of AEs with a search engine capable of indexing both
words and annotations over spans of text enables what UIMA refers to as semantic search. Over
time we expect to provide additional information on integrating other open source search engines.

Semantic search is a search where the semantic intent of the query is specified using one or more
entity or relation specifiers. For example, one could specify that they are looking for a person
(named) “Bush.” Such a query would then not return results about the kind of bushes that grow in
your garden.

3.5.1. Building an Index
To build a semantic search index using the UIMA SDK, you run a Collection Processing Engine
that includes your AE along with a CAS Consumer which takes the tokens and annotatitions,
together with sentence boundaries, and feeds them to a semantic searcher's index term input. The
alphaWorks semantic search component includes a CAS Consumer called the Semantic Search
CAS Indexer that does this; this component is available from the alphaWorks site. Your AE must
include an annotator that produces Tokens and Sentence annotations, along with any “semantic”
annotations, because the Indexer requires this. The Semantic Search CAS Indexer's descriptor is
located here: examples/descriptors/cas_consumer/SemanticSearchCasIndexer.xml .

3.5.1.1. Configuring the Semantic Search CAS Indexer

Since there are several ways you might want to build a search index from the information in the
CAS produced by your AE, you need to supply the Semantic Search CAS Consumer – Indexer

http://www.alphaworks.ibm.com/tech/uima

Building an Index

84 Application Developer's Guide UIMA Version 3.0.0-alpha02

with configuration information in the form of an Index Build Specification file. Apache UIMA
includes code for parsing Index Build Specification files (see the Javadocs for details). An example
of an Indexing specification tailored to the AE from the tutorial in the Chapter 1, Annotator and
Analysis Engine Developer's Guide is located in examples/descriptors/tutorial/search/
MeetingIndexBuildSpec.xml . It looks like this:

<indexBuildSpecification>
 <indexBuildItem>
 <name>org.apache.uima.examples.tokenizer.Token</name>
 <indexRule>
 <style name="Term"/>
 </indexRule>
 </indexBuildItem>
 <indexBuildItem>
 <name>org.apache.uima.examples.tokenizer.Sentence</name>
 <indexRule>
 <style name="Breaking"/>
 </indexRule>
 </indexBuildItem>
 <indexBuildItem>
 <name>org.apache.uima.tutorial.Meeting</name>
 <indexRule>
 <style name="Annotation"/>
 </indexRule>
 </indexBuildItem>
 <indexBuildItem>
 <name>org.apache.uima.tutorial.RoomNumber</name>
 <indexRule>
 <style name="Annotation">
 <attributeMappings>
 <mapping>
 <feature>building</feature>
 <indexName>building</indexName>
 </mapping>
 </attributeMappings>
 </style>
 </indexRule>
 </indexBuildItem>
 <indexBuildItem>
 <name>org.apache.uima.tutorial.DateAnnot</name>
 <indexRule>
 <style name="Annotation"/>
 </indexRule>
 </indexBuildItem>
 <indexBuildItem>
 <name>org.apache.uima.tutorial.TimeAnnot</name>
 <indexRule>
 <style name="Annotation"/>
 </indexRule>
 </indexBuildItem>
</indexBuildSpecification>

The index build specification is a series of index build items, each of which identifies a CAS
annotation type (a subtype of uima.tcas.Annotation – see UIMA References Chapter 4, CAS
Reference) and a style.

The first item in this example specifies that the annotation type
org.apache.uima.examples.tokenizer.Token should be indexed with the “Term” style.
This means that each span of text annotated by a Token will be considered a single token for
standard text search purposes.

Building an Index

UIMA Version 3.0.0-alpha02 Application Developer's Guide 85

The second item in this example specifies that the annotation type
org.apache.uima.examples.tokenizer.Sentence should be indexed with the “Breaking”
style. This means that each span of text annotated by a Sentence will be considered a single
sentence, which can affect that search engine's algorithm for matching queries. The semantic
search engine available from alphaWorks always requires tokens and sentences in order to index a
document.

Note: Requirements for Term and Breaking rules: The Semantic Search indexer from
alphaWorks requires that the items to be indexed as words be designated using the Term
rule.

The remaining items all use the “Annotation” style. This indicates that each annotation of the
specified types will be stored in the index as a searchable span, with a name equal to the annotation
name (without the namespace).

Also, features of annotations can be indexed using the <attributeMappings> subelement.
In the example index build specification, we declare that the building feature of the type
org.apache.uima.tutorial.RoomNumber should be indexed. The <indexName> element can
be used to map the feature name to a different name in the index, but in this example we have opted
to use the same name, building.

At the end of the batch or collection, the Semantic Search CAS Indexer builds the index. This index
can be queried with simple tokens or with XML tags.

Examples:
• A query on the word “UIMA” will retrieve all documents that have the occurrence of

the word. But a query of the type <Meeting>UIMA</Meeting> will retrieve only those
documents that contain a Meeting annotation (produced by our MeetingDetector TAE, for
example), where that Meeting annotation contains the word “UIMA”.

• A query for <RoomNumber building="Yorktown"/> will return documents that have a
RoomNumber annotation whose building feature contains the term “Yorktown”.

More information on the syntax of these kinds of queries, called XML Fragments, can be found
in documentation for the semantic search engine component on http://www.alphaworks.ibm.com/
tech/uima. For more information on the Index Build Specification format, see the UIMA Javadocs
for class org.apache.uima.search.IndexBuildSpecification. Accessing the Javadocs is
described in UIMA References Chapter 1, Javadocs.

3.5.1.2. Building and Running a CPE including the Semantic
Search CAS Indexer

The following steps illustrate how to build and run a CPE that uses the UIMA Meeting Detector
TAE and the Simple Token and Sentence Annotator, discussed in the Chapter 1, Annotator and
Analysis Engine Developer's Guide along with a CAS Consumer called the Semantic Search CAS
Indexer, to build an index that allows you to query for documents based not only on textual content
but also on whether they contain mentions of Meetings detected by the TAE.

Run the CPE Configurator tool by executing the cpeGui shell script in the bin directory of
the UIMA SDK. (For instructions on using this tool, see the UIMA Tools Guide and Reference
Chapter 2, Collection Processing Engine Configurator User's Guide.)

In the CPE Configurator tool, select the following components by browsing to their descriptors:
• Collection Reader: %UIMA_HOME%/examples/descriptors/collectionReader/
FileSystemCollectionReader.xml

http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima

Semantic Search Query Tool

86 Application Developer's Guide UIMA Version 3.0.0-alpha02

• Analysis Engine: include both of these; one produces tokens/sentences, required by the
indexer in all cases and the other produces the meeting annotations of interest.

• %UIMA_HOME%/examples/descriptors/analysis_engine/

SimpleTokenAndSentenceAnnotator.xml

• %UIMA_HOME%/examples/descriptors/tutorial/ex6/UIMAMeetingDetectorTAE.xml

• Two CAS Consumers:
• %UIMA_HOME%/examples/descriptors/cas_consumer/SemanticSearchCasIndexer.xml

• %UIMA_HOME%/examples/descriptors/cas_consumer/XmiWriterCasConsumer.xml

Set up parameters:
• Set the File System Collection Reader's “Input Directory” parameter to point to the
%UIMA_HOME%/examples/data directory.

• Set the Semantic Search CAS Indexer's “Indexing Specification Descriptor” parameter
to point to %UIMA_HOME%/examples/descriptors/tutorial/search/
MeetingIndexBuildSpec.xml

• Set the Semantic Search CAS Indexer's “Index Dir” parameter to whatever directory into
which you want the indexer to write its index files.

Warning: The Indexer erases old versions of the files it creates in this directory.
• Set the XMI Writer CAS Consumer's “Output Directory” parameter to whatever directory

into which you want to store the XMI files containing the results of your analysis for each
document.

Click on the Run Button. Once the run completes, a statistics dialog should appear, in which you
can see how much time was spent in each of the components involved in the run.

3.5.2. Semantic Search Query Tool

The Semantic Search component from UIMA on alphaWorks contains a simple tool for running
queries against a semantic search index. After building an index as described in the previous
section, you can launch this tool by running the shell script: semanticSearch, found in the /bin
subdirectory of the Semantic Search UIMA install, at the command prompt. If you are using
Eclipse, and have installed the UIMA examples, there will be a Run configuration you can use to
conveniently launch this, called UIMA Semantic Search. This will display the following screen:

Semantic Search Query Tool

UIMA Version 3.0.0-alpha02 Application Developer's Guide 87

Configure the fields on this screen as follows:
• Set the “Index Directory” to the directory where you built your index. This is the same value

that you supplied for the “Index Dir” parameter of the Semantic Search CAS Indexer in the
CPE Configurator.

• Set the “XMI/XCAS Directory” to the directory where you stored the results of your
analysis. This is the same value that you supplied for the “Output Directory” parameter of
XMI Writer CAS Consumer in the CPE Configurator.

• Optionally, set the “Original Documents Directory” to the directory containing the original
plain text documents that were analyzed and indexed. This is only needed for the "View
Original Document" button.

• Set the “Type System Descriptor” to the location of the descriptor that describes your
type system. For this example, this will be %UIMA_HOME%/examples/descriptors/
tutorial/ex4/TutorialTypeSystem.xml

Now, in the “XML Fragments” field, you can type in single words or XML queries where the
XML tags correspond to the labels in the index build specification file (e.g. <Meeting>UIMA</
Meeting>). XML Fragments are described in the documentation for the semantic search engine
component on http://www.alphaworks.ibm.com/tech/uima.

After you enter a query and click the “Search” button, a list of hits will appear. Select one of the
documents and click “View Analysis” to view the document in the UIMA Annotation Viewer.

The source code for the Semantic Search query program is in examples/src/com/ibm/apache-
uima/search/examples/SemanticSearchGUI.java . A simple command-line query
program is also provided in examples/src/com/ibm/apache-uima/search/examples/
SemanticSearch.java . Using these as a model, you can build a query interface from your
own application. For details on the Semantic Search Engine query language and interface, see the
documentation for the semantic search engine component on http://www.alphaworks.ibm.com/tech/
uima.

http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima

Working with Remote Services

88 Application Developer's Guide UIMA Version 3.0.0-alpha02

3.6. Working with Remote Services
Note: This chapter describes older methods of working with Remote Services. These
approaches do not support some of the newer CAS features, such as multiple views and
CAS Multipliers. These methods have been supplanted by UIMA-AS, which has full
support for the new CAS features.

The UIMA SDK allows you to easily take any Analysis Engine or CAS Consumer and deploy it as
a service. That Analysis Engine or CAS Consumer can then be called from a remote machine using
various network protocols.

The UIMA SDK provides support for two communications protocols:
• SOAP, the standard Web Services protocol
• Vinci, a lightweight version of SOAP, included as a part of Apache UIMA.

The UIMA framework can make use of these services in two different ways:

1. An Analysis Engine can create a proxy to a remote service; this proxy acts like a local
component, but connects to the remote. The proxy has limited error handling and retry
capabilities. Both Vinci and SOAP are supported.

2. A Collection Processing Engine can specify non-Integrated mode (see Section 2.5,
“Deploying a CPE”. The CPE provides more extensive error recovery capabilities. This
mode only supports the Vinci communications protocol.

3.6.1. Deploying a UIMA Component as a SOAP Service
To deploy a UIMA component as a SOAP Web Service, you need to first install the following
software components:

• Apache Tomcat 5.0 or 5.5 (http://jakarta.apache.org/tomcat/)
• Apache Axis 1.3 or 1.4 (http://ws.apache.org/axis/)

Later versions of these components will likely also work, but have not been tested.

Next, you need to do the following setup steps:

• Set the CATALINA_HOME environment variable to the location where Tomcat is installed.

• Copy all of the JAR files from %UIMA_HOME%/lib to the %CATALINA_HOME%/webapps/
axis/WEB-INF/lib in your installation.

• Copy your JAR files for the UIMA components that you wish to %CATALINA_HOME%/
webapps/axis/WEB-INF/lib in your installation.

• IMPORTANT: any time you add JAR files to Tomcat (for instance, in the above 2 steps),
you must shutdown and restart Tomcat before it “notices” this. So now, please shutdown and
restart Tomcat.

• All the Java classes for the UIMA Examples are packaged in the uima-examples.jar file
which is included in the %UIMA_HOME%/lib folder.

• In addition, if an annotator needs to locate resource files in the classpath, those resources
must be available in the Axis classpath, so copy these also to %CATALINA_HOME%/
webapps/axis/WEB-INF/classes .

http://jakarta.apache.org/tomcat/
http://ws.apache.org/axis/

Deploying as SOAP Service

UIMA Version 3.0.0-alpha02 Application Developer's Guide 89

As an example, if you are deploying the GovernmentTitleRecognizer (found in examples/
descriptors/analysis_engine/ GovernmentOfficialRecognizer_RegEx_TAE)
as a SOAP service, you need to copy the file examples/resources/
GovernmentTitlePatterns.dat into .../WEB-INF/classes.

Test your installation of Tomcat and Axis by starting Tomcat and going to http://
localhost:8080/axis/happyaxis.jsp in your browser. Check to be sure that this reports that
all of the required Axis libraries are present. One common missing file may be activation.jar, which
you can get from java.sun.com.

After completing these setup instructions, you can deploy Analysis Engines or CAS Consumers
as SOAP web services by using the deploytool utility, with is located in the /bin directory
of the UIMA SDK. deploytool is a command line program utility that takes as an argument
a web services deployment descriptors (WSDD file); example WSDD files are provided in the
examples/deploy/soap directory of the UIMA SDK. Deployment Descriptors have been
provided for deploying and undeploying some of the example Analysis Engines that come with the
SDK.

As an example, the WSDD file for deploying the example Person Title annotator looks like this
(important parts are in bold italics):

<deployment name="PersonTitleAnnotator"
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <service name="urn:PersonTitleAnnotator" provider="java:RPC">

 <parameter name="scope" value="Request"/>

 <parameter name="className"
 value="org.apache.uima.reference_impl.analysis_engine
 .service.soap.AxisAnalysisEngineService_impl"/>

 <parameter name="allowedMethods" value="getMetaData process"/>
 <parameter name="allowedRoles" value="*"/>
 <parameter name="resourceSpecifierPath"
 value="C:/Program Files/apache/uima/examples/
 descriptors/analysis_engine/PersonTitleAnnotator.xml"/>

 <parameter name="numInstances" value="3"/>

 <!-- Type Mappings omitted from this document;
 you will not need to edit them. -->

 <typeMapping .../>
 <typeMapping .../>
 <typeMapping .../>

 </service>

</deployment>

To modify this WSDD file to deploy your own Analysis Engine or CAS Consumer, just replace the
areas indicated in bold italics (deployment name, service name, and resource specifier path) with
values appropriate for your component.

The numInstances parameter specifies how many instances of your Analysis Engine or CAS
Consumer will be created. This allows your service to support multiple clients concurrently. When

Deploying as a Vinci Service

90 Application Developer's Guide UIMA Version 3.0.0-alpha02

a new request comes in, if all of the instances are busy, the new request will wait until an instance
becomes available.

To deploy the Person Title annotator service, issue the following command:

C:/Program Files/apache/uima/bin>deploytool
../examples/deploy/soap/Deploy_PersonTitleAnnotator.wsdd

Test if the deployment was successful by starting up a browser, pointing it to your Tomcat
installation's “axis” webpage (e.g., http://localhost:8080/axis) and clicking on the List
link. This should bring up a page which shows the deployed services, where you should see the
service you just deployed.

The other components can be deployed by replacing Deploy_PersonTitleAnnotator.wsdd
with one of the other Deploy descriptors in the deploy directory. The deploytool utility can also
undeploy services when passed one of the Undeploy descriptors.

Note: The deploytool shell script assumes that the web services are to be installed at
http://localhost:8080/axis. If this is not the case, you will need to update the shell
script appropriately.

Once you have deployed your component as a web service, you may call it from a remote machine.
See Section 3.6.3, “Calling a UIMA Service” [91] for instructions.

3.6.2. Deploying a UIMA Component as a Vinci Service
There are no software prerequisites for deploying a Vinci service. The necessary libraries are
part of the UIMA SDK. However, before you can use Vinci services you need to deploy the
Vinci Naming Service (VNS), as described in section Section 3.6.5, “The Vinci Naming Services
(VNS)” [93].

To deploy a service, you have to insure any components you want to include can be found on
the class path. One way to do this is to set the environment variable UIMA_CLASSPATH to the
set of class paths you need for any included components. Then run the startVinciService
shell script, which is located in the bin directory, and pass it the path to a Vinci deployment
descriptor, for example: C:UIMA>bin/startVinciService ../examples/deploy/vinci/
Deploy_PersonTitleAnnotator.xml. If you are running Eclipse, and have the uimaj-

examples project in your workspace, you can use the Eclipse Menu → Run → Run... and then
pick “UIMA Start Vinci Service”.

This example deployment descriptor looks like:

<deployment name="Vinci Person Title Annotator Service">

 <service name="uima.annotator.PersonTitleAnnotator" provider="vinci">

 <parameter name="resourceSpecifierPath"
 value="C:/Program Files/apache/uima/examples/descriptors/
 analysis_engine/PersonTitleAnnotator.xml"/>

 <parameter name="numInstances" value="1"/>

 <parameter name="serverSocketTimeout" value="120000"/>

 </service>

Calling a UIMA Service

UIMA Version 3.0.0-alpha02 Application Developer's Guide 91

</deployment>

To modify this deployment descriptor to deploy your own Analysis Engine or CAS Consumer, just
replace the areas indicated in bold italics (deployment name, service name, and resource specifier
path) with values appropriate for your component.

The numInstances parameter specifies how many instances of your Analysis Engine or CAS
Consumer will be created. This allows your service to support multiple clients concurrently. When
a new request comes in, if all of the instances are busy, the new request will wait until an instance
becomes available.

The serverSocketTimeout parameter specifies the number of milliseconds (default = 5 minutes)
that the service will wait between requests to process something. After this amount of time, the
server will presume the client may have gone away - and it “cleans up”, releasing any resources it
is holding. The next call to process on the service will result in a cycle which will cause the client
to re-establish its connection with the service (some additional overhead).

There are two additional parameters that you can add to your deployment descriptor:

• <parameter name="threadPoolMinSize" value="[Integer]"/>: Specifies the
number of threads that the Vinci service creates on startup in order to serve clients' requests.

• <parameter name="threadPoolMaxSize" value="[Integer]"/>: Specifies
the maximum number of threads that the Vinci service will create. When the number of
concurrent requests exceeds the threadPoolMinSize, additional threads will be created to
serve requests, until the threadPoolMaxSize is reached.

The startVinciService script takes two additional optional parameters. The first one overrides
the value of the VNS_HOST environment variable, allowing you to specify the name server to
use. The second parameter if specified needs to be a unique (on this server) non-negative number,
specifying the instance of this service. When used, this number allows multiple instances of the
same named service to be started on one server; they will all register with the Vinci name service
and be made available to client requests.

Once you have deployed your component as a web service, you may call it from a remote machine.
See Section 3.6.3, “Calling a UIMA Service” [91] for instructions.

3.6.3. How to Call a UIMA Service
Once an Analysis Engine or CAS Consumer has been deployed as a service, it can be used from
any UIMA application, in the exact same way that a local Analysis Engine or CAS Consumer is
used. For example, you can call an Analysis Engine service from the Document Analyzer or use the
CPE Configurator to build a CPE that includes Analysis Engine and CAS Consumer services.

To do this, you use a service client descriptor in place of the usual Analysis Engine or CAS
Consumer Descriptor. A service client descriptor is a simple XML file that indicates the location
of the remote service and a few parameters. Example service client descriptors are provided in the
UIMA SDK under the directories examples/descriptors/soapService and examples/
descriptors/vinciService. The contents of these descriptors are explained below.

Also, before you can call a SOAP service, you need to have the necessary Axis JAR files in your
classpath. If you use any of the scripts in the bin directory of the UIMA installation to launch your
application, such as documentAnalyzer, these JARs are added to the classpath, automatically, using
the CATALINA_HOME environment variable. The required files are the following (all part of the
Apache Axis download)

Restrictions on remotely deployed services

92 Application Developer's Guide UIMA Version 3.0.0-alpha02

• activation.jar
• axis.jar
• commons-discovery.jar
• commons-logging.jar
• jaxrpc.jar
• saaj.jar

3.6.3.1. SOAP Service Client Descriptor

The descriptor used to call the PersonTitleAnnotator SOAP service from the example above is:

<uriSpecifier xmlns="http://uima.apache.org/resourceSpecifier">
 <resourceType>AnalysisEngine</resourceType>
 <uri>http://localhost:8080/axis/services/urn:PersonTitleAnnotator</uri>
 <protocol>SOAP</protocol>
 <timeout>60000</timeout>
</uriSpecifier>

The <resourceType> element must contain either AnalysisEngine or CasConsumer. This specifies
what type of component you expect to be at the specified service address.

The <uri> element describes which service to call. It specifies the host (localhost, in this example)
and the service name (urn:PersonTitleAnnotator), which must match the name specified in the
deployment descriptor used to deploy the service.

3.6.3.2. Vinci Service Client Descriptor

To call a Vinci service, a similar descriptor is used:

<uriSpecifier xmlns="http://uima.apache.org/resourceSpecifier">
 <resourceType>AnalysisEngine</resourceType>
 <uri>uima.annot.PersonTitleAnnotator</uri>
 <protocol>Vinci</protocol>
 <timeout>60000</timeout>
 <parameters>
 <parameter name="VNS_HOST" value="some.internet.ip.name-or-address"/>
 <parameter name="VNS_PORT" value="9000"/>
 </parameters>
</uriSpecifier>

Note that Vinci uses a centralized naming server, so the host where the service is deployed does not
need to be specified. Only a name (uima.annot.PersonTitleAnnotator) is given, which must
match the name specified in the deployment descriptor used to deploy the service.

The host and/or port where your Vinci Naming Service (VNS) server is running can be specified by
the optional <parameter> elements. If not specified, the value is taken from the specification given
your Java command line (if present) using -DVNS_HOST=<host> and -DVNS_PORT=<port>
system arguments. If not specified on the Java command line, defaults are used: localhost for the
VNS_HOST, and 9000 for the VNS_PORT. See the next section for details on setting up a VNS
server.

3.6.4. Restrictions on remotely deployed services
Remotely deployed services are started on remote machines, using UIMA component descriptors
on those remote machines. These descriptors supply any configuration and resource parameters

The Vinci Naming Services (VNS)

UIMA Version 3.0.0-alpha02 Application Developer's Guide 93

for the service (configuration parameters are not transmitted from the calling instance to the
remote one). Likewise, the remote descriptors supply the type system specification for the remote
annotators that will be run (the type system of the calling instance is not transmitted to the remote
one).

The remote service wrapper, when it receives a CAS from the caller, instantiates it for the remote
service, making instances of all types which the remote service specifies. Other instances in the
incoming CAS for types which the remote service has no type specification for are kept aside, and
when the remote service returns the CAS back to the caller, these type instances are re-merged back
into the CAS being transmitted back to the caller. Because of this design, a remote service which
doesn't declare a type system won't receive any type instances.

Note: This behavior may change in future releases, to one where configuration parameters
and / or type systems are transmitted to remote services.

3.6.5. The Vinci Naming Services (VNS)

Vinci consists of components for building network-accessible services, clients for accessing those
services, and an infrastructure for locating and managing services. The primary infrastructure
component is the Vinci directory, known as VNS (for Vinci Naming Service).

On startup, Vinci services locate the VNS and provide it with information that is used by VNS
during service discovery. Vinci service provides the name of the host machine on which it runs, and
the name of the service. The VNS internally creates a binding for the service name and returns the
port number on which the Vinci service will wait for client requests. This VNS stores its bindings
in a filesystem in a file called vns.services.

In Vinci, services are identified by their service name. If there is more than one physical service
with the same service name, then Vinci assumes they are equivalent and will route queries to them
randomly, provided that they are all running on different hosts. You should therefore use a unique
service name if you don't want to conflict with other services listed in whatever VNS you have
configured jVinci to use.

3.6.5.1. Starting VNS

To run the VNS use the startVNS script found in the bin directory of the UIMA installation,
or launch it from Eclipse. If you've installed the uimaj-examples project, it will supply a pre-

configured launch script you can access in Eclipse by selecting Menu → Run → Run... and picking
“UIMA Start VNS”.

Note: VNS runs on port 9000 by default so please make sure this port is available. If you
see the following exception:

java.net.BindException: Address already in use:

JVM_Bind

it indicates that another process is running on port 9000. In this case, add the parameter -p
<port> to the startVNS command, using <port> to specify an alternative port to use.

When started, the VNS produces output similar to the following:

[10/6/04 3:44 PM | main] WARNING: Config file doesn't exist,

The Vinci Naming Services (VNS)

94 Application Developer's Guide UIMA Version 3.0.0-alpha02

 creating a new empty config file!
[10/6/04 3:44 PM | main] Loading config file : .vns.services
[10/6/04 3:44 PM | main] Loading workspaces file : .vns.workspaces
[10/6/04 3:44 PM | main] ====================================
(WARNING) Unexpected exception:
java.io.FileNotFoundException: .vns.workspaces (The system cannot find
the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(Unknown Source)
 at java.io.FileInputStream.<init>(Unknown Source)
 at java.io.FileReader.<init>(Unknown Source)
 at org.apache.vinci.transport.vns.service.VNS.loadWorkspaces(VNS.java:339
 at org.apache.vinci.transport.vns.service.VNS.startServing(VNS.java:237)
 at org.apache.vinci.transport.vns.service.VNS.main(VNS.java:179)
[10/6/04 3:44 PM | main] WARNING: failed to load workspace.
[10/6/04 3:44 PM | main] VNS Workspace : null
[10/6/04 3:44 PM | main] Loading counter file : .vns.counter
[10/6/04 3:44 PM | main] Could not load the counter file : .vns.counter
[10/6/04 3:44 PM | main] Starting backup thread,
 using files .vns.services.bak
and .vns.services
[10/6/04 3:44 PM | main] Serving on port : 9000
[10/6/04 3:44 PM | Thread-0] Backup thread started
[10/6/04 3:44 PM | Thread-0] Saving to config file : .vns.services.bak
>>>>>>>>>>>>> VNS is up and running! <<<<<<<<<<<<<<<<<
>>>>>>>>>>>>> Type 'quit' and hit ENTER to terminate VNS <<<<<<<<<<<<<
[10/6/04 3:44 PM | Thread-0] Config save required 10 millis.
[10/6/04 3:44 PM | Thread-0] Saving to config file : .vns.services
[10/6/04 3:44 PM | Thread-0] Config save required 10 millis.
[10/6/04 3:44 PM | Thread-0] Saving counter file : .vns.counter

Note: Disregard the java.io.FileNotFoundException: .\vns.workspaces (The system cannot
find the file specified). It is just a complaint. not a serious problem. VNS Workspace is
a feature of the VNS that is not critical. The important information to note is [10/6/04
3:44 PM | main] Serving on port : 9000 which states the actual port where
VNS will listen for incoming requests. All Vinci services and all clients connecting to
services must provide the VNS port on the command line IF the port is not a default. Again
the default port is 9000. Please see Section 3.6.5.3, “Launching Vinci Services” [94]
below for details about the command line and parameters.

3.6.5.2. VNS Files

The VNS maintains two external files:
• vns.services

• vns.counter

These files are generated by the VNS in the same directory where the VNS is launched from. Since
these files may contain old information it is best to remove them before starting the VNS. This
step ensures that the VNS has always the newest information and will not attempt to connect to a
service that has been shutdown.

3.6.5.3. Launching Vinci Services

When launching Vinci service, you must indicate which VNS the service will connect to. A Vinci
service is typically started using the script startVinciService, found in the bin directory of
the UIMA installation. (If you're using Eclipse and have the uimaj-examples project in the
workspace, you will also find an Eclipse launcher named “UIMA Start Vinci Service” you can
use.) For the script, the environmental variable VNS_HOST should be set to the name or IP address
of the machine hosting the Vinci Naming Service. The default is localhost, the machine the service

Configuring Timeout Settings

UIMA Version 3.0.0-alpha02 Application Developer's Guide 95

is deployed on. This name can also be passed as the second argument to the startVinciService
script. The default port for VNS is 9000 but can be overriden with the VNS_PORT environmental
variable.

If you write your own startup script, to define Vinci's default VNS you must provide the following
JVM parameters:

java -DVNS_HOST=localhost -DVNS_PORT=9000 ...

The above setting is for the VNS running on the same machine as the service. Of course one can
deploy the VNS on a different machine and the JVM parameter will need to be changed to this:

java -DVNS_HOST=<host> -DVNS_PORT=9000 ...

where “<host>” is a machine name or its IP where the VNS is running.

Note: VNS runs on port 9000 by default. If you see the following exception:

(WARNING) Unexpected exception:
org.apache.vinci.transport.ServiceDownException:
 VNS inaccessible: java.net.Connect
Exception: Connection refused: connect

then, perhaps the VNS is not running OR the VNS is running but it is using a different
port. To correct the latter, set the environmental variable VNS_PORT to the correct port
before starting the service.

To get the right port check the VNS output for something similar to the following:

[10/6/04 3:44 PM | main] Serving on port : 9000

It is printed by the VNS on startup.

3.6.6. Configuring Timeout Settings

UIMA has several timeout specifications, summarized here. The timeouts associated with remote
services are discussed below. In addition there are timeouts that can be specified for:

• Acquiring an empty CAS from a CAS Pool: See Section 3.2.5, “Multi-threaded
Applications” [74].

• Reassembling chunks of a large document See UIMA References Section 3.7, “CPE
Operational Parameters”

If your application uses remote UIMA services it is important to consider how to set the timeout
values appropriately. This is particularly important if your service can take a long time to process
each request.

There are two types of timeout settings in UIMA, the client timeout and the server socket timeout.
The client timeout is usually the most important, it specifies how long that client is willing to wait
for the service to process each CAS. The client timeout can be specified for both Vinci and SOAP.
The server socket timeout (Vinci only) specifies how long the service holds the connection open
between calls from the client. After this amount of time, the server will presume the client may

Configuring Timeout Settings

96 Application Developer's Guide UIMA Version 3.0.0-alpha02

have gone away - and it “cleans up”, releasing any resources it is holding. The next call to process
on the service will cause the client to re-establish its connection with the service (some additional
overhead).

3.6.6.1. Setting the Client Timeout

The way to set the client timeout is different depending on what deployment mode you use in your
CPE (if any).

If you are using the default “integrated” deployment mode in your CPE, or if you are not using a
CPE at all, then the client timeout is specified in your Service Client Descriptor (see Section 3.6.3,
“Calling a UIMA Service” [91]). For example:

<uriSpecifier xmlns="http://uima.apache.org/resourceSpecifier">
 <resourceType>AnalysisEngine</resourceType>
 <uri>uima.annot.PersonTitleAnnotator</uri>
 <protocol>Vinci</protocol>
 <timeout>60000</timeout>
 <parameters>
 <parameter name="VNS_HOST" value="some.internet.ip.name-or-address"/>
 <parameter name="VNS_PORT" value="9000"/>
 </parameters>
</uriSpecifier>

The client timeout in this example is 60000. This value specifies the number of milliseconds that
the client will wait for the service to respond to each request. In this example, the client will wait
for one minute.

If the service does not respond within this amount of time, processing of the current CAS will
abort. If you called the AnalysisEngine.process method directly from your application, an
Exception will be thrown. If you are running a CPE, what happens next is dependent on the error
handling settings in your CPE descriptor (see UIMA References Section 3.6.1.7, “<errorHandling>
Element”). The default action is for the CPE to terminate, but you can override this.

If you are using the “managed” or “non-managed” deployment mode in your CPE, then the client
timeout is specified in your CPE desciptor's errorHandling element. For example:

<errorHandling>
 <maxConsecutiveRestarts .../>
 <errorRateThreshold .../>
 <timeout max="60000"/>
</errorHandling>

As in the previous example, the client timeout is set to 60000, and this specifies the number of
milliseconds that the client will wait for the service to respond to each request.

If the service does not respond within the specified amount of time, the action is determined by the
settings for maxConsecutiveRestarts and errorRateThreshold. These settings support such
things as restarting the process (for “managed” deployment mode), dropping and reestablishing the
connection (for “non-managed” deployment mode), and removing the offending service from the
pipeline. See UIMA References Section 3.6.1.7, “<errorHandling> Element”) for details.

Note that the client timeout does not apply to the GetMetaData request that is made when the
client first connects to the service. This call is typically very fast and does not need a large timeout
(the default is 60 seconds). However, if many clients are competing for a small number of services,

Increasing performance using parallelism

UIMA Version 3.0.0-alpha02 Application Developer's Guide 97

it may be necessary to increase this value. See UIMA References Section 2.7, “Service Client
Descriptors”

3.6.6.2. Setting the Server Socket Timeout

The Server Socket Timeout applies only to Vinci services, and is specified in the Vinci deployment
descriptor as discussed in section Section 3.6.2, “Deploying as a Vinci Service” [90]. For
example:

<deployment name="Vinci Person Title Annotator Service">

 <service name="uima.annotator.PersonTitleAnnotator" provider="vinci">

 <parameter name="resourceSpecifierPath"
 value="C:/Program Files/apache/uima/examples/descriptors/
 analysis_engine/PersonTitleAnnotator.xml"/>

 <parameter name="numInstances" value="1"/>

 <parameter name="serverSocketTimeout" value="120000"/>

 </service>

</deployment>

The server socket timeout here is set to 120000 milliseconds, or two minutes. This parameter
specifies how long the service will wait between requests to process something. After this amount
of time, the server will presume the client may have gone away - and it “cleans up”, releasing any
resources it is holding. The next call to process on the service will cause the client to re-establish its
connection with the service (some additional overhead). The service may print a “Read Timed Out”
message to the console when the server socket timeout elapses.

In most cases, it is not a problem if the server socket timeout elapses. The client will simply
reconnect. However, if you notice “Read Timed Out” messages on your server console, followed
by other connection problems, it is possible that the client is having trouble reconnecting for some
reason. In this situation it may help increase the stability of your application if you increase the
server socket timeout so that it does not elapse during actual processing.

3.7. Increasing performance using parallelism
There are several ways to exploit parallelism to increase performance in the UIMA Framework.
These range from running with additional threads within one Java virtual machine on one host
(which might be a multi-processor or hyper-threaded host) to deploying analysis engines on a set of
remote machines.

The Collection Processing facility in UIMA provides the ability to scale the pipe-line of analysis
engines. This scale-out runs multiple threads within the Java virtual machine running the CPM, one
for each pipe in the pipe-line. To activate it, in the <casProcessors> descriptor element, set the
attribute processingUnitThreadCount, which specifies the number of replicated processing
pipelines, to a value greater than 1, and insure that the size of the CAS pool is equal to or greater
than this number (the attribute of <casProcessors> to set is casPoolSize). For more details on
these settings, see UIMA References Section 3.6, “CAS Processors” .

For deployments that incorporate remote analysis engines in the Collection Manager pipe-line,
running on multiple remote hosts, scale-out is supported which uses the Vinci naming service. If

Monitoring AE Performance using JMX

98 Application Developer's Guide UIMA Version 3.0.0-alpha02

multiple instances of a service with the same name, but running on different hosts, are registered
with the Vinci Name Server, it will assign these instances to incoming requests.

There are two modes supported: a “random” assignment, and a “exclusive” one. The “random”
mode distributes load using an algorithm that selects a service instance at random. The UIMA
framework supports this only for the case where all of the instances are running on unique hosts;
the framework does not support starting 2 or more instances on the same host.

The exclusive mode dedicates a particular remote instance to each Collection Manager pip-line
instance. This mode is enabled by adding a configuration parameter in the <casProcessor> section
of the CPE descriptor:

<deploymentParameters>
 <parameter name="service-access" value="exclusive" />
</deploymentParameters>

If this is not specified, the “random” mode is used.

In addition, remote UIMA engine services can be started with a parameter that specifies the number
of instances the service should support (see the <parameter name="numInstances"> XML
element in remote deployment descriptor Section 3.6, “Working with Remote Services” [88]
Specifying more than one causes the service wrapper for the analysis engine to use multi-threading
(within the single Java Virtual Machine – which can take advantage of multi-processor and hyper-
threaded architectures).

Note: When using Vinci in “exclusive” mode (see service access under UIMA References
Section 3.6.1.5, “<deploymentParameters> Element”), only one thread is used. To achieve
multi-processing on a server in this case, use multiple instances of the service, instead of
multiple threads (see Section 3.6.2, “Deploying as a Vinci Service” [90].

3.8. Monitoring AE Performance using JMX
As of version 2, UIMA supports remote monitoring of Analysis Engine performance via the Java
Management Extensions (JMX) API. JMX is a standard part of the Java Runtime Environment
v5.0; there is also a reference implementation available from Sun for Java 1.4. An introduction to
JMX is available from Sun here: http://java.sun.com/developer/technicalArticles/J2SE/jmx.html.
When you run a UIMA with a JVM that supports JMX, the UIMA framework will automatically
detect the presence of JMX and will register MBeans that provide access to the performance
statistics.

Note: The Sun JVM supports local monitoring; for others you can configure your
application for remote monitoring (even when on the same host) by specifying a
unique port number, e.g. -Dcom.sun.management.jmxremote.port=1098
-Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false

Now, you can use any JMX client to view the statistics. JDK 5.0 or later provides a standard client
that you can use. Simply open a command prompt, make sure the JDK bin directory is in your
path, and execute the jconsole command. This should bring up a window allowing you to select
one of the local JMX-enabled applications currently running, or to enter a remote (or local) host
and port, e.g. localhost:1098. The next screen will show a summary of information about the Java
process that you connected to. Click on the “MBeans” tab, then expand “org.apache.uima” in the
tree at the left. You should see a view like this:

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

Monitoring AE Performance using JMX

UIMA Version 3.0.0-alpha02 Application Developer's Guide 99

Each of the nodes under “org.apache.uima” in the tree represents one of the UIMA Analysis
Engines in the application that you connected to. You can select one of the analysis engines to view
its performance statistics in the view at the right.

Probably the most useful statistic is “CASes Per Second”, which is the number of CASes that this
AE has processed divided by the amount of time spent in the AE's process method, in seconds.
Note that this is the total elapsed time, not CPU time. Even so, it can be useful to compare the
“CASes Per Second” numbers of all of your Analysis Engines to discover where the bottlenecks
occur in your application.

The AnalysisTime, BatchProcessCompleteTime, and CollectionProcessCompleteTime
properties show the total elapsed time, in milliseconds, that has been spent in the AnalysisEngine's
process(), batchProcessComplete(), and collectionProcessComplete() methods,
respectively. (Note that for CAS Multipliers, time spent in the hasNext() and next() methods is
also counted towards the AnalysisTime.)

Note that once your UIMA application terminates, you can no longer view the statistics through
the JMX console. If you want to use JMX to view processes that have completed, you will need
to write your application so that the JVM remains running after processing completes, waiting for
some user signal before terminating.

It is possible to override the default JMX MBean names UIMA uses, for example to better organize
the UIMA MBeans with respect to MBeans exposed by other parts of your application. This is done
using the AnalysisEngine.PARAM_MBEAN_NAME_PREFIX additional parameter when creating
your AnalysisEngine:

 //set up Map with custom JMX MBean name prefix
 Map paramMap = new HashMap();
 paramMap.put(AnalysisEngine.PARAM_MBEAN_NAME_PREFIX,
 "org.myorg:category=MyApp");

 // create Analysis Engine

Performance Tuning Options

100 Application Developer's Guide UIMA Version 3.0.0-alpha02

 AnalysisEngine ae =
 UIMAFramework.produceAnalysisEngine(specifier, paramMap);

Similary, you can use the AnalysisEngine.PARAM_MBEAN_SERVER parameter to specify a
particular instance of a JMX MBean Server with which UIMA should register the MBeans. If no
specified then the default is to register with the platform MBeanServer (Java 5+ only).

More information on JMX can be found in the Java 5 documentation2.

3.9. Performance Tuning Options
There are a small number of performance tuning options available to influence the runtime
behavior of UIMA applications. Performance tuning options need to be set programmatically when
an analysis engine is created. You simply create a Java Properties object with the relevant options
and pass it to the UIMA framework on the call to create an analysis engine. Below is an example.

 XMLParser parser = UIMAFramework.getXMLParser();
 ResourceSpecifier spec = parser.parseResourceSpecifier(
 new XMLInputSource(descriptorFile));
 // Create a new properties object to hold the settings.
 Properties performanceTuningSettings = new Properties();
 // Set the initial CAS heap size.
 performanceTuningSettings.setProperty(
 UIMAFramework.CAS_INITIAL_HEAP_SIZE,
 "1000000");
 // Disable JCas cache.
 performanceTuningSettings.setProperty(
 UIMAFramework.JCAS_CACHE_ENABLED,
 "false");
 // Create a wrapper properties object that can
 // be passed to the framework.
 Properties additionalParams = new Properties();
 // Set the performance tuning properties as value to
 // the appropriate parameter.
 additionalParams.put(
 Resource.PARAM_PERFORMANCE_TUNING_SETTINGS,
 performanceTuningSettings);
 // Create the analysis engine with the parameters.
 // The second, unused argument here is a custom
 // resource manager.
 this.ae = UIMAFramework.produceAnalysisEngine(
 spec, null, additionalParams);

The following options are supported:

• UIMAFramework.JCAS_CACHE_ENABLED: allows you to disable the JCas cache (true/
false). The JCas cache is an internal datastructure that caches any JCas object created by
the CAS. This may result in better performance for applications that make extensive use of
the JCas, but also incurs a steep memory overhead. If you're processing large documents
and have memory issues, you should disable this option. In general, just try running a few
experiments to see what setting works better for your application. The JCas cache is enabled
by default.

2 http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html#package_description

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html#package_description
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html#package_description

Performance Tuning Options

UIMA Version 3.0.0-alpha02 Application Developer's Guide 101

• UIMAFramework.CAS_INITIAL_HEAP_SIZE: set the initial CAS heap size in number
of cells (integer valued). The CAS uses 32bit integer cells, so four times the initial size is
the approximate minimum size of the CAS in bytes. This is another space/time trade-off
as growing the CAS heap is relatively expensive. On the other hand, setting the initial size
too high is wasting memory. Unless you know you are processing very small or very large
documents, you should probably leave this option unchanged.

• UIMAFramework.PROCESS_TRACE_ENABLED: enable the process trace mechanism
(true/false). When enabled, UIMA tracks the time spent in individual components
of an aggregate AE or CPE. For more information, see the API documentation of
org.apache.uima.util.ProcessTrace.

• UIMAFramework.SOCKET_KEEPALIVE_ENABLED: enable socket KeepAlive (true/false).
This setting is currently only supported by Vinci clients. Defaults to true.

Flow Controller Developer's Guide 103

Chapter 4. Flow Controller Developer's Guide
A Flow Controller is a component that plugs into an Aggregate Analysis Engine. When a CAS
is input to the Aggregate, the Flow Controller determines the order in which the components
of that aggregate are invoked on that CAS. The ability to provide your own Flow Controller
implementation is new as of release 2.0 of UIMA.

Flow Controllers may decide the flow dynamically, based on the contents of the CAS. So, as
just one example, you could develop a Flow Controller that first sends each CAS to a Language
Identification Annotator and then, based on the output of the Language Identification Annotator,
routes that CAS to an Annotator that is specialized for that particular language.

4.1. Developing the Flow Controller Code

4.1.1. Flow Controller Interface Overview
Flow Controller implementations should extend from the JCasFlowController_ImplBase
or CasFlowController_ImplBase classes, depending on which CAS interface they prefer to
use. As with other types of components, the Flow Controller ImplBase classes define optional
initialize, destroy, and reconfigure methods. They also define the required method
computeFlow.

The computeFlow method is called by the framework whenever a new CAS enters the Aggregate
Analysis Engine. It is given the CAS as an argument and must return an object which implements
the Flow interface (the Flow object). The Flow Controller developer must define this object. It
is the object that is responsible for routing this particular CAS through the components of the
Aggregate Analysis Engine. For convenience, the framework provides basic implementation of
flow objects in the classes CasFlow_ImplBase and JCasFlow_ImplBase; use the JCas one if you
are using the JCas interface to the CAS.

The framework then uses the Flow object and calls its next() method, which returns a Step
object (implemented by the UIMA Framework) that indicates what to do next with this CAS next.
There are three types of steps currently supported:

• SimpleStep, which specifies a single Analysis Engine that should receive the CAS next.

• ParallelStep, which specifies that multiple Analysis Engines should receive the CAS
next, and that the relative order in which these Analysis Engines execute does not matter.
Logically, they can run in parallel. The runtime is not obligated to actually execute them in
parallel, however, and the current implementation will execute them serially in an arbitrary
order.

• FinalStep, which indicates that the flow is completed.

After executing the step, the framework will call the Flow object's next() method again to
determine the next destination, and this will be repeated until the Flow Object indicates that
processing is complete by returning a FinalStep.

The Flow Controller has access to a FlowControllerContext, which is a subtype of
UimaContext. In addition to the configuration parameter and resource access provided
by a UimaContext, the FlowControllerContext also gives access to the metadata
for all of the Analysis Engines that the Flow Controller can route CASes to. Most Flow
Controllers will need to use this information to make routing decisions. You can get a
handle to the FlowControllerContext by calling the getContext() method defined

Example Code

104 Flow Controller Developer's Guide UIMA Version 3.0.0-alpha02

in JCasFlowController_ImplBase and CasFlowController_ImplBase. Then, the
FlowControllerContext.getAnalysisEngineMetaDataMap method can be called to get a
map containing an entry for each of the Analysis Engines in the Aggregate. The keys in this map
are the same as the delegate analysis engine keys specified in the aggregate descriptor, and the
values are the corresponding AnalysisEngineMetaData objects.

Finally, the Flow Controller has optional methods addAnalysisEngines and
removeAnalysisEngines. These methods are intended to notify the Flow Controller if new
Analysis Engines are available to route CASes to, or if previously available Analysis Engines
are no longer available. However, the current version of the Apache UIMA framework does not
support dynamically adding or removing Analysis Engines to/from an aggregate, so these methods
are not currently called. Future versions may support this feature.

4.1.2. Example Code
This section walks through the source code of an example Flow Controller that simluates a simple
version of the “Whiteboard” flow model. At each step of the flow, the Flow Controller looks it all
of the available Analysis Engines that have not yet run on this CAS, and picks one whose input
requirements are satisfied.

The Java class for the example is
org.apache.uima.examples.flow.WhiteboardFlowController and the source code is
included in the UIMA SDK under the examples/src directory.

4.1.2.1. The WhiteboardFlowController Class

public class WhiteboardFlowController
 extends CasFlowController_ImplBase {
 public Flow computeFlow(CAS aCAS)
 throws AnalysisEngineProcessException {
 WhiteboardFlow flow = new WhiteboardFlow();
 // As of release 2.3.0, the following is not needed,
 // because the framework does this automatically
 // flow.setCas(aCAS);

 return flow;
 }

 class WhiteboardFlow extends CasFlow_ImplBase {
 // Discussed Later
 }
}

The WhiteboardFlowController extends from CasFlowController_ImplBase and
implements the computeFlow method. The implementation of the computeFlow method is very
simple; it just constructs a new WhiteboardFlow object that will be responsible for routing this
CAS. The framework will add a handle to that CAS which it will later use to make its routing
decisions.

Note that we will have one instance of WhiteboardFlow per CAS, so if there are multiple CASes
being simultaneously processed there will not be any confusion.

4.1.2.2. The WhiteboardFlow Class

class WhiteboardFlow extends CasFlow_ImplBase {

Example Code

UIMA Version 3.0.0-alpha02 Flow Controller Developer's Guide 105

 private Set mAlreadyCalled = new HashSet();

 public Step next() throws AnalysisEngineProcessException {
 // Get the CAS that this Flow object is responsible for routing.
 // Each Flow instance is responsible for a single CAS.
 CAS cas = getCas();

 // iterate over available AEs
 Iterator aeIter = getContext().getAnalysisEngineMetaDataMap().
 entrySet().iterator();
 while (aeIter.hasNext()) {
 Map.Entry entry = (Map.Entry) aeIter.next();
 // skip AEs that were already called on this CAS
 String aeKey = (String) entry.getKey();
 if (!mAlreadyCalled.contains(aeKey)) {
 // check for satisfied input capabilities
 //(i.e. the CAS contains at least one instance
 // of each required input
 AnalysisEngineMetaData md =
 (AnalysisEngineMetaData) entry.getValue();
 Capability[] caps = md.getCapabilities();
 boolean satisfied = true;
 for (int i = 0; i < caps.length; i++) {
 satisfied = inputsSatisfied(caps[i].getInputs(), cas);
 if (satisfied)
 break;
 }
 if (satisfied) {
 mAlreadyCalled.add(aeKey);
 if (mLogger.isLoggable(Level.FINEST)) {
 getContext().getLogger().log(Level.FINEST,
 "Next AE is: " + aeKey);
 }
 return new SimpleStep(aeKey);
 }
 }
 }
 // no appropriate AEs to call - end of flow
 getContext().getLogger().log(Level.FINEST, "Flow Complete.");
 return new FinalStep();
 }

 private boolean inputsSatisfied(TypeOrFeature[] aInputs, CAS aCAS) {
 //implementation detail; see the actual source code
 }
}

Each instance of the WhiteboardFlowController is responsible for routing a single CAS.
A handle to the CAS instance is available by calling the getCas() method, which is a standard
method defined on the CasFlow_ImplBase superclass.

Each time the next method is called, the Flow object iterates over the metadata
of all of the available Analysis Engines (obtained via the call to getContext().
getAnalysisEngineMetaDataMap) and sees if the input types declared in an
AnalysisEngineMetaData object are satisfied by the CAS (that is, the CAS contains at least one
instance of each declared input type). The exact details of checking for instances of types in the
CAS are not discussed here – see the WhiteboardFlowController.java file for the complete source.

When the Flow object decides which AnalysisEngine should be called next, it indicates this by
creating a SimpleStep object with the key for that AnalysisEngine and returning it:

Creating the Flow Controller Descriptor

106 Flow Controller Developer's Guide UIMA Version 3.0.0-alpha02

return new SimpleStep(aeKey);

The Flow object keeps a list of which Analysis Engines it has invoked in the mAlreadyCalled
field, and never invokes the same Analysis Engine twice. Note this is not a hard requirement. It
is acceptable to design a FlowController that invokes the same Analysis Engine more than once.
However, if you do this you must make sure that the flow will eventually terminate.

If there are no Analysis Engines left whose input requirements are satisfied, the Flow object signals
the end of the flow by returning a FinalStep object:

return new FinalStep();

Also, note the use of the logger to write tracing messages indicating the decisions made by the
Flow Controller. This is a good practice that helps with debugging if the Flow Controller is
behaving in an unexpected way.

4.2. Creating the Flow Controller Descriptor

To create a Flow Controller Descriptor in the CDE, use File → New → Other → UIMA → Flow
Controller Descriptor File:

This will bring up the Overview page for the Flow Controller Descriptor:

Adding Flow Controller to an Aggregate

UIMA Version 3.0.0-alpha02 Flow Controller Developer's Guide 107

Type in the Java class name that implements the Flow Controller, or use the “Browse” button to
select it. You must select a Java class that implements the FlowController interface.

Flow Controller Descriptors are very similar to Primitive Analysis Engine Descriptors – for
example you can specify configuration parameters and external resources if you wish.

If you wish to edit a Flow Controller Descriptor by hand, see UIMA References Section 2.5, “Flow
Controller Descriptors” for the syntax.

4.3. Adding a Flow Controller to an Aggregate
Analysis Engine

To use a Flow Controller you must add it to an Aggregate Analysis Engine. You can only have one
Flow Controller per Aggregate Analysis Engine. In the Component Descriptor Editor, the Flow
Controller is specified on the Aggregate page, as a choice in the flow control kind - pick “User-
defined Flow”. When you do, the Browse and Search buttons underneath become active, and allow
you to specify an existing Flow Controller Descriptor, which when you select it, will be imported
into the aggregate descriptor.

Adding Flow Controller to CPE

108 Flow Controller Developer's Guide UIMA Version 3.0.0-alpha02

The key name is created automatically from the name element in the Flow Controller Descriptor
being imported. If you need to change this name, you can do so by switching to the “Source” view
using the bottom tabs, and editing the name in the XML source.

If you edit your Aggregate Analysis Engine Descriptor by hand, the syntax for adding a Flow
Controller is:

 <delegateAnalysisEngineSpecifiers>
 ...
 </delegateAnalysisEngineSpecifiers>
 <flowController key=“[String]”>
 <import .../>
 </flowController>

As usual, you can use either in import by location or import by name – see UIMA References
Section 2.2, “Imports”.

The key that you assign to the FlowController can be used elsewhere in the Aggregate Analysis
Engine Descriptor – in parameter overrides, resource bindings, and Sofa mappings.

4.4. Adding a Flow Controller to a Collection
Processing Engine

Flow Controllers cannot be added directly to Collection Processing Engines. To use a Flow
Controller in a CPE you first need to wrap the part of your CPE that requires complex flow control
into an Aggregate Analysis Engine, and then add the Aggregate Analysis Engine to your CPE. The
CPE's deployment and error handling options can then only be configured for the entire Aggregate
Analysis Engine as a unit.

4.5. Using Flow Controllers with CAS Multipliers
If you want your Flow Controller to work inside an Aggregate Analysis Engine that contains a CAS
Multiplier (see Chapter 7, CAS Multiplier Developer's Guide), there are additional things you must
consider.

When your Flow Controller routes a CAS to a CAS Multiplier, the CAS Multiplier may produce
new CASes that then will also need to be routed by the Flow Controller. When a new output

Continuing the Flow When Exceptions Occur

UIMA Version 3.0.0-alpha02 Flow Controller Developer's Guide 109

CAS is produced, the framework will call the newCasProduced method on the Flow object that
was managing the flow of the parent CAS (the one that was input to the CAS Multiplier). The
newCasProduced method must create a new Flow object that will be responsible for routing the
new output CAS.

In the CasFlow_ImplBase and JCasFlow_ImplBase classes, the newCasProduced method is
defined to throw an exception indicating that the Flow Controller does not handle CAS Multipliers.
If you want your Flow Controller to properly deal with CAS Multipliers you must override this
method.

If your Flow class extends CasFlow_ImplBase, the method signature to override is:

protected Flow newCasProduced(CAS newOutputCas, String producedBy)

If your Flow class extends JCasFlow_ImplBase, the method signature to override is:

protected Flow newCasProduced(JCas newOutputCas, String producedBy)

Also, there is a variant of FinalStep which can only be specified for output CASes produced
by CAS Multipliers within the Aggregate Analysis Engine containing the Flow Controller. This
version of FinalStep is produced by the calling the constructor with a true argument, and it
causes the CAS to be immediately released back to the pool. No further processing will be done
on it and it will not be output from the aggregate. This is the way that you can build an Aggregate
Analysis Engine that outputs some new CASes but not others. Note that if you never want any new
CASes to be output from the Aggregate Analysis Engine, you don't need to use this; instead just
declare <outputsNewCASes>false</outputsNewCASes> in your Aggregate Analysis Engine
Descriptor as described in Section 7.3.3, “Aggregate CAS Multipliers”.

For more information on how CAS Multipliers interact with Flow Controllers, see Section 7.3.2,
“CAS Multipliers and Flow Control”.

4.6. Continuing the Flow When Exceptions Occur
If an exception occurs when processing a CAS, the framework may call the method

boolean continueOnFailure(String failedAeKey, Exception failure)

on the Flow object that was managing the flow of that CAS. If this method returns true, then the
framework may continue to call the next() method to continue routing the CAS. If this method
returns false (the default), the framework will not make any more calls to the next() method.

In the case where the last Step was a ParallelStep, if at least one of the destinations resulted in
a failure, then continueOnFailure will be called to report one of the failures. If this method
returns true, but one of the other destinations in the ParallelStep resulted in a failure, then the
continueOnFailure method will be called again to report the next failure. This continues until
either this method returns false or there are no more failures.

Note that it is possible for processing of a CAS to be aborted without this method being called. This
method is only called when an attempt is being made to continue processing of the CAS following
an exception, which may be an application configuration decision.

In any case, if processing is aborted by the framework for any reason, including because
continueOnFailure returned false, the framework will call the Flow.aborted() method to
allow the Flow object to clean up any resources.

Continuing the Flow When Exceptions Occur

110 Flow Controller Developer's Guide UIMA Version 3.0.0-alpha02

For an example of how to continue after an exception, see the example code
org.apache.uima.examples.flow.AdvancedFixedFlowController, in the examples/
src directory of the UIMA SDK. This exampe also demonstrates the use of ParallelStep.

Annotations, Artifacts & Sofas 111

Chapter 5. Annotations, Artifacts, and Sofas
Up to this point, the documentation has focused on analyzing strings of Unicode text, producing
subtypes of Annotations which reference offsets in those strings. This chapter generalizes this
concept and shows how other kinds of artifacts can be handled, including non-text things like audio
and images, and how you can define your own kinds of “annotations” for these.

5.1. Terminology

5.1.1. Artifact

The Artifact is the unstructured thing being analyzed by an annotator. It could be an HTML web
page, an image, a video stream, a recorded audio conversation, an MPEG-4 stream, etc. Artifacts
are often restructured in the course of processing to facilitate particular kinds of analysis. For
instance, an HTML page may be converted into a “de-tagged” version. Annotators at different
places in the pipeline may be analyzing different versions of the artifact.

5.1.2. Subject of Analysis — Sofa

Each representation of an Artifact is called a Subject of Analysis, abbreviated using the acronym
“Sofa” which stands for Subject OF Analysis. Annotation metadata, which have explicit
designations of sub-regions of the artifact to which they apply, are always associated with a
particular Sofa. For instance, an annotation over text specifies two features, the begin and end,
which represent the character offsets into the text string Sofa being analyzed.

Other examples of representations of Artifacts, which could be Sofas include: An HTML web page,
a detagged web page, the translated text of that document, an audio or video stream, closed-caption
text from a video stream, etc.

Often, there is one Sofa being analyzed in a CAS. The next chapter will show how UIMA
facilitates working with multiple representations of an artifact at the same time, in the same CAS.

5.2. Formats of Sofa Data
Sofa data can be Java Unicode Strings, Feature Structure arrays of primitive types, or a URI which
references remote data available via a network connection.

The arrays of primitive types can be things like byte arrays or float arrays, and are intended to be
used for artifacts like audio data, image data, etc.

The URI form holds a URI specification String.

Note: Sofa data can be "serialized" using an XML format; when it is, the String data
being serialized must not include invalid XML characters. See Section 8.3.1, “Character
Encoding Issues with XML Serialization” [140].

Setting and Accessing Sofa Data

112 Annotations, Artifacts & Sofas UIMA Version 3.0.0-alpha02

5.3. Setting and Accessing Sofa Data

5.3.1. Setting Sofa Data
When a CAS is created, you can set its Sofa Data, just one time; this property insures that metadata
describing regions of the Sofa remain valid. As a consequence, the following methods that set data
for a given Sofa can only be called once for a given Sofa.

The following methods on the CAS set the Sofa Data to one of the 3 formats. Assume that the
variable “aCas” holds a reference to a CAS:

aCas.setSofaDataString(document_text_string, mime_type_string);
aCas.setSofaDataArray(feature_structure_primitive_array, mime_type_string);
aCas.setSofaDataURI(uri_string, mime_type_string);

In addition, the method aCas.setDocumentText(document_text_string) may still be used,
and is equivalent to setSofaDataString(string, "text"). The mime type is currently not
used by the UIMA framework, but may be set and retrieved by user code.

Feature Structure primitive arrays are all the UIMA Array types except arrays of Feature
Structures, Strings, and Booleans. Typically, these are arrays of bytes, but can be other types, such
as floats, longs, etc.

The URI string should conform to the standard URI format.

5.3.2. Accessing Sofa Data
The analysis algorithms typically work with the Sofa data. The following methods on the CAS
access the Sofa Data:

String aCas.getDocumentText();
String aCas.getSofaDataString();
FeatureStructure aCas.getSofaDataArray();
String aCas.getSofaDataURI();
String aCas.getSofaMimeType();

The getDocumentText and getSofaDataString return the same text string. The
getSofaDataURI returns the URI itself, not the data the URI is pointing to. You can use standard
Java I/O capabilities to get the data associated with the URI, or use the UIMA Framework
Streaming method described next.

5.3.3. Accessing Sofa Data using a Java Stream
The framework provides a consistent method for accessing the Sofa data, independent of it being
stored locally, or accessed remotely using the URI. Get a Java InputStream instance from the Sofa
data using:

InputStream inputStream = aCas.getSofaDataStream();

• If the data is local, this method returns a ByteArrayInputStream. This stream provides bytes.

• If the Sofa data was set using setDocumentText or setSofaDataString, the String is
converted to bytes by using the UTF-8 encoding.

The Sofa Feature Structure

UIMA Version 3.0.0-alpha02 Annotations, Artifacts & Sofas 113

• If the Sofa data was set as a DataArray, the bytes in the data array are serialized, high-
byte first.

• If the Sofa data was specified as a URI, this method returns the handle from
url.openStream(). Java offers built-in support for several URI schemes including “FILE:”,
“HTTP:”, “FTP:” and has an extensible mechanism, URLStreamHandlerFactory, for
customizing access to an arbitrary URI. See more details at http://java.sun.com/j2se/1.5.0/
docs/api/java/net/URLStreamHandlerFactory.html .

5.4. The Sofa Feature Structure
Information about a Sofa is contained in a special built-in Feature Structure of type
uima.cas.Sofa. This feature structure is created and managed by the UIMA Framework; users
must not create it directly. Although these Sofa type instances are implemented as standard feature
structures, generic CAS APIs can not be used to create Sofas or set their features. Instead, Sofas
are created implicitly by the creation of new CAS views. Similarly, Sofa features are set by CAS
methods such as cas.setDocumentText().

Features of the Sofa type include

• SofaID: Every Sofa in a CAS has a unique SofaID. SofaIDs are the primary handle for
access. This ID is often the same as the name string given to the Sofa by the developer, but it
can be mapped to a different name (see Section 6.4, “Sofa Name Mapping”.

• Mime type: This string feature can be used to describe the type of the data represented by a
Sofa. It is not used by the framework; the framework provides APIs to set and get its value.

• Sofa Data: The Sofa data itself. This data can be resident in the CAS or it can be a reference
to data outside the CAS.

5.5. Annotations
Annotators add meta data about a Sofa to the CAS. It is often useful to have this metadata
denote a region of the Sofa to which it applies. For instance, assuming the Sofa is a String, the
metadata might describe a particular substring as the name of a person. The built-in UIMA type,
uima.tcas.Annotation, has two extra features that enable this - the begin and end features - which
denote a character position offset into the text string being analyzed.

The concept of “annotations” can be generalized for non-string kinds of Sofas. For instance, an
audio stream might have an audio annotation which describes sounds regions in terms of floating
point time offsets in the Sofa. An image annotation might use two pairs of x,y coordinates to define
the region the annotation applies to.

5.5.1. Built-in Annotation types
The built-in CAS type, uima.tcas.Annotation, is just one kind of definition of an Annotation.
It was designed for annotating text strings, and has begin and end features which describe which
substring of the Sofa being annotated.

For applications which have other kinds of Sofas, the UIMA developer will design their own
kinds of Annotation types, as needed to describe an annotation, by declaring new types which are
subtypes of uima.cas.AnnotationBase. For instance, for images, you might have the concept
of a rectangular region to which the annotation applies. In this case, you might describe the region
with 2 pairs of x, y coordinates.

http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLStreamHandlerFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLStreamHandlerFactory.html

Annotations have an associated Sofa

114 Annotations, Artifacts & Sofas UIMA Version 3.0.0-alpha02

5.5.2. Annotations have an associated Sofa
Annotations are always associated with a particular Sofa. In subsequent chapters, you will learn
how there can be multiple Sofas associated with an artifact; which Sofa an annotation refers to is
described by the Annotation feature structure itself.

All annotation types extend from the built-in type uima.cas.AnnotationBase. This type has one
feature, a reference to the Sofa associated with the annotation. This value is currently used by
the Framework to support the getCoveredText() method on the annotation instance - this returns
the portion of a text Sofa that the annotation spans. It also is used to insure that the Annotation is
indexed only in the CAS View associated with this Sofa.

5.6. AnnotationBase
A built-in type, uima.cas.AnnotationBase, is provided by UIMA to allow users to extend
the Annotation capabilities to different kinds of Annotations. The AnnotationBase type has
one feature, named sofa, which holds a reference to the Sofa feature structure with which this
annotation is associated. The sofa feature is automatically set when creating an annotation
(meaning — any type derived from the built-in uima.cas.AnnotationBase type); it should not
be set by the user.

There is one method, getView(), provided by AnnotationBase that returns the CAS View for
the Sofa the annotation is pointing at. Note that this method always returns a CAS, even when
applied to JCas annotation instances.

The built-in type uima.tcas.Annotation extends uima.cas.AnnotationBase and adds two
features, a begin and an end feature, which are suitable for identifying a span in a text string that
the annotation applies to. Users may define other extensions to AnnotationBase with alternative
specifications that can denote a particular region within the subject of analysis, as appropriate to
their application.

Multiple CAS Views 115

Chapter 6. Multiple CAS Views of an Artifact
UIMA provides an extension to the basic model of the CAS which supports analysis of multiple
views of the same artifact, all contained with the CAS. This chapter describes the concepts,
terminology, and the API and XML extensions that enable this.

Multiple CAS Views can simplify things when different versions of the artifact are needed at
different stages of the analysis. They are also key to enabling multimodal analysis where the initial
artifact is transformed from one modality to another, or where the artifact itself is multimodal, such
as the audio, video and closed-captioned text associated with an MPEG object. Each representation
of the artifact can be analyzed independently with the standard UIMA programming model; in
addition, multi-view components and applications can be constructed.

UIMA supports this by augmenting the CAS with additional light-weight CAS objects, one for
each view, where these objects share most of the same underlying CAS, except for two things: each
view has its own set of indexed Feature Structures, and each view has its own subject of analysis
(Sofa) - its own version of the artifact being analyzed. The Feature Structure instances themselves
are in the shared part of the CAS; only the entries in the indexes are unique for each CAS view.

All of these CAS view objects are kept together with the CAS, and passed as a unit between
components in a UIMA application. APIs exist which allow components and applications to switch
among the various view objects, as needed.

Feature Structures may be indexed in multiple views, if necessary. New methods on CAS Views
facilitate adding or removing Feature Structures to or from their index repositories:

aView.addFsToIndexes(aFeatureStructure)
aView.removeFsFromIndexes(aFeatureStructure)

specify the view in which this Feature Structure should be added to or removed from the indexes.

6.1. CAS Views and Sofas
Sofas (see Section 5.1.2, “Subject of Analysis — Sofa”) and CAS Views are linked. In this
implementation, every CAS view has one associated Sofa, and every Sofa has one associated CAS
View.

6.1.1. Naming CAS Views and Sofas
The developer assigns a name to the View / Sofa, which is a simple string (following the rules
for Java identifiers, usually without periods, but see special exception below). These names are
declared in the component XML metadata, and are used during assembly and by the runtime to
enable switching among multiple Views of the CAS at the same time.

Note: The name is called the Sofa name, for historical reasons, but it applies equally to the
View. In the rest of this chapter, we'll refer to it as the Sofa name.

Some applications contain components that expect a variable number of Sofas as input or output.
An example of a component that takes a variable number of input Sofas could be one that takes
several translations of a document and merges them, where each translation was in a separate Sofa.

You can specify a variable number of input or output sofa names, where each name has the same
base part, by writing the base part of the name (with no periods), followed by a period character
and an asterisk character (.*). These denote sofas that have names matching the base part up to the

Multi/Single View parts in Applications

116 Multiple CAS Views UIMA Version 3.0.0-alpha02

period; for example, names such as base_name_part.TTX_3d would match a specification of
base_name_part.*.

6.1.2. Multi-View, Single-View components & applications
Components and applications can be written to be Multi-View or Single-View. Most components
used as primitive building blocks are expected to be Single-View. UIMA provides capabilities
to combine these kinds of components with Multi-View components when assembling analysis
aggregates or applications.

Single-View components and applications use only one subject of analysis, and one CAS View.
The code and descriptors for these components do not use the facilities described in this chapter.

Conversely, Multi-View components and applications are aware of the possibility of multiple
Views and Sofas, and have code and XML descriptors that create and manipulate them.

6.2. Multi-View Components

6.2.1. How UIMA decides if a component is Multi-View
Every UIMA component has an associated XML Component Descriptor. Multi-View components
are identified simply as those whose descriptors declare one or more Sofa names in their Capability
sections, as inputs or outputs. If a Component Descriptor does not mention any input or output Sofa
names, the framework treats that component as a Single-View component.

6.2.2. Multi-View: additional capabilities
Additional capabilities provided for components and applications aware of the possibilities of
multiple Views and Sofas include:

• Creating new Views, and for each, setting up the associated Sofa data
• Getting a reference to an existing View and its associated Sofa, by name
• Specifying a view in which to index a particular Feature Structure instance

6.2.3. Component XML metadata
Each Multi-View component that creates a Sofa or wants to switch to a specific previously created
Sofa must declare the name for the Sofa in the capabilities section. For example, a component
expecting as input a web document in html format and creating a plain text document for further
processing might declare:

<capabilities>
 <capability>
 <inputs/>
 <outputs/>
 <inputSofas>
 <sofaName>rawContent</sofaName>
 </inputSofas>
 <outputSofas>
 <sofaName>detagContent</sofaName>
 </outputSofas>
 </capability>
</capabilities>

Details on this specification are found in UIMA References Chapter 2, Component Descriptor
Reference. The Component Descriptor Editor supports Sofa declarations on the Capabilites Page.

Sofa Capabilities & APIs for Apps

UIMA Version 3.0.0-alpha02 Multiple CAS Views 117

6.3. Sofa Capabilities and APIs for Applications
In addition to components, applications can make use of these capabilities. When an application
creates a new CAS, it also creates the initial view of that CAS - and this view is the object that is
returned from the create call. Additional views beyond this first one can be dynamically created at
any time. The application can use the Sofa APIs described in Chapter 5, Annotations, Artifacts, and
Sofas to specify the data to be analyzed.

If an Application creates a new CAS, the initial CAS that is created will be a view named
“_InitialView”. This name can be used in the application and in Sofa Mapping (see the next
section) to refer to this otherwise unnamed view.

6.4. Sofa Name Mapping
Sofa Name mapping is the mechanism which enables UIMA component developers to choose
locally meaningful Sofa names in their source code and let aggregate, collection processing engine
developers, and application developers connect output Sofas created in one component to input
Sofas required in another.

At a given aggregation level, the assembler or application developer defines names for all the
Sofas, and then specifies how these names map to the contained components, using the Sofa Map.

Consider annotator code to create a new CAS view:

CAS viewX = cas.createView("X");

Or code to get an existing CAS view:

CAS viewX = cas.getView("X");

Without Sofa name mapping the SofaID for the new Sofa will be “X”. However, if a name
mapping for “X” has been specified by the aggregate or CPE calling this annotator, the actual
SofaID in the CAS can be different.

All Sofas in a CAS must have unique names. This is accomplished by mapping all declared Sofas
as described in the following sections. An attempt to create a Sofa with a SofaID already in use will
throw an exception.

Sofa name mapping must not use the “.” (period) character. Runtime Sofa mapping maps names up
to the “.” and appends the period and the following characters to the mapped name.

To get a Java Iterator for all the views in a CAS:

Iterator allViews = cas.getViewIterator();

To get a Java Iterator for selected views in a CAS, for example, views whose name is either exactly
equal to namePrefix or is of the form namePrefix.suffix, where suffix can be any String:

Iterator someViews = cas.getViewIterator(String namePrefix);

Note: Sofa name mapping is applied to namePrefix.

Sofa name mappings are not currently supported for remote Analysis Engines. See Section 6.4.5,
“Name Mapping for Remote Services” [120].

Name Mapping in an Aggregate Descriptor

118 Multiple CAS Views UIMA Version 3.0.0-alpha02

6.4.1. Name Mapping in an Aggregate Descriptor
For each component of an Aggregate, name mapping specifies the conversion between component
Sofa names and names at the aggregate level.

Here's an example. Consider two Multi-View annotators to be assembled into an aggregate which
takes an audio segment consisting of spoken English and produces a German text translation.

The first annotator takes an audio segment as input Sofa and produces a text transcript as
output Sofa. The annotator designer might choose these Sofa names to be “AudioInput” and
“TranscribedText”.

The second annotator is designed to translate text from English to German. This developer might
choose the input and output Sofa names to be “EnglishDocument” and “GermanDocument”,
respectively.

In order to hook these two annotators together, the following section would be added to the top
level of the aggregate descriptor:

<sofaMappings>
 <sofaMapping>
 <componentKey>SpeechToText</componentKey>
 <componentSofaName>AudioInput</componentSofaName>
 <aggregateSofaName>SegementedAudio</aggregateSofaName>
 </sofaMapping>
 <sofaMapping>
 <componentKey>SpeechToText</componentKey>
 <componentSofaName>TranscribedText</componentSofaName>
 <aggregateSofaName>EnglishTranscript</aggregateSofaName>
 </sofaMapping>
 <sofaMapping>
 <componentKey>EnglishToGermanTranslator</componentKey>
 <componentSofaName>EnglishDocument</componentSofaName>
 <aggregateSofaName>EnglishTranscript</aggregateSofaName>
 </sofaMapping>
 <sofaMapping>
 <componentKey>EnglishToGermanTranslator</componentKey>
 <componentSofaName>GermanDocument</componentSofaName>
 <aggregateSofaName>GermanTranslation</aggregateSofaName>
 </sofaMapping>
</sofaMappings>

The Component Descriptor Editor supports Sofa name mapping in aggregates and simplifies the
task. See UIMA Tools Guide and Reference Section 1.9.1, “Sofa (and view) name mappings” for
details.

6.4.2. Name Mapping in a CPE Descriptor
The CPE descriptor aggregates together a Collection Reader and CAS Processors (Annotators
and CAS Consumers). Sofa mappings can be added to the following elements of CPE descriptors:
<collectionIterator>, <casInitializer> and the <casProcessor>. To be consistent
with the organization of CPE descriptors, the maps for the CPE descriptor are distributed among
the XML markup for each of the parts (collectionIterator, casInitializer, casProcessor). Because
of this the <componentKey> element is not needed. Finally, rather than sub-elements for
the parts, the XML markup for these uses attributes. See UIMA References Section 3.6.1.3,
“<sofaNameMappings> Element”.

CAS View received by Process

UIMA Version 3.0.0-alpha02 Multiple CAS Views 119

Here's an example. Let's use the aggregate from the previous section in a collection processing
engine. Here we will add a Collection Reader that outputs audio segments in an output Sofa
named “nextSegment”. Remember to declare an output Sofa nextSegment in the collection reader
description. We'll add a CAS Consumer in the next section.

<collectionReader>
 <collectionIterator>
 <descriptor>
 . . .
 </descriptor>
 <configurationParameterSettings>...</configurationParameterSettings>
 <sofaNameMappings>
 <sofaNameMapping componentSofaName="nextSegment"
 cpeSofaName="SegementedAudio"/>
 </sofaNameMappings>
 </collectionIterator>
 <casInitializer/>
<collectionReader>

At this point the CAS Processor section for the aggregate does not need any Sofa mapping because
the aggregate input Sofa has the same name, “SegementedAudio”, as is being produced by the
Collection Reader.

6.4.3. Specifying the CAS View delivered to a Components
Process Method

All components receive a Sofa named “_InitialView”, or a Sofa that is mapped to this name.

For example, assume that the CAS Consumer to be used in our CPE is a Single-View component
that expects the analysis results associated with the input CAS, and that we want it to use the results
from the translated German text Sofa. The following mapping added to the CAS Processor section
for the CPE will instruct the CPE to get the CAS view for the German text Sofa and pass it to the
CAS Consumer:

<casProcessor>
 . . .
 <sofaNameMappings>
 <sofaNameMapping componentSofaName="_InitialView"
 cpeSofaName="GermanTranslation"/>
 <sofaNameMappings>
</casProcessor>

An alternative syntax for this kind of mapping is to simply leave out the component sofa name in
this case.

6.4.4. Name Mapping in a UIMA Application
Applications which instantiate UIMA components directly using the UIMAFramework methods
can also create a top level Sofa mapping using the “additional parameters” capability.

//create a "root" UIMA context for your whole application

UimaContextAdmin rootContext =
 UIMAFramework.newUimaContext(UIMAFramework.getLogger(),
 UIMAFramework.newDefaultResourceManager(),
 UIMAFramework.newConfigurationManager());

Name Mapping for Remote Services

120 Multiple CAS Views UIMA Version 3.0.0-alpha02

input = new XMLInputSource("test.xml");
desc = UIMAFramework.getXMLParser().parseAnalysisEngineDescription(input);

//setup sofa name mappings using the api

HashMap sofamappings = new HashMap();
sofamappings.put("localName1", "globalName1");
sofamappings.put("localName2", "globalName2");

//create a UIMA Context for the new AE we are about to create

//first argument is unique key among all AEs used in the application
UimaContextAdmin childContext = rootContext.createChild("myAE", sofamap);

//instantiate AE, passing the UIMA Context through the additional
//parameters map

Map additionalParams = new HashMap();
additionalParams.put(Resource.PARAM_UIMA_CONTEXT, childContext);

AnalysisEngine ae =
 UIMAFramework.produceAnalysisEngine(desc,additionalParams);

Sofa mappings are applied from the inside out, i.e., local to global. First, any aggregate mappings
are applied, then any CPE mappings, and finally, any specified using this “additional parameters”
capability.

6.4.5. Name Mapping for Remote Services
Currently, no client-side Sofa mapping information is passed from a UIMA client to a remote
service. This can cause complications for UIMA services in a Multi-View application.

Remote Multi-View services will work only if the service is Single-View, or if the Sofa names
expected by the service exactly match the Sofa names produced by the client.

If your application requires Sofa mappings for a remote Analysis Engine, you can wrap your
remotely deployed AE in an aggregate (on the remote side), and specify the necessary Sofa
mappings in the descriptor for that aggregate.

6.5. JCas extensions for Multiple Views
The JCas interface to the CAS can be used with any / all views. You can always get a JCas object
from an existing CAS object by using the method getJCas(); this call will create the JCas if it
doesn't already exist. If it does exist, it just returns the existing JCas that corresponds to the CAS.

JCas implements the getView(...) method, enabling switching to other named views, just like the
corresponding method on the CAS. The JCas version, however, returns JCas objects, instead of
CAS objects, corresponding to the view.

6.6. Sample Multi-View Application
The UIMA SDK contains a simple Sofa example application which demonstrates many Sofa
specific concepts and methods. The source code for the application driver is in examples/
src/org/apache/uima/examples/SofaExampleApplication.java and the Multi-View
annotator is given in SofaExampleAnnotator.java in the same directory.

Annotator Descriptor

UIMA Version 3.0.0-alpha02 Multiple CAS Views 121

This sample application demonstrates a language translator annotator which expects an input text
Sofa with an English document and creates an output text Sofa containing a German translation.
Some of the key Sofa concepts illustrated here include:

• Sofa creation.
• Access of multiple CAS views.
• Unique feature structure index space for each view.
• Feature structures containing cross references between annotations in different CAS views.
• The strong affinity of annotations with a specific Sofa.

6.6.1. Annotator Descriptor
The annotator descriptor in examples/descriptors/analysis_engine/
SofaExampleAnnotator.xml declares an input Sofa named “EnglishDocument” and an output
Sofa named “GermanDocument”. A custom type “CrossAnnotation” is also defined:

<typeDescription>
 <name>sofa.test.CrossAnnotation</name>
 <description/>
 <supertypeName>uima.tcas.Annotation</supertypeName>
 <features>
 <featureDescription>
 <name>otherAnnotation</name>
 <description/>
 <rangeTypeName>uima.tcas.Annotation</rangeTypeName>
 </featureDescription>
 </features>
</typeDescription>

The CrossAnnotation type is derived from uima.tcas.Annotation and includes one new
feature: a reference to another annotation.

6.6.2. Application Setup
The application driver instantiates an analysis engine, seAnnotator, from the annotator
descriptor, obtains a new CAS using that engine's CAS definition, and creates the expected input
Sofa using:

CAS cas = seAnnotator.newCAS();
CAS aView = cas.createView("EnglishDocument");

Since seAnnotator is a primitive component, and no Sofa mapping has been defined, the SofaID
will be “EnglishDocument”. Local Sofa data is set using:

aView.setDocumentText("this beer is good");

At this point the CAS contains all necessary inputs for the translation annotator and its process
method is called.

6.6.3. Annotator Processing
Annotator processing consists of parsing the English document into individual words, doing word-
by-word translation and concatenating the translations into a German translation. Analysis metadata
on the English Sofa will be an annotation for each English word. Analysis metadata on the German
Sofa will be a CrossAnnotation for each German word, where the otherAnnotation feature
will be a reference to the associated English annotation.

Accessing the results of analysis

122 Multiple CAS Views UIMA Version 3.0.0-alpha02

Code of interest includes two CAS views:

// get View of the English text Sofa
englishView = aCas.getView("EnglishDocument");

// Create the output German text Sofa
germanView = aCas.createView("GermanDocument");

the indexing of annotations with the appropriate view:

englishView.addFsToIndexes(engAnnot);
. . .
germanView.addFsToIndexes(germAnnot);

and the combining of metadata belonging to different Sofas in the same feature structure:

// add link to English text
germAnnot.setFeatureValue(other, engAnnot);

6.6.4. Accessing the results of analysis
The application needs to get the results of analysis, which may be in different views. Analysis
results for each Sofa are dumped independently by iterating over all annotations for each associated
CAS view. For the English Sofa:

//get annotation iterator for this CAS
FSIndex anIndex = aView.getAnnotationIndex();
FSIterator anIter = anIndex.iterator();
while (anIter.isValid()) {
 AnnotationFS annot = (AnnotationFS) anIter.get();
 System.out.println(" " + annot.getType().getName()
 + ": " + annot.getCoveredText());
 anIter.moveToNext();
}

Iterating over all German annotations looks the same, except for the following:

if (annot.getType() == cross) {
 AnnotationFS crossAnnot =
 (AnnotationFS) annot.getFeatureValue(other);
 System.out.println(" other annotation feature: "
 + crossAnnot.getCoveredText());
}

Of particular interest here is the built-in Annotation type method getCoveredText(). This
method uses the “begin” and “end” features of the annotation to create a substring from the CAS
document. The SofaRef feature of the annotation is used to identify the correct Sofa's data from
which to create the substring.

The example program output is:

---Printing all annotations for English Sofa---
uima.tcas.DocumentAnnotation: this beer is good
uima.tcas.Annotation: this
uima.tcas.Annotation: beer
uima.tcas.Annotation: is

Views API Summary

UIMA Version 3.0.0-alpha02 Multiple CAS Views 123

uima.tcas.Annotation: good

---Printing all annotations for German Sofa---
uima.tcas.DocumentAnnotation: das bier ist gut
sofa.test.CrossAnnotation: das
 other annotation feature: this
sofa.test.CrossAnnotation: bier
 other annotation feature: beer
sofa.test.CrossAnnotation: ist
 other annotation feature: is
sofa.test.CrossAnnotation: gut
 other annotation feature: good

6.7. Views API Summary
The recommended way to deliver a particular CAS view to a Single-View component is to use by
Sofa-mapping in the CPE and/or aggregate descriptors.

For Multi-View components or applications, the following methods are used to create or get a
reference to a CAS view for a particular Sofa:

Creating a new View:

JCas newView = aJCas.createView(String localNameOfTheViewBeforeMapping);
CAS newView = aCAS .createView(String localNameOfTheViewBeforeMapping);

Getting a View from a CAS or JCas:

JCas myView = aJCas.getView(String localNameOfTheViewBeforeMapping);
CAS myView = aCAS .getView(String localNameOfTheViewBeforeMapping);
Iterator allViews = aCasOrJCas.getViewIterator();
Iterator someViews = aCasOrJCas.getViewIterator(String localViewNamePrefix);

The following methods are useful for all annotators and applications:

Setting Sofa data for a CAS or JCas:

aCasOrJCas.setDocumentText(String docText);
aCasOrJCas.setSofaDataString(String docText, String mimeType);
aCasOrJCas.setSofaDataArray(FeatureStructure array, String mimeType);
aCasOrJCas.setSofaDataURI(String uri, String mimeType);

Getting Sofa data for a particular CAS or JCas:

String doc = aCasOrJCas.getDocumentText();
String doc = aCasOrJCas.getSofaDataString();
FeatureStructure array = aCasOrJCas.getSofaDataArray();
String uri = aCasOrJCas.getSofaDataURI();
InputStream is = aCasOrJCas.getSofaDataStream();

6.8. Sofa Incompatibilities between UIMA version 1
and version 2

A major change in version 2 is related to the support of Single-View components and applications.
Given an analysis engine, ae, the API

Sofa Incompatibilities: V1 and V2

124 Multiple CAS Views UIMA Version 3.0.0-alpha02

CAS cas = ae.newCas();

used to return the base CAS. Now it returns a view of the Sofa named “_InitialView”. This Sofa
will actually only be created if any Sofa data is set for this view. The initial view is used for Single-
View applications and Multi-View annotators with no Sofa mapping.

The process method of Multi-View annotators receive the base CAS, however the base CAS no
longer has an index repository to hold “global” data. Global data needs to be put in a specific
named CAS view of your choice.

Note: A Multi-View component is no longer passed the base CAS view. See Section 6.4.3,
“CAS View received by Process” [119].

Because of these changes, the following scenarios will break with v2.0 clients:
• Any version 1.x services (you must migrate the services to version 2).
• Applications or components explicitly referencing “_DefaultTextSofaName” in code or

descriptors.
• Multi-View applications using the Base CAS index repository.

CAS Multiplier 125

Chapter 7. CAS Multiplier Developer's Guide
The UIMA analysis components (Annotators and CAS Consumers) described previously in this
manual all take a single CAS as input, optionally make modifications to it, and output that same
CAS. This chapter describes an advanced feature that became available in the UIMA SDK v2.0:
a new type of analysis component called a CAS Multiplier, which can create new CASes during
processing.

CAS Multipliers are often used to split a large artifact into manageable pieces. This is a common
requirement of audio and video analysis applications, but can also occur in text analysis on very
large documents. A CAS Multiplier would take as input a single CAS representing the large artifact
(perhaps by a remote reference to the actual data — see Section 5.2, “Formats of Sofa Data”) and
produce as output a series of new CASes each of which contains only a small portion of the original
artifact.

CAS Multipliers are not limited to dividing an artifact into smaller pieces, however. A CAS
Multiplier can also be used to combine smaller segments together to form larger segments. In
general, a CAS Multiplier is used to change the segmentation of a series of CASes; that is, to
change how a stream of data is divided among discrete CAS objects.

7.1. Developing the CAS Multiplier Code

7.1.1. CAS Multiplier Interface Overview
CAS Multiplier implementations should extend from the JCasMultiplier_ImplBase or
CasMultiplier_ImplBase classes, depending on which CAS interface they prefer to use. As
with other types of analysis components, the CAS Multiplier ImplBase classes define optional
initialize, destroy, and reconfigure methods. There are then three required methods:
process, hasNext, and next. The framework interacts with these methods as follows:

1. The framework calls the CAS Multiplier's process method, passing it an input CAS. The
process method returns, but may hold on to a reference to the input CAS.

2. The framework then calls the CAS Multiplier's hasNext method. The CAS Multiplier
should return true from this method if it intends to output one or more new CASes (for
instance, segments of this CAS), and false if not.

3. If hasNext returned true, the framework will call the CAS Multiplier's next method. The
CAS Multiplier creates a new CAS (we will see how in a moment), populates it, and returns
it from the next method.

4. Steps 2 and 3 continue until hasNext returns false. If the framework detects a situation
where it needs to cancel this CAS Multiplier, it will stop calling the hasNext and next
methods, and when another top-level CAS comes along it will call the annotator's process
method again. User's annotator code should interpret this as a signal to cleanup processing
related to the previous CAS and then start processing with the new CAS.

From the time when process is called until the hasNext method returns false (or process is
called again), the CAS Multiplier “owns” the CAS that was passed to its process method. The
CAS Multiplier can store a reference to this CAS in a local field and can read from it or write to it
during this time. Once the ending condition occurs, the CAS Multiplier gives up ownership of the
input CAS and should no longer retain a reference to it.

Getting an empty CAS Instance

126 CAS Multiplier UIMA Version 3.0.0-alpha02

7.1.2. How to Get an Empty CAS Instance
The CAS Multiplier's next method must return a CAS instance that represents a new
representation of the input artifact. Since CAS instances are managed by the framework, the CAS
Multiplier cannot actually create a new CAS; instead it should request an empty CAS by calling the
method:

CAS getEmptyCAS()

or

JCas getEmptyJCas()

which are defined on the CasMultiplier_ImplBase and JCasMultiplier_ImplBase classes,
respectively.

Note that if it is more convenient you can request an empty CAS during the process or hasNext
methods, not just during the next method.

By default, a CAS Multiplier is only allowed to hold one output CAS instance at a time. You must
return the CAS from the next method before you can request a second CAS. If you try to call
getEmptyCAS a second time you will get an Exception. You can change this default behavior by
overriding the method getCasInstancesRequired to return the number of CAS instances that
you need. Be aware that CAS instances consume a significant amount of memory, so setting this
to a large value will cause your application to use a lot of RAM. So, for example, it is not a good
practice to attempt to generate a large number of new CASes in the CAS Multiplier's process
method. Instead, you should spread your processing out across the calls to the hasNext or next
methods.

Note: You can only call getEmptyCAS() or getEmptyJCas() from your CAS
Multiplier's process, hasNext, or next methods. You cannot call it from other methods
such as initialize. This is because the Aggregate AE's Type System is not available
until all of the components of the aggregate have finished their initialization.

The Type System of the empty CAS will contain all of the type definitions for all components of
the outermost Aggregate Analysis Engine or Collection Processing Engine that contains your CAS
Multiplier. Therefore downstream components that receive these CASes can add new instances of
any type that they define.

Warning: Be careful to keep the Feature Structures that belong to each CAS separate.
You cannot create references from a Feature Structure in one CAS to a Feature Structure in
another CAS. You also cannot add a Feature Structure created in one CAS to the indexes
of a different CAS. If you attempt to do this, the results are undefined.

7.1.3. Example Code
This section walks through the source code of an example CAS Multiplier that
breaks text documents into smaller pieces. The Java class for the example is
org.apache.uima.examples.casMultiplier.SimpleTextSegmenter and the source code
is included in the UIMA SDK under the examples/src directory.

7.1.3.1. Overall Structure

public class SimpleTextSegmenter extends JCasMultiplier_ImplBase {
 private String mDoc;

Example Code

UIMA Version 3.0.0-alpha02 CAS Multiplier 127

 private int mPos;
 private int mSegmentSize;
 private String mDocUri;

 public void initialize(UimaContext aContext)
 throws ResourceInitializationException
 { ... }

 public void process(JCas aJCas) throws AnalysisEngineProcessException
 { ... }

 public boolean hasNext() throws AnalysisEngineProcessException
 { ... }

 public AbstractCas next() throws AnalysisEngineProcessException
 { ... }
}

The SimpleTextSegmenter class extends JCasMultiplier_ImplBase and implements the
optional initialize method as well as the required process, hasNext, and next methods.
Each method is described below.

7.1.3.2. Initialize Method

public void initialize(UimaContext aContext) throws
 ResourceInitializationException {
 super.initialize(aContext);
 mSegmentSize = ((Integer)aContext.getConfigParameterValue(
 "segmentSize")).intValue();
}

Like an Annotator, a CAS Multiplier can override the initialize method and read configuration
parameter values from the UimaContext. The SimpleTextSegmenter defines one parameter,
“Segment Size”, which determines the approximate size (in characters) of each segment that it will
produce.

7.1.3.3. Process Method

public void process(JCas aJCas)
 throws AnalysisEngineProcessException {
 mDoc = aJCas.getDocumentText();
 mPos = 0;
 // retreive the filename of the input file from the CAS so that it can
 // be added to each segment
 FSIterator it = aJCas.
 getAnnotationIndex(SourceDocumentInformation.type).iterator();
 if (it.hasNext()) {
 SourceDocumentInformation fileLoc =
 (SourceDocumentInformation)it.next();
 mDocUri = fileLoc.getUri();
 }
 else {
 mDocUri = null;
 }
 }

The process method receives a new JCas to be processed(segmented) by this CAS Multiplier.
The SimpleTextSegmenter extracts some information from this JCas and stores it in fields (the

Example Code

128 CAS Multiplier UIMA Version 3.0.0-alpha02

document text is stored in the field mDoc and the source URI in the field mDocURI). Recall that
the CAS Multiplier is considered to “own” the JCas from the time when process is called until
the time when hasNext returns false. Therefore it is acceptable to retain references to objects
from the JCas in a CAS Multiplier, whereas this should never be done in an Annotator. The CAS
Multiplier could have chosen to store a reference to the JCas itself, but that was not necessary for
this example.

The CAS Multiplier also initializes the mPos variable to 0. This variable is a position into the
document text and will be incremented as each new segment is produced.

7.1.3.4. HasNext Method

public boolean hasNext() throws AnalysisEngineProcessException {
 return mPos < mDoc.length();
}

The job of the hasNext method is to report whether there are any additional output CASes to
produce. For this example, the CAS Multiplier will break the entire input document into segments,
so we know there will always be a next segment until the very end of the document has been
reached.

7.1.3.5. Next Method

public AbstractCas next() throws AnalysisEngineProcessException {
 int breakAt = mPos + mSegmentSize;
 if (breakAt > mDoc.length())
 breakAt = mDoc.length();

 // search for the next newline character.
 // Note: this example segmenter implementation
 // assumes that the document contains many newlines.
 // In the worst case, if this segmenter
 // is run on a document with no newlines,
 // it will produce only one segment containing the
 // entire document text.
 // A better implementation might specify a maximum segment size as
 // well as a minimum.

 while (breakAt < mDoc.length() &&
 mDoc.charAt(breakAt - 1) != '\n')
 breakAt++;

 JCas jcas = getEmptyJCas();
 try {
 jcas.setDocumentText(mDoc.substring(mPos, breakAt));
 // if original CAS had SourceDocumentInformation,
 also add SourceDocumentInformatio
 // to each segment
 if (mDocUri != null) {
 SourceDocumentInformation sdi =
 new SourceDocumentInformation(jcas);
 sdi.setUri(mDocUri);
 sdi.setOffsetInSource(mPos);
 sdi.setDocumentSize(breakAt - mPos);
 sdi.addToIndexes();

 if (breakAt == mDoc.length()) {
 sdi.setLastSegment(true);

CAS Multiplier Descriptor

UIMA Version 3.0.0-alpha02 CAS Multiplier 129

 }
 }

 mPos = breakAt;
 return jcas;
 } catch (Exception e) {
 jcas.release();
 throw new AnalysisEngineProcessException(e);
 }
}

The next method actually produces the next segment and returns it. The framework guarantees
that it will not call next unless hasNext has returned true since the last call to process or next .

Note that in order to produce a segment, the CAS Multiplier must get an empty JCas to populate.
This is done by the line:

JCas jcas = getEmptyJCas();

This requests an empty JCas from the framework, which maintains a pool of JCas instances to draw
from.

Also, note the use of the try...catch block to ensure that a JCas is released back to the pool if
an exception occurs. This is very important to allow a CAS Multiplier to recover from errors.

7.2. Creating the CAS Multiplier Descriptor
There is not a separate type of descriptor for a CAS Multiplier. CAS Multiplier are considered a
type of Analysis Engine, and so their descriptors use the same syntax as any other Analysis Engine
Descriptor.

The descriptor for the SimpleTextSegmenter is located in the examples/descriptors/
cas_multiplier/SimpleTextSegmenter.xml directory of the UIMA SDK.

The Analysis Engine Description, in its “Operational Properties” section, now contains a new
“outputsNewCASes” property which takes a Boolean value. If the Analysis Engine is a CAS
Multiplier, this property should be set to true.

If you use the CDE, be sure to check the “Outputs new CASes” box in the Runtime Information
section on the Overview page, as shown here:

Using CAS Multipliers in Aggregates

130 CAS Multiplier UIMA Version 3.0.0-alpha02

If you edit the Analysis Engine Descriptor by hand, you need to add a <outputsNewCASes>
element to your descriptor as shown here:

<operationalProperties>
 <modifiesCas>false</modifiesCas>
 <multipleDeploymentAllowed>true</multipleDeploymentAllowed>
 <outputsNewCASes>true</outputsNewCASes>
 </operationalProperties>

Note: The “modifiedCas” operational property refers to the input CAS, not the new output
CASes produced. So our example SimpleTextSegmenter has modifiesCas set to false since
it doesn't modify the input CAS.

7.3. Using a CAS Multiplier in an Aggregate
Analysis Engine

You can include a CAS Multiplier as a component in an Aggregate Analysis Engine. For example,
this allows you to construct an Aggregate Analysis Engine that takes each input CAS, breaks it up
into segments, and runs a series of Annotators on each segment.

7.3.1. Adding the CAS Multiplier to the Aggregate
Since CAS Multiplier are considered a type of Analysis Engine, adding them to an aggregate
works the same way as for other Analysis Engines. Using the CDE, you just click the “Add...”
button in the Component Engines view and browse to the Analysis Engine Descriptor of your CAS
Multiplier. If editing the aggregate descriptor directly, just import the Analysis Engine Descriptor
of your CAS Multiplier as usual.

An example descriptor for an Aggregate Analysis Engine containing a CAS Multiplier is provided
in examples/descriptors/cas_multiplier/SegmenterAndTokenizerAE.xml. This
Aggregate runs the SimpleTextSegmenter example to break a large document into segments,
and then runs each segment through the SimpleTokenAndSentenceAnnotator. Try running it

CAS Multipliers and Flow Control

UIMA Version 3.0.0-alpha02 CAS Multiplier 131

in the Document Analyzer tool with a large text file as input, to see that it outputs multiple output
CASes, one for each segment produced by the SimpleTextSegmenter.

7.3.2. CAS Multipliers and Flow Control

CAS Multipliers are only supported in the context of Fixed Flow or custom Flow Control. If you
use the built-in “Fixed Flow” for your Aggregate Analysis Engine, you can position the CAS
Multiplier anywhere in that flow. Processing then works as follows: When a CAS is input to the
Aggregate AE, that CAS is routed to the components in the order specified by the Fixed Flow, until
that CAS reaches a CAS Multiplier.

Upon reaching a CAS Multiplier, if that CAS Multiplier produces new output CASes, then
each output CAS from that CAS Multiplier will continue through the flow, starting at the node
immediately after the CAS Multiplier in the Fixed Flow. No further processing will be done on the
original input CAS after it has reached a CAS Multiplier – it will not continue in the flow.

If the CAS Multiplier does not produce any output CASes for a given input CAS, then that input
CAS will continue in the flow. This behavior is appropriate, for example, for a CAS Multiplier that
may segment an input CAS into pieces but only does so if the input CAS is larger than a certain
size.

It is possible to put more than one CAS Multiplier in your flow. In this case, when a new CAS
output from the first CAS Multiplier reaches the second CAS Multiplier and if the second CAS
Multiplier produces output CASes, then no further processing will occur on the input CAS, and any
new output CASes produced by the second CAS Multiplier will continue the flow starting at the
node after the second CAS Multiplier.

This default behavior can be customized. The FixedFlowController component
that implement's UIMA's default flow defines a configuration parameter
ActionAfterCasMultiplier that can take the following values:

• continue – the CAS continues on to the next element in the flow

• stop – the CAS will no longer continue in the flow, and will be returned from the aggregate
if possible.

• drop – the CAS will no longer continue in the flow, and will be dropped (not returned from
the aggregate) if possible.

• dropIfNewCasProduced (the default) – if the CAS multiplier produced a new CAS as
a result of processing this CAS, then this CAS will be dropped. If not, then this CAS will
continue.

You can override this parameter in your Aggregate Analysis Engine the same way you would
override a parameter in a delegate Analysis Engine. But to do so you must first explicitly identify
that you are using the FixedFlowController implementation by importing its descriptor into
your aggregate as follows:

<flowController key="FixedFlowController">
 <import name="org.apache.uima.flow.FixedFlowController"/>
 </flowController>

The parameter could then be overriden as, for example:

Aggregate CAS Multipliers

132 CAS Multiplier UIMA Version 3.0.0-alpha02

<configurationParameters>
 <configurationParameter>
 <name>ActionForIntermediateSegments</name>
 <type>String</type>
 <multiValued>false</multiValued>
 <mandatory>false</mandatory>
 <overrides>
 <parameter>
 FixedFlowController/ActionAfterCasMultiplier
 </parameter>
 </overrides>
 </configurationParameter>
 </configurationParameters>

 <configurationParameterSettings>
 <nameValuePair>
 <name>ActionForIntermediateSegments</name>
 <value>
 <string>drop</string>
 </value>
 </nameValuePair>
 </configurationParameterSettings>

This overriding can also be done using the Component Descriptor Editor tool. An example of
an Analysis Engine that overrides this parameter can be found in examples/descriptors/
cas_multiplier/Segment_Annotate_Merge_AE.xml. For more information about how to
specify a flow controller as part of your Aggregate Analysis Engine descriptor, see Section 4.3,
“Adding Flow Controller to an Aggregate”.

If you would like to further customize the flow, you will need to implement a custom
FlowController as described in Chapter 4, Flow Controller Developer's Guide. For example, you
could implement a flow where a CAS that is input to a CAS Multiplier will be processed further by
some downstream components, but not others.

7.3.3. Aggregate CAS Multipliers

An important consideration when you put a CAS Multiplier inside an Aggregate Analysis Engine
is whether you want the Aggregate to also function as a CAS Multiplier – that is, whether you want
the new output CASes produced within the Aggregate to be output from the Aggregate. This is
controlled by the <outputsNewCASes> element in the Operational Properties of your Aggregate
Analysis Engine descriptor. The syntax is the same as what was described in Section 7.2, “CAS
Multiplier Descriptor” [129] .

If you set this property to true, then any new output CASes produced by a CAS Multiplier inside
this Aggregate will be output from the Aggregate. Thus the Aggregate will function as a CAS
Multiplier and can be used in any of the ways in which a primitive CAS Multiplier can be used.

If you set the <outputsNewCASes> property to false , then any new output CASes produced by
a CAS Multiplier inside the Aggregate will be dropped (i.e. the CASes will be released back to the
pool) once they have finished being processed. Such an Aggregate Analysis Engine functions just
like a “normal” non-CAS-Multiplier Analysis Engine; the fact that CAS Multiplication is occurring
inside it is hidden from users of that Analysis Engine.

Note: If you want to output some new Output CASes and not others, you need to
implement a custom Flow Controller that makes this decision — see Section 4.5, “Using
Flow Controllers with CAS Multipliers”.

CAS Multipliers in CPE's

UIMA Version 3.0.0-alpha02 CAS Multiplier 133

7.4. Using a CAS Multiplier in a Collection
Processing Engine

It is currently a limitation that CAS Multiplier cannot be deployed directly in a Collection
Processing Engine. The only way that you can use a CAS Multiplier in a CPE is to first wrap it
in an Aggregate Analysis Engine whose outputsNewCASes property is set to false, which in
effect hides the existence of the CAS Multiplier from the CPE.

Note that you can build an Aggregate Analysis Engine that consists of CAS Multipliers and
Annotators, followed by CAS Consumers. This can simulate what a CPE would do, but without the
deployment and error handling options that the CPE provides.

7.5. Calling a CAS Multiplier from an Application

7.5.1. Retrieving Output CASes from the CAS Multiplier

The AnalysisEngine interface has the following methods that allow you to interact with CAS
Multiplier:

• CasIterator processAndOutputNewCASes(CAS)

• JCasIterator processAndOutputNewCASes(JCas)

From your application, you call processAndOutputNewCASes and pass it the input CAS. An
iterator is returned that allows you to step through each of the new output CASes that are produced
by the Analysis Engine.

It is very important to realize that CASes are pooled objects and so your application must release
each CAS (by calling the CAS.release() method) that it obtains from the CasIterator before it
calls the CasIterator.next method again. Otherwise, the CAS pool will be exhausted and a
deadlock will occur.

The example code in the class org.apache.uima.examples.casMultiplier.
CasMultiplierExampleApplication illusrates this. Here is the main processing loop:

CasIterator casIterator = ae.processAndOutputNewCASes(initialCas);
while (casIterator.hasNext()) {
 CAS outCas = casIterator.next();

 //dump the document text and annotations for this segment
 System.out.println("********* NEW SEGMENT *********");
 System.out.println(outCas.getDocumentText());
 PrintAnnotations.printAnnotations(outCas, System.out);

 //release the CAS (important)
 outCas.release();

Note that as defined by the CAS Multiplier contract in Section 7.1.1, “CAS Multiplier Interface
Overview” [125], the CAS Multiplier owns the input CAS (initialCas in the example) until
the last new output CAS has been produced. This means that the application should not try to
make changes to initialCas until after the CasIterator.hasNext method has returned false,
indicating that the segmenter has finished.

CAS Multipliers with other AEs

134 CAS Multiplier UIMA Version 3.0.0-alpha02

Note that the processing time of the Analysis Engine is spread out over the calls to the
CasIterator's hasNext and next methods. That is, the next output CAS may not actually be
produced and annotated until the application asks for it. So the application should not expect calls
to the CasIterator to necessarily complete quickly.

Also, calls to the CasIterator may throw Exceptions indicating an error has occurred during
processing. If an Exception is thrown, all processing of the input CAS will stop, and no more
output CASes will be produced. There is currently no error recovery mechanism that will allow
processing to continue after an exception.

7.5.2. Using a CAS Multiplier with other Analysis Engines

In your application you can take the output CASes from a CAS Multiplier and pass them to the
process method of other Analysis Engines. However there are some special considerations
regarding the Type System of these CASes.

By default, the output CASes of a CAS Multiplier will have a Type System that contains all of
the types and features declared by any component in the outermost Aggregate Analysis Engine or
Collection Processing Engine that contains the CAS Multiplier. If in your application you create a
CAS Multiplier and another Analysis Engine, where these are not enclosed in an aggregate, then
the output CASes from the CAS Multiplier will not support any types or features that are declared
in the latter Analysis Engine but not in the CAS Multiplier.

This can be remedied by forcing the CAS Multiplier and Analysis Engine to share a single
UimaContext when they are created, as follows:

//create a "root" UIMA context for your whole application

UimaContextAdmin rootContext =
 UIMAFramework.newUimaContext(UIMAFramework.getLogger(),
 UIMAFramework.newDefaultResourceManager(),
 UIMAFramework.newConfigurationManager());

XMLInputSource input = new XMLInputSource("MyCasMultiplier.xml");
AnalysisEngineDescription desc = UIMAFramework.getXMLParser().
 parseAnalysisEngineDescription(input);

//create a UIMA Context for the new AE we are about to create

//first argument is unique key among all AEs used in the application
UimaContextAdmin childContext = rootContext.createChild(
 "myCasMultiplier", Collections.EMPTY_MAP);

//instantiate CAS Multiplier AE, passing the UIMA Context through the
//additional parameters map

Map additionalParams = new HashMap();
additionalParams.put(Resource.PARAM_UIMA_CONTEXT, childContext);

AnalysisEngine casMultiplierAE = UIMAFramework.produceAnalysisEngine(
 desc,additionalParams);

//repeat for another AE
XMLInputSource input2 = new XMLInputSource("MyAE.xml");
AnalysisEngineDescription desc2 = UIMAFramework.getXMLParser().
 parseAnalysisEngineDescription(input2);

UimaContextAdmin childContext2 = rootContext.createChild(

Merging with CAS Multipliers

UIMA Version 3.0.0-alpha02 CAS Multiplier 135

 "myAE", Collections.EMPTY_MAP);

Map additionalParams2 = new HashMap();
additionalParams2.put(Resource.PARAM_UIMA_CONTEXT, childContext2);

AnalysisEngine myAE = UIMAFramework.produceAnalysisEngine(
 desc2, additionalParams2);

7.6. Using a CAS Multiplier to Merge CASes
A CAS Multiplier can also be used to combine smaller CASes together to form larger CASes. In
this section we describe how this works and walk through an example.

7.6.1. Overview of How to Merge CASes
1. When the framework first calls the CAS Multiplier's process method, the CAS Multiplier

requests an empty CAS (which we'll call the "merged CAS") and copies relevant data from
the input CAS into the merged CAS. The class org.apache.uima.util.CasCopier
provides utilities for copying Feature Structures between CASes.

2. When the framework then calls the CAS Multiplier's hasNext method, the CAS Multiplier
returns false to indicate that it has no output at this time.

3. When the framework calls process again with a new input CAS, the CAS Multiplier
copies data from that input CAS into the merged CAS, combining it with the data that was
previously copied.

4. Eventually, when the CAS Multiplier decides that it wants to output the merged CAS, it
returns true from the hasNext method, and then when the framework subsequently calls
the next method, the CAS Multiplier returns the merged CAS.

Note: There is no explicit call to flush out any pending CASes from a CAS Multiplier
when collection processing completes. It is up to the application to provide some
mechanism to let a CAS Multiplier recognize the last CAS in a collection so that it can
ensure that its final output CASes are complete.

7.6.2. Example CAS Merger
An example CAS Multiplier that merges CASes can be found is
provided in the UIMA SDK. The Java class for this example is
org.apache.uima.examples.casMultiplier.SimpleTextMerger and the source code is
located under the examples/src directory.

7.6.2.1. Process Method

Almost all of the code for this example is in the process method. The first part of the process
method shows how to copy Feature Structures from the input CAS to the "merged CAS":

public void process(JCas aJCas) throws AnalysisEngineProcessException {
 // procure a new CAS if we don't have one already
 if (mMergedCas == null) {
 mMergedCas = getEmptyJCas();
 }

 // append document text

Example CAS Merger

136 CAS Multiplier UIMA Version 3.0.0-alpha02

 String docText = aJCas.getDocumentText();
 int prevDocLen = mDocBuf.length();
 mDocBuf.append(docText);

 // copy specified annotation types
 // CasCopier takes two args: the CAS to copy from.
 // the CAS to copy into.
 CasCopier copier = new CasCopier(aJCas.getCas(), mMergedCas.getCas());

 // needed in case one annotation is in two indexes (could
 // happen if specified annotation types overlap)
 Set copiedIndexedFs = new HashSet();
 for (int i = 0; i < mAnnotationTypesToCopy.length; i++) {
 Type type = mMergedCas.getTypeSystem()
 .getType(mAnnotationTypesToCopy[i]);
 FSIndex index = aJCas.getCas().getAnnotationIndex(type);
 Iterator iter = index.iterator();
 while (iter.hasNext()) {
 FeatureStructure fs = (FeatureStructure) iter.next();
 if (!copiedIndexedFs.contains(fs)) {
 Annotation copyOfFs = (Annotation) copier.copyFs(fs);
 // update begin and end
 copyOfFs.setBegin(copyOfFs.getBegin() + prevDocLen);
 copyOfFs.setEnd(copyOfFs.getEnd() + prevDocLen);
 mMergedCas.addFsToIndexes(copyOfFs);
 copiedIndexedFs.add(fs);
 }
 }
 }

The CasCopier class is used to copy Feature Structures of certain types (specified by a
configuration parameter) to the merged CAS. The CasCopier does deep copies, meaning that if
the copied FeatureStructure references another FeatureStructure, the referenced FeatureStructure
will also be copied.

This example also merges the document text using a separate StringBuffer. Note that we cannot
append document text to the Sofa data of the merged CAS because Sofa data cannot be modified
once it is set.

The remainder of the process method determines whether it is time to output a new CAS. For
this example, we are attempting to merge all CASes that are segments of one original artifact.
This is done by checking the SourceDocumentInformation Feature Structure in the CAS
to see if its lastSegment feature is set to true. That feature (which is set by the example
SimpleTextSegmenter discussed previously) marks the CAS as being the last segment of an
artifact, so when the CAS Multiplier sees this segment it knows it is time to produce an output
CAS.

// get the SourceDocumentInformation FS,
// which indicates the sourceURI of the document
// and whether the incoming CAS is the last segment
FSIterator it = aJCas
 .getAnnotationIndex(SourceDocumentInformation.type).iterator();
if (!it.hasNext()) {
 throw new RuntimeException("Missing SourceDocumentInformation");
}
SourceDocumentInformation sourceDocInfo =
 (SourceDocumentInformation) it.next();
if (sourceDocInfo.getLastSegment()) {
 // time to produce an output CAS
 // set the document text

SimpleTextMerger in an Aggregate

UIMA Version 3.0.0-alpha02 CAS Multiplier 137

 mMergedCas.setDocumentText(mDocBuf.toString());

 // add source document info to destination CAS
 SourceDocumentInformation destSDI =
 new SourceDocumentInformation(mMergedCas);
 destSDI.setUri(sourceDocInfo.getUri());
 destSDI.setOffsetInSource(0);
 destSDI.setLastSegment(true);
 destSDI.addToIndexes();

 mDocBuf = new StringBuffer();
 mReadyToOutput = true;
}

When it is time to produce an output CAS, the CAS Multiplier makes final updates to the merged
CAS (setting the document text and adding a SourceDocumentInformation FeatureStructure),
and then sets the mReadyToOutput field to true. This field is then used in the hasNext and next
methods.

7.6.2.2. HasNext and Next Methods

These methods are relatively simple:

public boolean hasNext() throws AnalysisEngineProcessException {
 return mReadyToOutput;
 }

 public AbstractCas next() throws AnalysisEngineProcessException {
 if (!mReadyToOutput) {
 throw new RuntimeException("No next CAS");
 }
 JCas casToReturn = mMergedCas;
 mMergedCas = null;
 mReadyToOutput = false;
 return casToReturn;
 }

When the merged CAS is ready to be output, hasNext will return true, and next will return the
merged CAS, taking care to set the mMergedCas field to null so that the next call to process
will start with a fresh CAS.

7.6.3. Using the SimpleTextMerger in an Aggregate
Analysis Engine

An example descriptor for an Aggregate Analysis Engine that uses the
SimpleTextMerger is provided in examples/descriptors/cas_multiplier/
Segment_Annotate_Merge_AE.xml. This Aggregate first runs the SimpleTextSegmenter
example to break a large document into segments. It then runs each segment through the example
tokenizer and name recognizer annotators. Finally it runs the SimpleTextMerger to reassemble
the segments back into one CAS. The Name annotations are copied to the final merged CAS but the
Token annotations are not.

This example illustrates how you can break large artifacts into pieces for more efficient processing
and then reassemble a single output CAS containing only the results most useful to the application.
Intermediate results such as tokens, which may consume a lot of space, need not be retained over
the entire input artifact.

SimpleTextMerger in an Aggregate

138 CAS Multiplier UIMA Version 3.0.0-alpha02

The intermediate segments are dropped and are never output from the Aggregate Analysis Engine.
This is done by configuring the Fixed Flow Controller as described in Section 7.3.2, “CAS
Multipliers and Flow Control” [131], above.

Try running this Analysis Engine in the Document Analyzer tool with a large text file as input,
to see that it outputs just one CAS per input file, and that the final CAS contains only the Name
annotations.

XMI & EMF 139

Chapter 8. XMI and EMF Interoperability

8.1. Overview
In traditional object-oriented terms, a UIMA Type System is a class model and a UIMA CAS is
an object graph. There are established standards in this area – specifically, UML® is an OMG™
standard for class models and XMI (XML Metadata Interchange) is an OMG standard for the XML
representation of object graphs.

Furthermore, the Eclipse Modeling Framework (EMF) is an open-source framework for model-
based application development, and it is based on UML and XMI. In EMF, you define class models
using a metamodel called Ecore, which is similar to UML. EMF provides tools for converting
a UML model to Ecore. EMF can then generate Java classes from your model, and supports
persistence of those classes in the XMI format.

The UIMA SDK provides tools for interoperability with XMI and EMF. These tools allow
conversions of UIMA Type Systems to and from Ecore models, as well as conversions of UIMA
CASes to and from XMI format. This provides a number of advantages, including:

You can define a model using a UML Editor, such as Rational Rose or
EclipseUML, and then automatically convert it to a UIMA Type System.

You can take an existing UIMA application, convert its type system to Ecore, and
save the CASes it produces to XMI. This data is now in a form where it can easily
be ingested by an EMF-based application.

More generally, we are adopting the well-documented, open standard XMI as the standard way
to represent UIMA-compliant analysis results (replacing the UIMA-specific XCAS format). This
use of an open standard enables other applications to more easily produce or consume these UIMA
analysis results.

For more information on XMI, see Grose et al. Mastering XMI. Java Programming with XMI,
XML, and UML. John Wiley & Sons, Inc. 2002.

For more information on EMF, see Budinsky et al. Eclipse Modeling Framework 2.0. Addison-
Wesley. 2006.

For details of how the UIMA CAS is represented in XMI format, see UIMA References Chapter 7,
XMI CAS Serialization Reference .

8.2. Converting an Ecore Model to or from a UIMA
Type System

The UIMA SDK provides the following two classes:

Ecore2UimaTypeSystem: converts from an .ecore model developed using EMF to a UIMA-
compliant TypeSystem descriptor. This is a Java class that can be run as a standalone program or
invoked from another Java application. To run as a standalone program, execute:

java org.apache.uima.ecore.Ecore2UimaTypeSystem <ecore file> <output file>

The input .ecore file will be converted to a UIMA TypeSystem descriptor and written to the
specified output file. You can then use the resulting TypeSystem descriptor in your UIMA
application.

Using XMI CAS Serialization

140 XMI & EMF UIMA Version 3.0.0-alpha02

UimaTypeSystem2Ecore: converts from a UIMA TypeSystem descriptor to an .ecore model.
This is a Java class that can be run as a standalone program or invoked from another Java
application. To run as a standalone program, execute:

java org.apache.uima.ecore.UimaTypeSystem2Ecore <TypeSystem descriptor> <output file>

The input UIMA TypeSystem descriptor will be converted to an Ecore model file and written to
the specified output file. You can then use the resulting Ecore model in EMF applications. The
converted type system will include any <import...>ed TypeSystems; the fact that they were
imported is currently not preserved.

To run either of these converters, your classpath will need to include the UIMA jar files as well as
the following jar files from the EMF distribution: common.jar, ecore.jar, and ecore.xmi.jar.

Also, note that the uima-core.jar file contains the Ecore model file uima.ecore, which defines the
built-in UIMA types. You may need to use this file from your EMF applications.

8.3. Using XMI CAS Serialization
The UIMA SDK provides XMI support through the following two classes:

XmiCasSerializer: can be run from within a UIMA application to write out a CAS to the
standard XMI format. The XMI that is generated will be compliant with the Ecore model generated
by UimaTypeSystem2Ecore. An EMF application could use this Ecore model to ingest and
process the XMI produced by the XmiCasSerializer.

XmiCasDeserializer: can be run from within a UIMA application to read in an XMI
document and populate a CAS. The XMI must conform to the Ecore model generated by
UimaTypeSystem2Ecore.

Also, the uimaj-examples Eclipse project contains some example code that shows how to use the
serializer and deserializer:

org.apache.uima.examples.xmi.XmiWriterCasConsumer: This is a CAS
Consumer that writes each CAS to an output file in XMI format. It is analogous to
the XCasWriter CAS Consumer that has existed in prior UIMA versions, except
that it uses the XMI serialization format.

org.apache.uima.examples.xmi.XmiCollectionReader: This is a
Collection Reader that reads a directory of XMI files and deserializes each
of them into a CAS. For example, this would allow you to build a Collection
Processing Engine that reads XMI files, which could contain some previous
analysis results, and then do further analysis.

Finally, in under the folder uimaj-examples/ecore_src is the class
org.apache.uima.examples.xmi.XmiEcoreCasConsumer, which writes each
CAS to XMI format and also saves the Type System as an Ecore file. Since this uses the
UimaTypeSystem2Ecore converter, to compile it you must add to your classpath the EMF jars
common.jar, ecore.jar, and ecore.xmi.jar – see ecore_src/readme.txt for instructions.

8.3.1. Character Encoding Issues with XML Serialization
Note that not all valid Unicode characters are valid XML characters, at least not in XML 1.0.
Moreover, it is possible to create characters in Java that are not even valid Unicode characters,

Character Encoding Issues with XML Serialization

UIMA Version 3.0.0-alpha02 XMI & EMF 141

let alone XML characters. As UIMA character data is translated directly into XML character
data on serialization, this may lead to issues. UIMA will therefore check that the character data
that is being serialized is valid for the version of XML being used. If non-serializable character
data is encountered during serialization, an exception is thrown and serialization fails (to avoid
creating invalid XML data). UIMA does not simply replace the offending characters with some
valid replacement character; the assumption being that most applications would not like to have
their data modified automatically.

If you know you are going to use XML serialization, and you would like to avoid such issues on
serialization, you should check any character data you create in UIMA ahead of time. Issues most
often arise with the document text, as documents may originate at various sources, and may be of
varying quality. So it's a particularly good idea to check the document text for characters that will
cause issues for serialization.

UIMA provides a handful of functions to assist you in
checking Java character data. Those methods are located in
org.apache.uima.internal.util.XMLUtils.checkForNonXmlCharacters(), with
several overloads. Please check the javadocs for further information.

Please note that these issues are not specific to XMI serialization, they apply to the older XCAS
format in the same way.

Managing different TypeSystems 143

Chapter 9. Managing different Type Systems

9.1. Annotators, Type Merging, and Remotes
UIMA supports combining Annotators that have different type systems. This is normally done by
"merging" the two type systems when the Annotators are first loaded and instantiated. The merge
process produces a logical Union of the two; types having the same name have their feature sets
combined. The combining rules say that the range of same-named feature slots must be the same.
This combined type system is then used for the CAS that will be passed to all of the annotators.
Details of type merging are described in UIMA References ????.

This approach (of merging the type systems together) works well for annotators that are run
together in one UIMA pipeline instantiation in one machine. Extensions are needed when UIMA
is scaled out where the pipeline includes remote annotators, acting as servers, serving potentially
multiple clients, each of which might have a different type system. Clients, when initializing, query
all their remote server parts to get their type system definition, and merges them together with
its own to make the type system for the CAS that will be sent among all of those annotators. The
Client's TypeSystem is the union of all of its annotators, even when some of the them are remote.

9.2. Supporting Remote Annotators
Servers, in providing service to multiple clients, may receive CASes from different Clients having
different type systems. UIMA has implemented several different approaches to support this.

Note: Base UIMA includes support for SOAP and VINCI protocols (but these are both
older, and do not support newer features of the CAS like CAS Multipliers and multiple
Views).

The SOAP remote service sends the entire CAS, along with the Client's type system. At the remote,
the Client's type system is deserialized and used as the remote's type system. For Vinci and UIMA-
AS using XMI, the "reachable" Feature Structures (only) are sent. A reachable Feature Structure
is one that is indexed, or is reachable via a reference from another reachable Feature Structure.
The receiving service's type system is guaranteed to be a subset of the sender. Special code in the
deserializer saves aside any types and features not present in the server's type system and re-merges
these values back when returning the CAS to the client.

UIMA-AS supports in addition binary CAS serialization protocols. The binary support is typically
compressed. This compression can greatly reduce the size of data, compared with plain binary
serialization. The compressed form also supports having a target type system which is different
from the source's, as long as it is compatible.

Delta CAS support is available for XMI, binary and compressed binary protocols, used by UIMA-
AS. The Delta CAS refers to the CAS returned from the service back to the client - only the new
Feature Structures added by the service, plus any modifications to existing feature structures and/
or indexes, are returned. This can greatly reduce the size of the returned data. Delta CAS support is
automatically used with more recent versions of UIMA-AS.

9.3. Type filtering support in Binary Compressed
Serialization/Deserialization

The built-in support for Binary Compressed Serialization/Deserialization supports filtering between
non-identical type systems. The filtering is designed so that things (types and/or features) that are

Remote Services support with Compressed Binary Serialization

144 Managing different TypeSystems UIMA Version 3.0.0-alpha02

defined in one type system but not in another are not sent (when serializing) nor received (when
deserializing). When deserializing, non-received features receive 0 as their value. For built-in types,
like integer, float, etc., this is the number 0; for other kinds of things, this is usually a "null" value.

Some kinds of type mappings cannot be supported, and will signal errors. The two types being
mapped between must be "mergable" according to the normal type merger rules (see above);
otherwise, errors are signaled.

9.4. Remote Services support with Compressed
Binary Serialization

Uncompressed Binary Serialization protocols for communicating to remote UIMA-AS services
require that the Client and Server's type systems be identical. Compressed Binary Serialization
protocols support Server type systems which are a subset of the Clients. Types and/or features not
in the Server's type system are not sent to the Server.

9.5. Compressed Binary serialization to/from files
Compressed binary serialization to a file can specify a target type system which is a subset of the
original type system. The serialization will then exclude types and features not in the target, when
serializing. You can use this to filter the CAS to serialize out just the parts you want to.

Compressed binary deserialization from a file must specify as the target type system the one that
went with the target when it was serialized. The source type system can be different; if it is missing
types/features, these will be filtered during deserialization. If it has additional features, these will
be set to 0 (the default value) in the CAS heap. For numeric features, this means the value will be 0
(including floating point 0); for feature structure references and strings, the value will be null.

	UIMA Tutorial and Developers' Guides
	Table of Contents
	Chapter 1. Annotator and Analysis Engine Developer's Guide
	1.1. Getting Started
	1.1.1. Defining Types
	1.1.2. Generating Java Source Files for CAS Types
	1.1.3. Developing Your Annotator Code
	1.1.4. Creating the XML Descriptor
	1.1.5. Testing Your Annotator

	1.2. Configuration and Logging
	1.2.1. Configuration Parameters
	1.2.1.1. Declaring Parameters in the Descriptor
	1.2.1.2. Accessing Parameter Values from the Annotator Code
	1.2.1.3. Supporting Reconfiguration
	1.2.1.4. Configuration Parameter Groups
	1.2.1.5. Overriding Configuration Parameter Settings

	1.2.2. Logging
	1.2.2.1. Specifying the Logging Configuration when using Java's built-in logger
	1.2.2.2. Setting Logging Levels when using Java's built-in logger
	1.2.2.3. Configuring the format of logging output when using Java's built-in logger
	1.2.2.4. Meaning of the logging severity levels used by the UIMA logger
	1.2.2.5. Using loggers outside of an annotator
	1.2.2.6. Changing the underlying UIMA logging implementation
	1.2.2.7. Throttling excessive logging from Annotators

	1.3. Building Aggregate Analysis Engines
	1.3.1. Combining Annotators
	1.3.2. AAEs can also contain CAS Consumers
	1.3.3. Reading the Results of Previous Annotators

	1.4. Other examples
	1.5. Additional Topics
	1.5.1. Contract: Annotator Methods Called by the Framework
	1.5.2. Reporting errors from Annotators
	1.5.3. Throwing Exceptions from Annotators
	1.5.4. Accessing External Resources
	1.5.4.1. Declaring Resource Dependencies
	1.5.4.2. Accessing the Resource from the UimaContext
	1.5.4.3. Declaring Resources and Bindings
	1.5.4.4. Sharing Resources among Annotators
	1.5.4.5. Threading and Shared Resources

	1.5.5. Result Specifications
	1.5.5.1. Default ResultSpecification
	1.5.5.2. Passing Result Specifications to Annotators
	1.5.5.3. Aggregates
	1.5.5.4. Collection Proessing Engines

	1.5.6. Class path setup when using JCas
	1.5.7. Using the Shell Scripts

	1.6. Common Pitfalls
	1.7. Viewing UIMA objects in the Eclipse debugger
	1.8. Introduction to Analysis Engine Descriptor XML Syntax
	1.8.1. Header and Annotator Class Identification
	1.8.2. Simple Metadata Attributes
	1.8.3. Type System Definition
	1.8.4. Capabilities
	1.8.5. Configuration Parameters (Optional)
	1.8.5.1. Configuration Parameter Declarations
	1.8.5.2. Configuration Parameter Settings
	1.8.5.3. Aggregate Analysis Engine Descriptor

	Chapter 2. Collection Processing Engine Developer's Guide
	2.1. CPE Concepts
	2.2. CPE Configurator and CAS viewer
	2.2.1. Using the CPE Configurator
	2.2.2. Running the CPE Configurator from Eclipse

	2.3. Running a CPE from Your Own Java Application
	2.3.1. Using Listeners

	2.4. Developing Collection Processing Components
	2.4.1. Developing Collection Readers
	2.4.1.1. Java Class for the Collection Reader
	2.4.1.2. Required Methods in the Collection Reader class
	initialize()
	hasNext()
	getNext(CAS)
	getProgress()
	close()
	Optional Methods
	reconfigure()
	typeSystemInit()

	Threading considerations
	XML Descriptor for a Collection Reader

	2.4.2. Developing CAS Initializers
	2.4.3. Developing CAS Consumers
	2.4.3.1. Required Methods for a CAS Consumer
	initialize()
	processCas()
	Optional Methods
	batchProcessComplete()
	collectionProcessComplete()

	2.5. Deploying a CPE
	2.5.1. Deploying Managed CAS Processors
	2.5.2. Deploying Non-managed CAS Processors
	2.5.3. Deploying Integrated CAS Processors

	2.6. Collection Processing Examples

	Chapter 3. Application Developer's Guide
	3.1. The UIMAFramework Class
	3.2. Using Analysis Engines
	3.2.1. Instantiating an Analysis Engine
	3.2.2. Analyzing Text Documents
	3.2.3. Analyzing Non-Text Artifacts
	3.2.4. Accessing Analysis Results
	3.2.4.1. Accessing Analysis Results using the JCas
	3.2.4.2. Accessing Analysis Results using the CAS

	3.2.5. Multi-threaded Applications
	3.2.6. Using Multiple Analysis Engines and Creating Shared CASes
	3.2.7. Saving CASes to file systems or general Streams

	3.3. Using Collection Processing Engines
	3.3.1. Running a Collection Processing Engine from a Descriptor
	3.3.2. Configuring a Collection Processing Engine Descriptor Programmatically

	3.4. Setting Configuration Parameters
	3.5. Integrating Text Analysis and Search
	3.5.1. Building an Index
	3.5.1.1. Configuring the Semantic Search CAS Indexer
	3.5.1.2. Building and Running a CPE including the Semantic Search CAS Indexer

	3.5.2. Semantic Search Query Tool

	3.6. Working with Remote Services
	3.6.1. Deploying a UIMA Component as a SOAP Service
	3.6.2. Deploying a UIMA Component as a Vinci Service
	3.6.3. How to Call a UIMA Service
	3.6.3.1. SOAP Service Client Descriptor
	3.6.3.2. Vinci Service Client Descriptor

	3.6.4. Restrictions on remotely deployed services
	3.6.5. The Vinci Naming Services (VNS)
	3.6.5.1. Starting VNS
	3.6.5.2. VNS Files
	3.6.5.3. Launching Vinci Services

	3.6.6. Configuring Timeout Settings
	3.6.6.1. Setting the Client Timeout
	3.6.6.2. Setting the Server Socket Timeout

	3.7. Increasing performance using parallelism
	3.8. Monitoring AE Performance using JMX
	3.9. Performance Tuning Options

	Chapter 4. Flow Controller Developer's Guide
	4.1. Developing the Flow Controller Code
	4.1.1. Flow Controller Interface Overview
	4.1.2. Example Code
	4.1.2.1. The WhiteboardFlowController Class
	4.1.2.2. The WhiteboardFlow Class

	4.2. Creating the Flow Controller Descriptor
	4.3. Adding a Flow Controller to an Aggregate Analysis Engine
	4.4. Adding a Flow Controller to a Collection Processing Engine
	4.5. Using Flow Controllers with CAS Multipliers
	4.6. Continuing the Flow When Exceptions Occur

	Chapter 5. Annotations, Artifacts, and Sofas
	5.1. Terminology
	5.1.1. Artifact
	5.1.2. Subject of Analysis — Sofa

	5.2. Formats of Sofa Data
	5.3. Setting and Accessing Sofa Data
	5.3.1. Setting Sofa Data
	5.3.2. Accessing Sofa Data
	5.3.3. Accessing Sofa Data using a Java Stream

	5.4. The Sofa Feature Structure
	5.5. Annotations
	5.5.1. Built-in Annotation types
	5.5.2. Annotations have an associated Sofa

	5.6. AnnotationBase

	Chapter 6. Multiple CAS Views of an Artifact
	6.1. CAS Views and Sofas
	6.1.1. Naming CAS Views and Sofas
	6.1.2. Multi-View, Single-View components & applications

	6.2. Multi-View Components
	6.2.1. How UIMA decides if a component is Multi-View
	6.2.2. Multi-View: additional capabilities
	6.2.3. Component XML metadata

	6.3. Sofa Capabilities and APIs for Applications
	6.4. Sofa Name Mapping
	6.4.1. Name Mapping in an Aggregate Descriptor
	6.4.2. Name Mapping in a CPE Descriptor
	6.4.3. Specifying the CAS View delivered to a Components Process Method
	6.4.4. Name Mapping in a UIMA Application
	6.4.5. Name Mapping for Remote Services

	6.5. JCas extensions for Multiple Views
	6.6. Sample Multi-View Application
	6.6.1. Annotator Descriptor
	6.6.2. Application Setup
	6.6.3. Annotator Processing
	6.6.4. Accessing the results of analysis

	6.7. Views API Summary
	6.8. Sofa Incompatibilities between UIMA version 1 and version 2

	Chapter 7. CAS Multiplier Developer's Guide
	7.1. Developing the CAS Multiplier Code
	7.1.1. CAS Multiplier Interface Overview
	7.1.2. How to Get an Empty CAS Instance
	7.1.3. Example Code
	7.1.3.1. Overall Structure
	7.1.3.2. Initialize Method
	7.1.3.3. Process Method
	7.1.3.4. HasNext Method
	7.1.3.5. Next Method

	7.2. Creating the CAS Multiplier Descriptor
	7.3. Using a CAS Multiplier in an Aggregate Analysis Engine
	7.3.1. Adding the CAS Multiplier to the Aggregate
	7.3.2. CAS Multipliers and Flow Control
	7.3.3. Aggregate CAS Multipliers

	7.4. Using a CAS Multiplier in a Collection Processing Engine
	7.5. Calling a CAS Multiplier from an Application
	7.5.1. Retrieving Output CASes from the CAS Multiplier
	7.5.2. Using a CAS Multiplier with other Analysis Engines

	7.6. Using a CAS Multiplier to Merge CASes
	7.6.1. Overview of How to Merge CASes
	7.6.2. Example CAS Merger
	7.6.2.1. Process Method
	7.6.2.2. HasNext and Next Methods

	7.6.3. Using the SimpleTextMerger in an Aggregate Analysis Engine

	Chapter 8. XMI and EMF Interoperability
	8.1. Overview
	8.2. Converting an Ecore Model to or from a UIMA Type System
	8.3. Using XMI CAS Serialization
	8.3.1. Character Encoding Issues with XML Serialization

	Chapter 9. Managing different Type Systems
	9.1. Annotators, Type Merging, and Remotes
	9.2. Supporting Remote Annotators
	9.3. Type filtering support in Binary Compressed Serialization/Deserialization
	9.4. Remote Services support with Compressed Binary Serialization
	9.5. Compressed Binary serialization to/from files

