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Overview 1

Chapter 1. UIMA Overview
The Unstructured Information Management Architecture (UIMA) is an architecture and software
framework for creating, discovering, composing and deploying a broad range of multi-modal
analysis capabilities and integrating them with search technologies. The architecture is undergoing
a standardization effort, referred to as the UIMA specification by a technical committee within
OASIS1.

The Apache UIMA framework is an Apache licensed, open source implementation of the UIMA
Architecture, and provides a run-time environment in which developers can plug in and run their
UIMA component implementations and with which they can build and deploy UIM applications.
The framework itself is not specific to any IDE or platform.

It includes an all-Java implementation of the UIMA framework for the development, description,
composition and deployment of UIMA components and applications. It also provides the developer
with an Eclipse-based (http://www.eclipse.org/ ) development environment that includes a set
of tools and utilities for using UIMA. It also includes a C++ version of the framework, and
enablements for Annotators built in Perl, Python, and TCL.

This chapter is the intended starting point for readers that are new to the Apache UIMA Project. It
includes this introduction and the following sections:

• Section 1.1, “Apache UIMA Project Documentation Overview” [1] provides a list of
the books and topics included in the Apache UIMA documentation with a brief summary of
each.

• Section 1.2, “How to use the Documentation” [5] describes a recommended path
through the documentation to help get the reader up and running with UIMA

• Section 1.4, “Migrating from IBM UIMA to Apache UIMA” [9] is intended for users
of IBM UIMA, and describes the steps needed to upgrade to Apache UIMA.

• Section 1.3.2, “Changes from UIMA Version 1.x” [7] lists the changes that occurred
between UIMA v1.x and UIMA v2.x (independent of the transition to Apache).

The main website for Apache UIMA is http://uima.apache.org. Here you can find out many things,
including:

• how to download (both the binary and source distributions
• how to participate in the development
• mailing lists - including the user list used like a forum for questions and answers
• a Wiki where you can find and contribute all kinds of information, including tips and best

practices
• a sandbox - a subproject for potential new additions to Apache UIMA or to subprojects of it.

Things here are works in progress, and may (or may not) be included in releases.
• links to conferences

1.1. Apache UIMA Project Documentation Overview
The user documentation for UIMA is organized into several parts.

• Overviews - this documentation

1 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uima

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uima
http://www.eclipse.org/
http://uima.apache.org
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uima
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• Eclipse Tooling Installation and Setup - also in this document
• Tutorials and Developer's Guides
• Tools Users' Guides
• References

The first 2 parts make up this book; the last 3 have individual books. The books are provided both
as (somewhat large) html files, viewable in browsers, and also as PDF files. The documentation is
fully hyperlinked, with tables of contents. The PDF versions are set up to print nicely - they have
page numbers included on the cross references within a book.

If you view the PDF files inside a browser that supports imbedded viewing of PDF, the hyperlinks
between different PDF books may work (not all browsers have been tested...).

The following set of tables gives a more detailed overview of the various parts of the
documentation.

1.1.1. Overviews

Overview of the
Documentation

What you are currently reading. Lists the documents provided in
the Apache UIMA documentation set and provides a recommended
path through the documentation for getting started using UIMA. It
includes release notes and provides a brief high-level description
of the different software modules included in the Apache UIMA
Project. See Section 1.1, “Apache UIMA Project Documentation
Overview” [1].

Conceptual Overview Provides a broad conceptual overview of the UIMA component
architecture; includes references to the other documents in the
documentation set that provide more detail. See Chapter 2, UIMA
Conceptual Overview [17]

UIMA FAQs Frequently Asked Questions about general UIMA concepts. (Not
a programming resource.) See Chapter 4, UIMA Frequently Asked
Questions (FAQ's) [39].

Known Issues Known issues and problems with the UIMA SDK. See Chapter 5,
Known Issues [45].

Glossary UIMA terms and concepts and their basic definitions. See
Glossary [47].

1.1.2. Eclipse Tooling Installation and Setup

Provides step-by-step instructions for installing Apache UIMA in the Eclipse Interactive
Development Environment. See Chapter 3, Setting up the Eclipse IDE to work with UIMA [33].

1.1.3. Tutorials and Developer's Guides

Annotators and Analysis
Engines

Tutorial-style guide for building UIMA annotators and analysis
engines. This chapter introduces the developer to creating type
systems and using UIMA's common data structure, the CAS or
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Common Analysis Structure. It demonstrates how to use built in
tools to specify and create basic UIMA analysis components. See
Chapter 1, Annotator and Analysis Engine Developer's Guide.

Building UIMA
Collection Processing
Engines

Tutorial-style guide for building UIMA collection processing
engines. These manage the analysis of collections of documents
from source to sink. See Chapter 2, Collection Processing Engine
Developer's Guide.

Developing Complete
Applications

Tutorial-style guide on using the UIMA APIs to create, run and
manage UIMA components from your application. Also describes
APIs for saving and restoring the contents of a CAS using an XML
format called XMI®. See Chapter 3, Application Developer's Guide.

Flow Controller When multiple components are combined in an Aggregate, each
CAS flow among the various components. UIMA provides two
built-in flows, and also allows custom flows to be implemented. See
Chapter 4, Flow Controller Developer's Guide.

Developing Applications
using Multiple Subjects of
Analysis

A single CAS maybe associated with multiple subjects of analysis
(Sofas). These are useful for representing and analyzing different
formats or translations of the same document. For multi-modal
analysis, Sofas are good for different modal representations of the
same stream (e.g., audio and close-captions).This chapter provides
the developer details on how to use multiple Sofas in an application.
See Chapter 5, Annotations, Artifacts, and Sofas.

Multiple CAS Views of an
Artifact

UIMA provides an extension to the basic model of the CAS which
supports analysis of multiple views of the same artifact, all contained
with the CAS. This chapter describes the concepts, terminology,
and the API and XML extensions that enable this. See Chapter 6,
Multiple CAS Views of an Artifact.

CAS Multiplier A component may add additional CASes into the workflow. This
may be useful to break up a large artifact into smaller units, or to
create a new CAS that collects information from multiple other
CASes. See Chapter 7, CAS Multiplier Developer's Guide.

XMI and EMF
Interoperability

The UIMA Type system and the contents of the CAS itself can be
externalized using the XMI standard for XML MetaData. Eclipse
Modeling Framework (EMF) tooling can be used to develop
applications that use this information. See Chapter 8, XMI and EMF
Interoperability.

1.1.4. Tools Users' Guides

Component Descriptor
Editor

Describes the features of the Component Descriptor Editor Tool.
This tool provides a GUI for specifying the details of UIMA
component descriptors, including those for Analysis Engines
(primitive and aggregate), Collection Readers, CAS Consumers and
Type Systems. See Chapter 1, Component Descriptor Editor User's
Guide.

Collection Processing
Engine Configurator

Describes the User Interfaces and features of the CPE Configurator
tool. This tool allows the user to select and configure the



References

4 Overview UIMA Version 2.4.2

components of a Collection Processing Engine and then to run the
engine. See Chapter 2, Collection Processing Engine Configurator
User's Guide.

Pear Packager Describes how to use the PEAR Packager utility. This utility enables
developers to produce an archive file for an analysis engine that
includes all required resources for installing that analysis engine in
another UIMA environment. See Chapter 9, PEAR Packager User's
Guide.

Pear Installer Describes how to use the PEAR Installer utility. This utility installs
and verifies an analysis engine from an archive file (PEAR) with all
its resources in the right place so it is ready to run. See Chapter 11,
PEAR Installer User's Guide.

Pear Merger Describes how to use the Pear Merger utility, which does a simple
merge of multiple PEAR packages into one. See Chapter 12, PEAR
Merger User's Guide.

Document Analyzer Describes the features of a tool for applying a UIMA analysis
engine to a set of documents and viewing the results. See Chapter 3,
Document Analyzer User's Guide.

CAS Visual Debugger Describes the features of a tool for viewing the detailed structure and
contents of a CAS. Good for debugging. See Chapter 5, CAS Visual
Debugger.

JCasGen Describes how to run the JCasGen utility, which automatically
builds Java classes that correspond to a particular CAS Type System.
See Chapter 8, JCasGen User's Guide.

XML CAS Viewer Describes how to run the supplied viewer to view externalized XML
forms of CASes. This viewer is used in the examples. See Chapter 4,
Annotation Viewer.

1.1.5. References

Introduction to the UIMA
API Javadocs

Javadocs detailing the UIMA programming interfaces See Chapter 1,
Javadocs

XML: Component
Descriptor

Provides detailed XML format for all the UIMA component
descriptors, except the CPE (see next). See Chapter 2, Component
Descriptor Reference.

XML: Collection
Processing Engine
Descriptor

Provides detailed XML format for the Collection Processing Engine
descriptor. See Chapter 3, Collection Processing Engine Descriptor
Reference

CAS Provides detailed description of the principal CAS interface. See
Chapter 4, CAS Reference

JCas Provides details on the JCas, a native Java interface to the CAS. See
Chapter 5, JCas Reference

PEAR Reference Provides detailed description of the deployable archive format for
UIMA components. See Chapter 6, PEAR Reference
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XMI CAS Serialization
Reference

Provides detailed description of the deployable archive format
for UIMA components. See Chapter 7, XMI CAS Serialization
Reference

1.2. How to use the Documentation
1. Explore this chapter to get an overview of the different documents that are included with

Apache UIMA.

2. Read Chapter 2, UIMA Conceptual Overview to get a broad view of the basic UIMA
concepts and philosophy with reference to the other documents included in the
documentation set which provide greater detail.

3. For more general information on the UIMA architecture and how it has been used, refer to
the IBM Systems Journal special issue on Unstructured Information Management, on-line
at http://www.research.ibm.com/journal/sj43-3.html or to the section of the UIMA project
website on Apache website where other publications are listed.

4. Set up Apache UIMA in your Eclipse environment. To do this, follow the instructions in
Chapter 3, Setting up the Eclipse IDE to work with UIMA [33].

5. Develop sample UIMA annotators, run them and explore the results. Read UIMA Tutorial
and Developers' Guides Chapter 1, Annotator and Analysis Engine Developer's Guide and
follow it like a tutorial to learn how to develop your first UIMA annotator and set up and
run your first UIMA analysis engines.

• As part of this you will use a few tools including

• The UIMA Component Descriptor Editor, described in more detail in UIMA
Tools Guide and Reference Chapter 1, Component Descriptor Editor User's
Guide and

• The Document Analyzer, described in more detail in UIMA Tools Guide and
Reference Chapter 3, Document Analyzer User's Guide.

• While following along in UIMA Tutorial and Developers' Guides Chapter 1,
Annotator and Analysis Engine Developer's Guide, reference documents that may
help are:

• UIMA References Chapter 2, Component Descriptor Reference for
understanding the analysis engine descriptors

• UIMA References Chapter 5, JCas Reference for understanding the JCas

6. Learn how to create, run and manage a UIMA analysis engine as part of an application.
Connect your analysis engine to the provided semantic search engine to learn how a
complete analysis and search application may be built with Apache UIMA. UIMA Tutorial
and Developers' Guides Chapter 3, Application Developer's Guide will guide you through
this process.

• As part of this you will use the document analyzer (described in more detail in
UIMA Tools Guide and Reference Chapter 3, Document Analyzer User's Guide and
semantic search GUI tools (see UIMA Tutorial and Developers' Guides Section 3.5.2,
“Semantic Search Query Tool”.

http://www.research.ibm.com/journal/sj43-3.html
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7. Pat yourself on the back. Congratulations! If you reached this step successfully, then you
have an appreciation for the UIMA analysis engine architecture. You would have built a few
sample annotators, deployed UIMA analysis engines to analyze a few documents, searched
over the results using the built-in semantic search engine and viewed the results through a
built-in viewer – all as part of a simple but complete application.

8. Develop and run a Collection Processing Engine (CPE) to analyze and gather the results
of an entire collection of documents. UIMA Tutorial and Developers' Guides Chapter 2,
Collection Processing Engine Developer's Guide will guide you through this process.

• As part of this you will use the CPE Configurator tool. For details see UIMA Tools
Guide and Reference Chapter 2, Collection Processing Engine Configurator User's
Guide.

• You will also learn about CPE Descriptors. The detailed format for these may be
found in UIMA References Chapter 3, Collection Processing Engine Descriptor
Reference.

9. Learn how to package up an analysis engine for easy installation into another UIMA
environment. UIMA Tools Guide and Reference Chapter 9, PEAR Packager User's Guide
and UIMA Tools Guide and Reference Chapter 11, PEAR Installer User's Guide will
teach you how to create UIMA analysis engine archives so that you can easily share your
components with a broader community.

1.3. Changes from Previous Major Versions
There are two previous version of UIMA, available from IBM's alphaWorks: version 1.4.x and
version 2.0 (the 2.0 version was a "beta" only release). This section describes the changes relative
to both of these releases. A migration utility is provided which updates your Java code and
descriptors as needed for this release. See Section 1.4, “Migrating from IBM UIMA to Apache
UIMA” [9] for instructions on how to run the migration utility.

Note: Each Apache UIMA release includes RELEASE_NOTES and
RELEASE_NOTES.html files that describe the changes that have occurred in each release.
Please refer to those files for specific changes for each Apache UIMA release.

1.3.1. Changes from IBM UIMA 2.0 to Apache UIMA 2.1
This section describes what has changed between version 2.0 and version 2.1 of UIMA; the
following section describes the differences between version 1.4 and version 2.1.

1.3.1.1. Java Package Name Changes

All of the UIMA Java package names have changed in Apache UIMA. They now start with
org.apache rather than com.ibm. There have been other changes as well. The package
name segment reference_impl has been shortened to impl, and some segments have
been reordered. For example com.ibm.uima.reference_impl.analysis_engine has
become org.apache.uima.analysis_engine.impl. Tools are now consolidated under
org.apache.uima.tools and service adapters under org.apache.uima.adapter.

The migration utility will replace all occurrences of IBM UIMA package names with their Apache
UIMA equivalents. It will not replace prefixes of package names, so if your code uses a package
called com.ibm.uima.myproject (although that is not recommended), it will not be replaced.
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1.3.1.2. XML Descriptor Changes

The XML namespace in UIMA component descriptors has changed from http://
uima.watson.ibm.com/resourceSpecifier to http://uima.apache.org/
resourceSpecifier. The value of the <frameworkImplementation> must now be
org.apache.uima.java or org.apache.uima.cpp. The migration script will apply these
replacements.

1.3.1.3. TCAS replaced by CAS

In Apache UIMA the TCAS interface has been removed. All uses of it must now be replaced
by the CAS interface. (All methods that used to be defined on TCAS were moved to CAS
in v2.0.) The method CAS.getTCAS() is replaced with CAS.getCurrentView() and
CAS.getTCAS(String) is replaced with CAS.getView(String) . The following have
also been removed and replaced with the equivalent "CAS" variants: TCASException,
TCASRuntimeException, TCasPool, and CasCreationUtils.createTCas(...).

The migration script will apply the necessary replacements.

1.3.1.4. JCas Is Now an Interface

In previous versions, user code accessed the JCas class directly. In Apache UIMA there is now an
interface, org.apache.uima.jcas.JCas, which all JCas-based user code must now use. Static
methods that were previously on the JCas class (and called from JCas cover classes generated by
JCasGen) have been moved to the new org.apache.uima.jcas.JCasRegistry class. The
migration script will apply the necessary replacements to your code, including any JCas cover
classes that are part of your codebase.

1.3.1.5. JAR File names Have Changed

The UIMA JAR file names have changed slightly. Underscores have been replaced with hyphens
to be consistent with Apache naming conventions. For example uima_core.jar is now uima-
core.jar. Also uima_jcas_builtin_types.jar has been renamed to uima-document-
annotation.jar. Finally, the jVinci.jar file is now in the lib directory rather than the
lib/vinci directory as was previously the case. The migration script will apply the necessary
replacements, for example to script files or Eclipse launch configurations. (See Section 1.4.1,
“Running the Migration Utility” [10] for a list of file extensions that the migration utility will
process by default.)

1.3.1.6. Semantic Search Engine Repackaged

The versions of the UIMA SDK prior to the move into Apache came with a semantic search engine.
The Apache version does not include this search engine. The search engine has been repackaged
and is separately available from http://www.alphaworks.ibm.com/tech/uima. The intent is to hook
up (over time) with other open source search engines, such as the Lucene search engine project in
Apache.

1.3.2. Changes from UIMA Version 1.x

Version 2.x of UIMA provides new capabilities and refines several areas of the UIMA architecture,
as compared with version 1.

http://www.alphaworks.ibm.com/tech/uima
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1.3.2.1. New Capabilities

New Primitive data types.  UIMA now supports Boolean (bit), Byte, Short (16 bit integers),
Long (64 bit integers), and Double (64 bit floating point) primitive types, and arrays of these. These
types can be used like all the other primitive types.

Simpler Analysis Engines and CASes.  Version 1.x made a distinction between Analysis
Engines and Text Analysis Engines. This distinction has been eliminated in Version 2 - new code
should just refer to Analysis Engines. Analysis Engines can operate on multiple kinds of artifacts,
including text.

Sofas and CAS Views simplified.  The APIs for manipulating multiple subjects of analysis
(Sofas) and their corresponding CAS Views have been simplified.

Analysis Component generalized to support multiple new CAS outputs.  Analysis
Components, in general, can make use of new capabilities to return multiple new CASes, in
addition to returning the original CAS that is passed in. This allows components to have Collection
Reader-like capabilities, but be placed anywhere in the flow. See UIMA Tutorial and Developers'
Guides Chapter 7, CAS Multiplier Developer's Guide .

User-customized Flow Controllers.  A new component, the Flow Controller, can be supplied
by the user to implement arbitrary flow control for CASes within an Aggregate. This is in addition
to the two built-in flow control choices of linear and language-capability flow. See UIMA Tutorial
and Developers' Guides Chapter 4, Flow Controller Developer's Guide .

1.3.2.2. Other Changes

New additional Annotator API ImplBase.  As of version 2.1, UIMA has a new
set of Annotator interfaces. Annotators should now extend CasAnnotator_ImplBase
or JCasAnnotator_ImplBase instead of the v1.x TextAnnotator_ImplBase and
JTextAnnotator_ImplBase. The v1.x annotator interfaces are unchanged and are still supported for
backwards compatibility.

The new Annotator interfaces support the changed approaches for ResultSpecifications and the
changed exception names (see below), and have all the methods that CAS Consumers have,
including CollectionProcessComplete and BatchProcessComplete.

UIMA Exceptions rationalized.  In version 1 there were different exceptions for the methods
of an AnalysisEngine and for the corresponding methods of an Annotator; these were merged in
version 2.

• AnnotatorProcessException (v1) → AnalysisEngineProcessException (v2)
• AnnotatorInitializationException (v1) → ResourceInitializationException (v2)
• AnnotatorConfigurationException (v1) → ResourceConfigurationException (v2)
• AnnotatorContextException (v1) → ResourceAccessException (v2)

The previous exceptions are still available, but new code should use the new exceptions.

Note: The signature for typeSystemInit changed the “throws” clause to throw
AnalysisEngineProcessException. For Annotators that extend the previous base, the
previous definition of typeSystemInit will continue to work for backwards compatibility.

Changes in Result Specifications.  In version 1, the process(...) method took a second
argument, a ResultSpecification. Now it is set when changed and it's up to the annotator to
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store it in a local field and make it available when needed. This approach lets the annotator
receive a specific signal (a method call) when the Result Specification changes. Previously, it
would need to check on every call to see if it changed. The default impl base classes provide set/
getResultSpecification(...) methods for this

Only one Capability Set.  In version one, you can define multiple capability sets. These were
not supported well, and for version two, this is now simplified - you should only use one capability
set. (For backwards compatibility, if you use more, this won't cause a problem for now).

TextAnalysisEngine deprecated; use AnalysisEngine instead.  TextAnalysisEngine has been
deprecated - it is now no different than AnalysisEngine. Previous code that uses this should still
continue to work, however.

Annotator Context deprecated; use UimaContext instead.  The context for the Annotator is
the same as the overall UIMA context. The impl base classes provide a getContext() method which
returns now the UimaContext object.

DocumentAnalyzer tool uses XMI formats.  The DocumentAnalyzer tool saves outputs in the
new XMI serialization format. The AnnotationViewer and SemanticSearchGUI tools can read both
the new XMI format and the previous XCAS format.

CAS Initializer deprecated.  Example code that used CAS Initializers has been rewritten to not
use this.

1.3.2.3. Backwards Compatibility

Other than the changes from IBM UIMA to Apache UIMA described above, most UIMA 1.x
applications should not require additional changes to upgrade to UIMA 2.x. However, there are a
few exceptions that UIMA 1.x users may need to be aware of:

• There have been some changes to ResultSpecifications. We do not guarantee 100%
backwards compatibility for applications that made use of them, although most cases should
work.

• For applications that deal with multiple subjects of analysis (Sofas), the rules that determine
whether a component is Multi-View or Single-View have been made more consistent. A
component is considered Multi-View if and only if it declares at least one inputSofa or
outputSofa in its descriptor. This leads to the following incompatibilities in unusual cases:

• It is an error if an annotator that implements the TextAnnotator or JTextAnnotator
interface also declares inputSofas or outputSofas in its descriptor. Such annotators
must be Single-View.

• Annotators that implement GenericAnnotator but do not declare any inputSofas or
outputSofas will now be passed the view of default Sofa instead of the Base CAS.

1.4. Migrating from IBM UIMA to Apache UIMA
In Apache UIMA, several things have changed that require changes to user code and descriptors.
A migration utility is provided which will make the required updates to your files. The most
significant change is that the Java package names for all of the UIMA classes and interfaces have
changed from what they were in IBM UIMA; all of the package names now start with the prefix
org.apache.
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1.4.1. Running the Migration Utility
Note: Before running the migration utility, be sure to back up your files, just in case
you encounter any problems, because the migration tool updates the files in place in the
directories where it finds them.

The migration utility is run by executing the script file apache-uima/bin/
ibmUimaToApacheUima.bat (Windows) or apache-uima/bin/ibmUimaToApacheUima.sh
(UNIX). You must pass one argument: the directory containing the files that you want to be
migrated. Subdirectories will be processed recursively.

The script scans your files and applies the necessary updates, for example replacing the com.ibm
package names with the new org.apache package names. For more details on what has changed
in the UIMA APIs and what changes are performed by the migration script, see Section 1.3.1,
“Changes from IBM UIMA 2.0 to Apache UIMA 2.1” [6].

The script will only attempt to modify files with the extensions: java, xml, xmi, wsdd, properties,
launch, bat, cmd, sh, ksh, or csh; and files with no extension. Also, files with size greater than
1,000,000 bytes will be skipped. (If you want the script to modify files with other extensions, you
can edit the script file and change the -ext argument appropriately.)

If the migration tool reports warnings, there may be a few additional steps to take. The following
two sections explain some simple manual changes that you might need to make to your code.

1.4.1.1. JCas Cover Classes for DocumentAnnotation

If you have run JCasGen it is likely that you have the classes
com.ibm.uima.jcas.tcas.DocumentAnnotation and
com.ibm.uima.jcas.tcas.DocumentAnnotation_Type as part of your code. This package
name is no longer valid, and the migration utility does not move your files between directories so it
is unable to fix this.

If you have not made manual modifications to these classes, the best solution is usually to
just delete these two classes (and their containing package). There is a default version in the
uima-document-annotation.jar file that is included in Apache UIMA. If you have made
custom changes, then you should not delete the file but instead move it to the correct package
org.apache.uima.jcas.tcas. For more information about JCas and DocumentAnnotation
please see UIMA References Section 5.5.4, “Adding Features to DocumentAnnotation”

1.4.1.2. JCas.getDocumentAnnotation

The deprecated method JCas.getDocumentAnnotation has been removed.
Its use must be replaced with JCas.getDocumentAnnotationFs. The method
JCas.getDocumentAnnotationFs() returns type TOP, so your code must cast this to type
DocumentAnnotation. The reasons for this are described in UIMA References Section 5.5.4,
“Adding Features to DocumentAnnotation”.

1.4.2. Manual Migration
The following are rare cases where you may need to take additional steps to migrate your code.
You need only read this section if the migration tool reported a warning or if you are having trouble
getting your code to compile or run after running the migration. For most users, attention to these
things will not be required.
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1.4.2.1. xi:include

The use of <xi:include> in UIMA component descriptors has been discouraged for some time, and
in Apache UIMA support for it has been removed. If you have descriptors that use that, you must
change them to use UIMA's <import> syntax instead. The proper syntax is described in UIMA
References Section 2.2, “Imports”.

1.4.2.2. Duplicate Methods Taking CAS and TCAS as
Arguments

Because TCAS has been replaced by CAS, if you had two methods distinguished only by whether an
argument type was TCAS or CAS, the migration tool will cause these to have identical signatures,
which will be a compile error. If this happens, consider why the two variants were needed in the
first place. Often, it may work to simply delete one of the methods.

1.4.2.3. Use of Undocumented Methods from the
com.ibm.uima.util package

Previous UIMA versions has some methods in the com.ibm.uima.util package that were
for internal use and were not documented in the Javadoc. (There are also many methods in that
package which are documented, and there is no issue with using these.) It is not recommended that
you use any of the undocumented methods. If you do, the migration script will not handle them
correctly. These have now been moved to org.apache.uima.internal.util, and you will
have to manually update your imports to point to this location.

1.4.2.4. Use of UIMA Package Names for User Code

If you have placed your own classes in a package that has exactly the same name as one of the
UIMA packages (not recommended), this will cause problems when your run the migration script.
Since the script replaces UIMA package names, all of your imports that refer to your class will get
replaced and your code will no longer compile. If this happens, you can fix it by manually moving
your code to the new Apache UIMA package name (i.e., whatever name your imports got replaced
with). However, we recommend instead that you do not use Apache UIMA package names for your
own code.

An even more rare case would be if you had a package name that started with a capital letter
(poor Java style) AND was prefixed by one of the UIMA package names, for example a package
named com.ibm.uima.MyPackage. This would be treated as a class name and replaced with
org.apache.uima.MyPackage wherever it occurs.

1.4.2.5. CASException and CASRuntimeException now extend
UIMA(Runtime)Exception

This change may affect user code to a small extent, as some of the APIs on CASException and
CASRuntimeException no longer exist. On the up side, all UIMA exceptions are now derived
from the same base classes and behave the same way. The most significant change is that you can
no longer check for the specific type of exception the way you used to. For example, if you had
code like this:

catch (CASRuntimeException e) {
  if (e.getError() == CASRuntimeException.ILLEGAL_ARRAY_SIZE) {
  // Do something in case this particular error is caught
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you will need to replace it with the following:

catch (CASRuntimeException e) {
  if (e.getMessageKey().equals(CASRuntimeException.ILLEGAL_ARRAY_SIZE)) {
  // Do something in case this particular error is caught

as the message keys are now strings. This change is not handled by the migration script.

1.5. Apache UIMA Summary

1.5.1. General
UIMA supports the development, discovery, composition and deployment of multi-modal analytics
for the analysis of unstructured information and its integration with search technologies.

Apache UIMA includes APIs and tools for creating analysis components. Examples of analysis
components include tokenizers, summarizers, categorizers, parsers, named-entity detectors etc.
Tutorial examples are provided with Apache UIMA; additional components are available from the
community.

Apache UIMA does not itself include a semantic search engine; instructions are included for
incorporating the semantic search SDK from IBM's alphaWorks2 which can index the results of
analysis and for using this semantic index to perform more advanced search.

1.5.2. Programming Language Support
UIMA supports the development and integration of analysis algorithms developed in different
programming languages.

The Apache UIMA project is both a Java framework and a matching C++ enablement layer, which
allows annotators to be written in C++ and have access to a C++ version of the CAS. The C++
enablement layer also enables annotators to be written in Perl, Python, and TCL, and to interoperate
with those written in other languages.

1.5.3. Multi-Modal Support
The UIMA architecture supports the development, discovery, composition and deployment of
multi-modal analytics, including text, audio and video. UIMA Tutorial and Developers' Guides
Chapter 5, Annotations, Artifacts, and Sofas discuss this is more detail.

1.5.4. Semantic Search Components
The Lucene search engine as of this writing (November, 2006) does not support searching with
annotations. The site http://www.alphaworks.ibm.com/tech/uima provides a download of a
semantic search engine, a simple demo query tool, some documentation on the semantic search
engine, and a component that connects the results of UIMA analysis to the indexer so that the
annotations as well as key-words can be indexed.

Previous versions of the UIMA SDK (prior to the Apache versions) are available from  IBM's
alphaWorks3. The source code for previous versions of the main UIMA framework is available on 
SourceForge4.

2 http://alphaworks.ibm.com/tech/uima
3 http://www.alphaworks.ibm.com/tech/uima
4 http://uima-framework.sourceforge.net/

http://alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima
http://uima-framework.sourceforge.net/
http://uima-framework.sourceforge.net/
http://alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima
http://uima-framework.sourceforge.net/


Summary of Apache UIMA Capabilities

UIMA Version 2.4.2 Overview 13

1.6. Summary of Apache UIMA Capabilities
Module Description

UIMA Framework Core A framework integrating core functions for
creating, deploying, running and managing UIMA
components, including analysis engines and Collection
Processing Engines in collocated and/or distributed
configurations.

The framework includes an implementation of core
components for transport layer adaptation, CAS
management, workflow management based on
declarative specifications, resource management,
configuration management, logging, and other
functions.

C++ and other programming language
Interoperability

Includes C++ CAS and supports the creation of UIMA
compliant C++ components that can be deployed in
the UIMA run-time through a built-in JNI adapter.
This includes high-speed binary serialization.

Includes support for creating service-based UIMA
engines. This is ideal for wrapping existing code
written in different languages.

Framework Services and APIs Note that interfaces of these components are available
to the developer but different implementations are
possible in different implementations of the UIMA
framework.

CAS These classes provide the developer with typed access
to the Common Analysis Structure (CAS), including
type system schema, elements, subjects of analysis
and indices. Multiple subjects of analysis (Sofas)
mechanism supports the independent or simultaneous
analysis of multiple views of the same artifacts (e.g.
documents), supporting multi-lingual and multi-modal
analysis.

JCas An alternative interface to the CAS, providing Java-
based UIMA Analysis components with native Java
object access to CAS types and their attributes or
features, using the JavaBeans conventions of getters
and setters.

Collection Processing Management
(CPM)

Core functions for running UIMA collection
processing engines in collocated and/or distributed
configurations. The CPM provides scalability
across parallel processing pipelines, check-pointing,
performance monitoring and recoverability.

Resource Manager Provides UIMA components with run-time access
to external resources handling capabilities such as
resource naming, sharing, and caching.
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Configuration Manager Provides UIMA components with run-time access to
their configuration parameter settings.

Logger Provides access to a common logging facility.

Tools and Utilities

JCasGen Utility for generating a Java object model for CAS
types from a UIMA XML type system definition.

Saving and Restoring CAS contents APIs in the core framework support saving and
restoring the contents of a CAS to streams using an
XMI format.

PEAR Packager for Eclipse Tool for building a UIMA component archive to
facilitate porting, registering, installing and testing
components.

PEAR Installer Tool for installing and verifying a UIMA component
archive in a UIMA installation.

PEAR Merger Utility that combines multiple PEARs into one.

Component Descriptor Editor Eclipse Plug-in for specifying and configuring
component descriptors for UIMA analysis engines
as well as other UIMA component types including
Collection Readers and CAS Consumers.

CPE Configurator Graphical tool for configuring Collection Processing
Engines and applying them to collections of
documents.

Java Annotation Viewer Viewer for exploring annotations and related CAS
data.

CAS Visual Debugger GUI Java application that provides developers with
detailed visual view of the contents of a CAS.

Document Analyzer GUI Java application that applies analysis engines to
sets of documents and shows results in a viewer.

Example Analysis Components

Database Writer CAS Consumer that writes the content
of selected CAS types into a relational
database, using JDBC. This code is in cpe/
PersonTitleDBWriterCasConsumer.

Annotators Set of simple annotators meant for pedagogical
purposes. Includes: Date/time, Room-number, Regular
expression, Tokenizer, and Meeting-finder annotator.
There are sample CAS Multipliers as well.

Flow Controllers There is a sample flow-controller based on the
whiteboard concept of sending the CAS to whatever
annotator hasn't yet processed it, when that annotator's
inputs are available in the CAS.
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XMI Collection Reader, CAS Consumer Reads and writes the CAS in the XMI format

File System Collection Reader Simple Collection Reader for pulling documents from
the file system and initializing CASes.

Components available from http://www.alphaworks.ibm.com/tech/uima

Semantic Search CAS Indexer A CAS Consumer that uses the semantic search engine
indexer to build an index from a stream of CASes.
Requires the semantic search engine (available from
the same place).

http://www.alphaworks.ibm.com/tech/uima
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Chapter 2. UIMA Conceptual Overview
UIMA is an open, industrial-strength, scaleable and extensible platform for creating, integrating
and deploying unstructured information management solutions from powerful text or multi-modal
analysis and search components.

The Apache UIMA project is an implementation of the Java UIMA framework available under
the Apache License, providing a common foundation for industry and academia to collaborate and
accelerate the world-wide development of technologies critical for discovering vital knowledge
present in the fastest growing sources of information today.

This chapter presents an introduction to many essential UIMA concepts. It is meant to provide a
broad overview to give the reader a quick sense of UIMA's basic architectural philosophy and the
UIMA SDK's capabilities.

This chapter provides a general orientation to UIMA and makes liberal reference to the other
chapters in the UIMA SDK documentation set, where the reader may find detailed treatments of
key concepts and development practices. It may be useful to refer to Glossary, to become familiar
with the terminology in this overview.

2.1. UIMA Introduction

Figure 2.1. UIMA helps you build the bridge between the unstructured and structured worlds

Unstructured information represents the largest, most current and fastest growing source of
information available to businesses and governments. The web is just the tip of the iceberg.
Consider the mounds of information hosted in the enterprise and around the world and across
different media including text, voice and video. The high-value content in these vast collections of
unstructured information is, unfortunately, buried in lots of noise. Searching for what you need or
doing sophisticated data mining over unstructured information sources presents new challenges.

An unstructured information management (UIM) application may be generally characterized as
a software system that analyzes large volumes of unstructured information (text, audio, video,
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images, etc.) to discover, organize and deliver relevant knowledge to the client or application end-
user. An example is an application that processes millions of medical abstracts to discover critical
drug interactions. Another example is an application that processes tens of millions of documents to
discover key evidence indicating probable competitive threats.

First and foremost, the unstructured data must be analyzed to interpret, detect and locate concepts
of interest, for example, named entities like persons, organizations, locations, facilities, products
etc., that are not explicitly tagged or annotated in the original artifact. More challenging analytics
may detect things like opinions, complaints, threats or facts. And then there are relations, for
example, located in, finances, supports, purchases, repairs etc. The list of concepts important
for applications to discover in unstructured content is large, varied and often domain specific.
Many different component analytics may solve different parts of the overall analysis task. These
component analytics must interoperate and must be easily combined to facilitate the developed of
UIM applications.

The result of analysis are used to populate structured forms so that conventional data processing
and search technologies like search engines, database engines or OLAP (On-Line Analytical
Processing, or Data Mining) engines can efficiently deliver the newly discovered content in
response to the client requests or queries.

In analyzing unstructured content, UIM applications make use of a variety of analysis technologies
including:

• Statistical and rule-based Natural Language Processing (NLP)
• Information Retrieval (IR)
• Machine learning
• Ontologies
• Automated reasoning and
• Knowledge Sources (e.g., CYC, WordNet, FrameNet, etc.)

Specific analysis capabilities using these technologies are developed independently using different
techniques, interfaces and platforms.

The bridge from the unstructured world to the structured world is built through the composition and
deployment of these analysis capabilities. This integration is often a costly challenge.

The Unstructured Information Management Architecture (UIMA) is an architecture and software
framework that helps you build that bridge. It supports creating, discovering, composing and
deploying a broad range of analysis capabilities and linking them to structured information
services.

UIMA allows development teams to match the right skills with the right parts of a solution and
helps enable rapid integration across technologies and platforms using a variety of different
deployment options. These ranging from tightly-coupled deployments for high-performance,
single-machine, embedded solutions to parallel and fully distributed deployments for highly
flexible and scaleable solutions.

2.2. The Architecture, the Framework and the SDK
UIMA is a software architecture which specifies component interfaces, data representations, design
patterns and development roles for creating, describing, discovering, composing and deploying
multi-modal analysis capabilities.

The UIMA framework provides a run-time environment in which developers can plug in their
UIMA component implementations and with which they can build and deploy UIM applications.
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The framework is not specific to any IDE or platform. Apache hosts a Java and (soon) a C++
implementation of the UIMA Framework.

The UIMA Software Development Kit (SDK) includes the UIMA framework, plus tools and
utilities for using UIMA. Some of the tooling supports an Eclipse-based ( http://www.eclipse.org/)
development environment.

2.3. Analysis Basics
Analysis Engine, Document, Annotator, Annotator Developer, Type, Type System, Feature,
Annotation, CAS, Sofa, JCas, UIMA Context.

2.3.1. Analysis Engines, Annotators & Results

Figure 2.2. Objects represented in the Common Analysis Structure (CAS)

UIMA is an architecture in which basic building blocks called Analysis Engines (AEs) are
composed to analyze a document and infer and record descriptive attributes about the document as
a whole, and/or about regions therein. This descriptive information, produced by AEs is referred to
generally as  analysis results. Analysis results typically represent meta-data about the document
content. One way to think about AEs is as software agents that automatically discover and record
meta-data about original content.

UIMA supports the analysis of different modalities including text, audio and video. The majority
of examples we provide are for text. We use the term document, therefore, to generally refer to
any unit of content that an AE may process, whether it is a text document or a segment of audio,
for example. See the UIMA Tutorial and Developers' Guides Chapter 6, Multiple CAS Views of an
Artifact for more information on multimodal processing in UIMA.

Analysis results include different statements about the content of a document. For example, the
following is an assertion about the topic of a document:

(1) The Topic of document D102 is "CEOs and Golf".

Analysis results may include statements describing regions more granular than the entire document.
We use the term span to refer to a sequence of characters in a text document. Consider that a
document with the identifier D102 contains a span, “Fred Centers” starting at character position

http://www.eclipse.org/
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101. An AE that can detect persons in text may represent the following statement as an analysis
result:

(2) The span from position 101 to 112 in document D102 denotes a Person

In both statements 1 and 2 above there is a special pre-defined term or what we call in UIMA a
Type. They are Topic and Person respectively. UIMA types characterize the kinds of results that an
AE may create – more on types later.

Other analysis results may relate two statements. For example, an AE might record in its results
that two spans are both referring to the same person:

(3) The Person denoted by span 101 to 112 and 
  the Person denoted by span 141 to 143 in document D102 
  refer to the same Entity.

The above statements are some examples of the kinds of results that AEs may record to describe
the content of the documents they analyze. These are not meant to indicate the form or syntax with
which these results are captured in UIMA – more on that later in this overview.

The UIMA framework treats Analysis engines as pluggable, composible, discoverable, managed
objects. At the heart of AEs are the analysis algorithms that do all the work to analyze documents
and record analysis results.

UIMA provides a basic component type intended to house the core analysis algorithms running
inside AEs. Instances of this component are called Annotators. The analysis algorithm developer's
primary concern therefore is the development of annotators. The UIMA framework provides the
necessary methods for taking annotators and creating analysis engines.

In UIMA the person who codes analysis algorithms takes on the role of the Annotator Developer.
Chapter 1, Annotator and Analysis Engine Developer's Guide in UIMA Tutorial and Developers'
Guides will take the reader through the details involved in creating UIMA annotators and analysis
engines.

At the most primitive level an AE wraps an annotator adding the necessary APIs and infrastructure
for the composition and deployment of annotators within the UIMA framework. The simplest AE
contains exactly one annotator at its core. Complex AEs may contain a collection of other AEs each
potentially containing within them other AEs.

2.3.2. Representing Analysis Results in the CAS
How annotators represent and share their results is an important part of the UIMA architecture.
UIMA defines a Common Analysis Structure (CAS) precisely for these purposes.

The CAS is an object-based data structure that allows the representation of objects, properties
and values. Object types may be related to each other in a single-inheritance hierarchy. The CAS
logically (if not physically) contains the document being analyzed. Analysis developers share and
record their analysis results in terms of an object model within the CAS. 1

The UIMA framework includes an implementation and interfaces to the CAS. For a more detailed
description of the CAS and its interfaces see UIMA References Chapter 4, CAS Reference.

1 We have plans to extend the representational capabilities of the CAS and align its semantics with the semantics of the OMG's Essential
Meta-Object Facility (EMOF) and with the semantics of the Eclipse Modeling Framework's ( http://www.eclipse.org/emf/) Ecore semantics
and XMI-based representation.

http://www.eclipse.org/emf/
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A CAS that logically contains statement 2 (repeated here for your convenience)

(2) The span from position 101 to 112 in document D102 denotes a Person

would include objects of the Person type. For each person found in the body of a document, the
AE would create a Person object in the CAS and link it to the span of text where the person was
mentioned in the document.

While the CAS is a general purpose data structure, UIMA defines a few basic types and affords the
developer the ability to extend these to define an arbitrarily rich Type System. You can think of a
type system as an object schema for the CAS.

A type system defines the various types of objects that may be discovered in documents by AE's
that subscribe to that type system.

As suggested above, Person may be defined as a type. Types have properties or features. So for
example, Age and Occupation may be defined as features of the Person type.

Other types might be Organization, Company, Bank, Facility, Money, Size, Price, Phone Number,
Phone Call, Relation, Network Packet, Product, Noun Phrase, Verb, Color, Parse Node, Feature
Weight Array etc.

There are no limits to the different types that may be defined in a type system. A type system is
domain and application specific.

Types in a UIMA type system may be organized into a taxonomy. For example, Company may be
defined as a subtype of Organization. NounPhrase may be a subtype of a ParseNode.

2.3.2.1. The Annotation Type

A general and common type used in artifact analysis and from which additional types are often
derived is the annotation type.

The annotation type is used to annotate or label regions of an artifact. Common artifacts are text
documents, but they can be other things, such as audio streams. The annotation type for text
includes two features, namely begin and end. Values of these features represent integer offsets in
the artifact and delimit a span. Any particular annotation object identifies the span it annotates with
the begin and end features.

The key idea here is that the annotation type is used to identify and label or “annotate” a specific
region of an artifact.

Consider that the Person type is defined as a subtype of annotation. An annotator, for example,
can create a Person annotation to record the discovery of a mention of a person between position
141 and 143 in document D102. The annotator can create another person annotation to record the
detection of a mention of a person in the span between positions 101 and 112.

2.3.2.2. Not Just Annotations

While the annotation type is a useful type for annotating regions of a document, annotations are not
the only kind of types in a CAS. A CAS is a general representation scheme and may store arbitrary
data structures to represent the analysis of documents.

As an example, consider statement 3 above (repeated here for your convenience).

(3) The Person denoted by span 101 to 112 and 
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  the Person denoted by span 141 to 143 in document D102 
  refer to the same Entity.

This statement mentions two person annotations in the CAS; the first, call it P1 delimiting the
span from 101 to 112 and the other, call it P2, delimiting the span from 141 to 143. Statement 3
asserts explicitly that these two spans refer to the same entity. This means that while there are two
expressions in the text represented by the annotations P1 and P2, each refers to one and the same
person.

The Entity type may be introduced into a type system to capture this kind of information. The
Entity type is not an annotation. It is intended to represent an object in the domain which may
be referred to by different expressions (or mentions) occurring multiple times within a document
(or across documents within a collection of documents). The Entity type has a feature named
occurrences. This feature is used to point to all the annotations believed to label mentions of the
same entity.

Consider that the spans annotated by P1 and P2 were “Fred Center” and “He” respectively. The
annotator might create a new Entity object called FredCenter. To represent the relationship in
statement 3 above, the annotator may link FredCenter to both P1 and P2 by making them values of
its occurrences feature.

Figure 2.2, “Objects represented in the Common Analysis Structure (CAS)” [19] also illustrates
that an entity may be linked to annotations referring to regions of image documents as well. To do
this the annotation type would have to be extended with the appropriate features to point to regions
of an image.

2.3.2.3. Multiple Views within a CAS

UIMA supports the simultaneous analysis of multiple views of a document. This support comes in
handy for processing multiple forms of the artifact, for example, the audio and the closed captioned
views of a single speech stream, or the tagged and detagged views of an HTML document.

AEs analyze one or more views of a document. Each view contains a specific subject of
analysis(Sofa), plus a set of indexes holding metadata indexed by that view. The CAS, overall,
holds one or more CAS Views, plus the descriptive objects that represent the analysis results for
each.

Another common example of using CAS Views is for different translations of a document. Each
translation may be represented with a different CAS View. Each translation may be described by
a different set of analysis results. For more details on CAS Views and Sofas see UIMA Tutorial
and Developers' Guides Chapter 6, Multiple CAS Views of an Artifact and Chapter 5, Annotations,
Artifacts, and Sofas.

2.3.3. Interacting with the CAS and External Resources
The two main interfaces that a UIMA component developer interacts with are the CAS and the
UIMA Context.

UIMA provides an efficient implementation of the CAS with multiple programming interfaces.
Through these interfaces, the annotator developer interacts with the document and reads and writes
analysis results. The CAS interfaces provide a suite of access methods that allow the developer
to obtain indexed iterators to the different objects in the CAS. See UIMA References Chapter 4,
CAS Reference. While many objects may exist in a CAS, the annotator developer can obtain a
specialized iterator to all Person objects associated with a particular view, for example.
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For Java annotator developers, UIMA provides the JCas. This interface provides the Java developer
with a natural interface to CAS objects. Each type declared in the type system appears as a Java
Class; the UIMA framework renders the Person type as a Person class in Java. As the analysis
algorithm detects mentions of persons in the documents, it can create Person objects in the CAS.
For more details on how to interact with the CAS using this interface, refer to UIMA References
Chapter 5, JCas Reference.

The component developer, in addition to interacting with the CAS, can access external resources
through the framework's resource manager interface called the UIMA Context. This interface,
among other things, can ensure that different annotators working together in an aggregate flow may
share the same instance of an external file or remote resource accessed via its URL, for example.
For details on using the UIMA Context see UIMA Tutorial and Developers' Guides Chapter 1,
Annotator and Analysis Engine Developer's Guide.

2.3.4. Component Descriptors
UIMA defines interfaces for a small set of core components that users of the framework provide
implmentations for. Annotators and Analysis Engines are two of the basic building blocks specified
by the architecture. Developers implement them to build and compose analysis capabilities and
ultimately applications.

There are others components in addition to these, which we will learn about later, but for every
component specified in UIMA there are two parts required for its implementation:

1. the declarative part and
2. the code part.

The declarative part contains metadata describing the component, its identity, structure and
behavior and is called the  Component Descriptor. Component descriptors are represented in
XML. The code part implements the algorithm. The code part may be a program in Java.

As a developer using the UIMA SDK, to implement a UIMA component it is always the case that
you will provide two things: the code part and the Component Descriptor. Note that when you are
composing an engine, the code may be already provided in reusable subcomponents. In these cases
you may not be developing new code but rather composing an aggregate engine by pointing to
other components where the code has been included.

Component descriptors are represented in XML and aid in component discovery, reuse,
composition and development tooling. The UIMA SDK provides tools for easily creating and
maintaining the component descriptors that relieve the developer from editing XML directly.
This tool is described briefly in UIMA Tutorial and Developers' Guides Chapter 1, Annotator and
Analysis Engine Developer's Guide, and more thoroughly in UIMA Tools Guide and Reference
Chapter 1, Component Descriptor Editor User's Guide .

Component descriptors contain standard metadata including the component's name, author, version,
and a reference to the class that implements the component.

In addition to these standard fields, a component descriptor identifies the type system the
component uses and the types it requires in an input CAS and the types it plans to produce in an
output CAS.

For example, an AE that detects person types may require as input a CAS that includes a
tokenization and deep parse of the document. The descriptor refers to a type system to make the
component's input requirements and output types explicit. In effect, the descriptor includes a
declarative description of the component's behavior and can be used to aid in component discovery
and composition based on desired results. UIMA analysis engines provide an interface for
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accessing the component metadata represented in their descriptors. For more details on the structure
of UIMA component descriptors refer to UIMA References Chapter 2, Component Descriptor
Reference.

2.4. Aggregate Analysis Engines
Aggregate Analysis Engine, Delegate Analysis Engine, Tightly and Loosely Coupled, Flow
Specification, Analysis Engine Assembler

Figure 2.3. Sample Aggregate Analysis Engine

A simple or primitive UIMA Analysis Engine (AE) contains a single annotator. AEs, however, may
be defined to contain other AEs organized in a workflow. These more complex analysis engines are
called Aggregate Analysis Engines.

Annotators tend to perform fairly granular functions, for example language detection, tokenization
or part of speech detection. These functions typically address just part of an overall analysis task. A
workflow of component engines may be orchestrated to perform more complex tasks.

An AE that performs named entity detection, for example, may include a pipeline of annotators
starting with language detection feeding tokenization, then part-of-speech detection, then deep
grammatical parsing and then finally named-entity detection. Each step in the pipeline is required
by the subsequent analysis. For example, the final named-entity annotator can only do its analysis if
the previous deep grammatical parse was recorded in the CAS.

Aggregate AEs are built to encapsulate potentially complex internal structure and insulate it from
users of the AE. In our example, the aggregate analysis engine developer acquires the internal
components, defines the necessary flow between them and publishes the resulting AE. Consider
the simple example illustrated in Figure 2.3, “Sample Aggregate Analysis Engine” [24] where
“MyNamed-EntityDetector” is composed of a linear flow of more primitive analysis engines.

Users of this AE need not know how it is constructed internally but only need its name and
its published input requirements and output types. These must be declared in the aggregate
AE's descriptor. Aggregate AE's descriptors declare the components they contain and a flow
specification. The flow specification defines the order in which the internal component AEs should
be run. The internal AEs specified in an aggregate are also called the  delegate analysis engines.
The term "delegate" is used because aggregate AE's are thought to "delegate" functions to their
internal AEs.

In UIMA 2.0, the developer can implement a "Flow Controller" and include it as part of an
aggregate AE by referring to it in the aggregate AE's descriptor. The flow controller is responsible
for computing the "flow", that is, for determining the order in which of delegate AE's that will
process the CAS. The Flow Contoller has access to the CAS and any external resources it may
require for determining the flow. It can do this dynamically at run-time, it can make multi-
step decisions and it can consider any sort of flow specification included in the aggregate AE's
descriptor. See UIMA Tutorial and Developers' Guides Chapter 4, Flow Controller Developer's
Guide for details on the UIMA Flow Controller interface.
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We refer to the development role associated with building an aggregate from delegate AEs as the
Analysis Engine Assembler .

The UIMA framework, given an aggregate analysis engine descriptor, will run all delegate AEs,
ensuring that each one gets access to the CAS in the sequence produced by the flow controller.
The UIMA framework is equipped to handle different deployments where the delegate engines,
for example, are  tightly-coupled (running in the same process) or  loosely-coupled (running in
separate processes or even on different machines). The framework supports a number of remote
protocols for loose coupling deployments of aggregate analysis engines, including SOAP (which
stands for Simple Object Access Protocol, a standard Web Services communications protocol).

The UIMA framework facilitates the deployment of AEs as remote services by using an adapter
layer that automatically creates the necessary infrastructure in response to a declaration in the
component's descriptor. For more details on creating aggregate analysis engines refer to UIMA
References Chapter 2, Component Descriptor Reference The component descriptor editor tool
assists in the specification of aggregate AEs from a repository of available engines. For more
details on this tool refer to UIMA Tools Guide and Reference Chapter 1, Component Descriptor
Editor User's Guide.

The UIMA framework implementation has two built-in flow implementations: one that support
a linear flow between components, and one with conditional branching based on the language of
the document. It also supports user-provided flow controllers, as described in UIMA Tutorial and
Developers' Guides Chapter 4, Flow Controller Developer's Guide. Furthermore, the application
developer is free to create multiple AEs and provide their own logic to combine the AEs in
arbitrarily complex flows. For more details on this the reader may refer to UIMA Tutorial and
Developers' Guides Section 3.2, “Using Analysis Engines”.

2.5. Application Building and Collection Processing
Process Method, Collection Processing Architecture, Collection Reader, CAS Consumer, CAS
Initializer, Collection Processing Engine, Collection Processing Manager.

2.5.1. Using the framework from an Application

Figure 2.4. Using UIMA Framework to create and interact with an Analysis Engine
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As mentioned above, the basic AE interface may be thought of as simply CAS in/CAS out.

The application is responsible for interacting with the UIMA framework to instantiate an AE,
create or acquire an input CAS, initialize the input CAS with a document and then pass it to the
AE through the process method. This interaction with the framework is illustrated in Figure 2.4,
“Using UIMA Framework to create and interact with an Analysis Engine” [25].

The UIMA AE Factory takes the declarative information from the Component Descriptor and the
class files implementing the annotator, and instantiates the AE instance, setting up the CAS and the
UIMA Context.

The AE, possibly calling many delegate AEs internally, performs the overall analysis and its
process method returns the CAS containing new analysis results.

The application then decides what to do with the returned CAS. There are many possibilities. For
instance the application could: display the results, store the CAS to disk for post processing, extract
and index analysis results as part of a search or database application etc.

The UIMA framework provides methods to support the application developer in creating and
managing CASes and instantiating, running and managing AEs. Details may be found in UIMA
Tutorial and Developers' Guides Chapter 3, Application Developer's Guide.

2.5.2. Graduating to Collection Processing

Figure 2.5. High-Level UIMA Component Architecture from Source to Sink

Many UIM applications analyze entire collections of documents. They connect to different
document sources and do different things with the results. But in the typical case, the application
must generally follow these logical steps:

1. Connect to a physical source
2. Acquire a document from the source
3. Initialize a CAS with the document to be analyzed
4. Send the CAS to a selected analysis engine
5. Process the resulting CAS
6. Go back to 2 until the collection is processed
7. Do any final processing required after all the documents in the collection have been

analyzed
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UIMA supports UIM application development for this general type of processing through its
Collection Processing Architecture.

As part of the collection processing architecture UIMA introduces two primary components in
addition to the annotator and analysis engine. These are the Collection Reader and the CAS
Consumer. The complete flow from source, through document analysis, and to CAS Consumers
supported by UIMA is illustrated in Figure 2.5, “High-Level UIMA Component Architecture from
Source to Sink” [26].

The Collection Reader's job is to connect to and iterate through a source collection, acquiring
documents and initializing CASes for analysis.

CAS Consumers, as the name suggests, function at the end of the flow. Their job is to do the final
CAS processing. A CAS Consumer may be implemented, for example, to index CAS contents in a
search engine, extract elements of interest and populate a relational database or serialize and store
analysis results to disk for subsequent and further analysis.

A Semantic Search engine that works with UIMA is available from IBM's alphaWorks site2 which
will allow the developer to experiment with indexing analysis results and querying for documents
based on all the annotations in the CAS. See the section on integrating text analysis and search in
UIMA Tutorial and Developers' Guides Chapter 3, Application Developer's Guide.

A UIMA Collection Processing Engine (CPE) is an aggregate component that specifies a “source
to sink” flow from a Collection Reader though a set of analysis engines and then to a set of CAS
Consumers.

CPEs are specified by XML files called CPE Descriptors. These are declarative specifications that
point to their contained components (Collection Readers, analysis engines and CAS Consumers)
and indicate a flow among them. The flow specification allows for filtering capabilities to, for
example, skip over AEs based on CAS contents. Details about the format of CPE Descriptors may
be found in UIMA References Chapter 3, Collection Processing Engine Descriptor Reference.

Figure 2.6. Collection Processing Manager in UIMA Framework

2 http://www.alphaworks.ibm.com/tech/uima

http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima
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The UIMA framework includes a Collection Processing Manager (CPM). The CPM is capable of
reading a CPE descriptor, and deploying and running the specified CPE. Figure 2.5, “High-Level
UIMA Component Architecture from Source to Sink” [26] illustrates the role of the CPM in
the UIMA Framework.

Key features of the CPM are failure recovery, CAS management and scale-out.

Collections may be large and take considerable time to analyze. A configurable behavior of the
CPM is to log faults on single document failures while continuing to process the collection. This
behavior is commonly used because analysis components often tend to be the weakest link -- in
practice they may choke on strangely formatted content.

This deployment option requires that the CPM run in a separate process or a machine distinct from
the CPE components. A CPE may be configured to run with a variety of deployment options that
control the features provided by the CPM. For details see UIMA References Chapter 3, Collection
Processing Engine Descriptor Reference .

The UIMA SDK also provides a tool called the CPE Configurator. This tool provides the developer
with a user interface that simplifies the process of connecting up all the components in a CPE
and running the result. For details on using the CPE Configurator see UIMA Tools Guide and
Reference Chapter 2, Collection Processing Engine Configurator User's Guide. This tool currently
does not provide access to the full set of CPE deployment options supported by the CPM; however,
you can configure other parts of the CPE descriptor by editing it directly. For details on how
to create and run CPEs refer to UIMA Tutorial and Developers' Guides Chapter 2, Collection
Processing Engine Developer's Guide.

2.6. Exploiting Analysis Results
Semantic Search, XML Fragment Queries.

2.6.1. Semantic Search
In a simple UIMA Collection Processing Engine (CPE), a Collection Reader reads documents from
the file system and initializes CASs with their content. These are then fed to an AE that annotates
tokens and sentences, the CASs, now enriched with token and sentence information, are passed to a
CAS Consumer that populates a search engine index.

The search engine query processor can then use the token index to provide basic key-word
search. For example, given a query “center” the search engine would return all the documents that
contained the word “center”.

Semantic Search is a search paradigm that can exploit the additional metadata generated by
analytics like a UIMA CPE.

Consider that we plugged a named-entity recognizer into the CPE described above. Assume this
analysis engine is capable of detecting in documents and annotating in the CAS mentions of
persons and organizations.

Complementing the name-entity recognizer we add a CAS Consumer that extracts in addition to
token and sentence annotations, the person and organizations added to the CASs by the name-entity
detector. It then feeds these into the semantic search engine's index.

The semantic search engine that comes with the UIMA SDK, for example, can exploit this addition
information from the CAS to support more powerful queries. For example, imagine a user is
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looking for documents that mention an organization with “center” it is name but is not sure of the
full or precise name of the organization. A key-word search on “center” would likely produce way
too many documents because “center” is a common and ambiguous term. The semantic search
engine that is available from http://www.alphaworks.ibm.com/tech/uima supports a query language
called XML Fragments. This query language is designed to exploit the CAS annotations entered
in its index. The XML Fragment query, for example,

<organization> center </organization>

will produce first only documents that contain “center” where it appears as part of a mention
annotated as an organization by the name-entity recognizer. This will likely be a much shorter list
of documents more precisely matching the user's interest.

Consider taking this one step further. We add a relationship recognizer that annotates mentions of
the CEO-of relationship. We configure the CAS Consumer so that it sends these new relationship
annotations to the semantic search index as well. With these additional analysis results in the index
we can submit queries like

<ceo_of>
    <person> center </person>
    <organization> center </organization>
<ceo_of>

This query will precisely target documents that contain a mention of an organization with “center”
as part of its name where that organization is mentioned as part of a CEO-of relationship annotated
by the relationship recognizer.

For more details about using UIMA and Semantic Search see the section on integrating text
analysis and search in UIMA Tutorial and Developers' Guides Chapter 3, Application Developer's
Guide.

2.6.2. Databases

Search engine indices are not the only place to deposit analysis results for use by applications.
Another classic example is populating databases. While many approaches are possible with varying
degrees of flexibly and performance all are highly dependent on application specifics. We included
a simple sample CAS Consumer that provides the basics for getting your analysis result into a
relational database. It extracts annotations from a CAS and writes them to a relational database,
using the open source Apache Derby database.

2.7. Multimodal Processing in UIMA
In previous sections we've seen how the CAS is initialized with an initial artifact that will be
subsequently analyzed by Analysis engines and CAS Consumers. The first Analysis engine may
make some assertions about the artifact, for example, in the form of annotations. Subsequent
Analysis engines will make further assertions about both the artifact and previous analysis results,
and finally one or more CAS Consumers will extract information from these CASs for structured
information storage.

http://www.alphaworks.ibm.com/tech/uima
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Figure 2.7. Multiple Sofas in support of multi-modal analysis of an audio Stream.
Some engines work on the audio “view”, some on the text “view” and some on both.

Consider a processing pipeline, illustrated in Figure 2.7, “Multiple Sofas in support of multi-modal
analysis of an audio Stream. Some engines work on the audio “view”, some on the text “view” and
some on both.” [30], that starts with an audio recording of a conversation, transcribes the audio
into text, and then extracts information from the text transcript. Analysis Engines at the start of
the pipeline are analyzing an audio subject of analysis, and later analysis engines are analyzing a
text subject of analysis. The CAS Consumer will likely want to build a search index from concepts
found in the text to the original audio segment covered by the concept.

What becomes clear from this relatively simple scenario is that the CAS must be capable of
simultaneously holding multiple subjects of analysis. Some analysis engine will analyze only
one subject of analysis, some will analyze one and create another, and some will need to access
multiple subjects of analysis at the same time.

The support in UIMA for multiple subjects of analysis is called Sofa support; Sofa is an acronym
which is derived from Subject  of Analysis, which is a physical representation of an artifact (e.g.,
the detagged text of a web-page, the HTML text of the same web-page, the audio segment of a
video, the close-caption text of the same audio segment). A Sofa may be associated with CAS
Views. A particular CAS will have one or more views, each view corresponding to a particular
subject of analysis, together with a set of the defined indexes that index the metadata created in that
view.

Analysis results can be indexed in, or “belong” to, a specific view. UIMA components may be
written in “Multi-View” mode - able to create and access multiple Sofas at the same time, or in
“Single-View” mode, simply receiving a particular view of the CAS corresponding to a particular
single Sofa. For single-view mode components, it is up to the person assembling the component to
supply the needed information to insure a particular view is passed to the component at run time.
This is done using XML descriptors for Sofa mapping (see UIMA Tutorial and Developers' Guides
Section 6.4, “Sofa Name Mapping”).

Multi-View capability brings benefits to text-only processing as well. An input document can be
transformed from one format to another. Examples of this include transforming text from HTML to
plain text or from one natural language to another.

2.8. Next Steps
This chapter presented a high-level overview of UIMA concepts. Along the way, it pointed to other
documents in the UIMA SDK documentation set where the reader can find details on how to apply
the related concepts in building applications with the UIMA SDK.
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At this point the reader may return to the documentation guide in Section 1.2, “How to use the
Documentation” to learn how they might proceed in getting started using UIMA.

For a more detailed overview of the UIMA architecture, framework and development roles we refer
the reader to the following paper:

D. Ferrucci and A. Lally, “Building an example application using the Unstructured Information
Management Architecture,” IBM Systems Journal 43, No. 3, 455-475 (2004).

This paper can be found on line at http://www.research.ibm.com/journal/sj43-3.html

http://www.research.ibm.com/journal/sj43-3.html
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Chapter 3. Setting up the Eclipse IDE to work
with UIMA

This chapter describes how to set up the UIMA SDK to work with Eclipse. Eclipse (http://
www.eclipse.org) is a popular open-source Integrated Development Environment for many things,
including Java. The UIMA SDK does not require that you use Eclipse. However, we recommend
that you do use Eclipse because some useful UIMA SDK tools run as plug-ins to the Eclipse
platform and because the UIMA SDK examples are provided in a form that's easy to import into
your Eclipse environment.

If you are not planning on using the UIMA SDK with Eclipse, you may skip this chapter and read
UIMA Tutorial and Developers' Guides Chapter 1, Annotator and Analysis Engine Developer's
Guide next.

This chapter provides instructions for
• installing Eclipse,
• installing the UIMA SDK's Eclipse plugins into your Eclipse environment, and
• importing the example UIMA code into an Eclipse project.

The UIMA Eclipse plugins are designed to be used with Eclipse version 3.1 or later.

Note: You will need to run Eclipse using a Java at the 1.5 or later level, in order to use the
UIMA Eclipse plugins.

3.1. Installation

3.1.1. Install Eclipse
• Go to http://www.eclipse.org and follow the instructions there to download Eclipse.
• We recommend using the latest release level (not an “Integration level”). Navigate to the

Eclipse Release version you want and download the archive for your platform.
• Unzip the archive to install Eclipse somewhere, e.g., c:\
• Eclipse has a bit of a learning curve. If you plan to make significant use of Eclipse, check

out the tutorial under the help menu. It is well worth the effort. There are also books you can
get that describe Eclipse and its use.

The first time Eclipse starts up it will take a bit longer as it completes its installation. A “welcome”
page will come up. After you are through reading the welcome information, click on the arrow to
exit the welcome page and get to the main Eclipse screens.

3.1.2. Installing the UIMA Eclipse Plugins

The best way to do this is to use the Eclipse Update mechanism, because that will insure that all
needed prerequisites are also installed. See below for an alternative, manual approach.

Note: If your computer is on an internet connection which uses a proxy server, you can
configure Eclipse to know about that. Put your proxy settings into Eclipse using the

Eclipse preferences by accessing the menus: Window → Preferences... → Install/Update,
and Enable HTTP proxy connection under the Proxy Settings with the information about
your proxy.

http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org
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To use the Eclipse Update mechanism, start Eclipse, and then pick the menu Help → Software

Updates → Find and Install.... On the next page, select the option to Search for new features to
install, and press the Next button. On the next panel, update sites to visit, press the "Add a new
remote site" button and enter the URL http://www.apache.org/dist/uima/eclipse-update-site, and
press OK. On the previous page will now appear this new Site, and it should be checked.

Also check the Europa (or Callisto) Discovery Site, which is where the EMF core plugins are (EMF
stands for Eclipse Modeling Framework; it is an add-on to Eclipse, and is used by some of the
UIMA Eclipse tooling).

Now click finish, and follow the remaining panels to install the UIMA plugins. If you do not
have a compatible level of EMF installed, when you select the UIMA plugins, you will get a
message saying it needs EMF. To add EMF to the list of plugins to be downloaded, just expand the
Discovery Site entry by clicking it's little "plus" sign and then push the "Select Required" button on
the right of the panel. This will select the part of EMF that is needed.

3.1.3. Manual Install additional Eclipse component: EMF

You can skip this section if you installed EMF using the above process.

Warning: EMF comes in many versions; you must install the version that corresponds
to the level of Eclipse that you are running. This is automatically done for you if you
install it using the Eclipse update mechanism, described below. If you separately download
an EMF package, you will need to verify it is the version that corresponds to the level of
Eclipse you are running, before installing it.

Before installing EMF using these instructions, please go to http://www.eclipse.org/emf and read
the installation instructions, and then click on the "Update Manager" link to see what url to use in
the next step, where you use the built-in facilities in Eclipse to find and install new features.

The exact way to install EMF changes from time to time. In the next few paragraphs, we try to
give instructions that should work for most versions. Please see the end of this section for shortcut
instructions for the current version of Eclipse at the time of this writing, Eclipse 3.3.

Activate the software feature finding by using the menu: Help → Software Updates → Find and
Install. Select “Search for new features to install”, push “Next”. Specify the update sites to use
to search for EMF, making sure the “Ignore features not applicable to this environment” box is
checked (at the bottom of the dialog), and push “Finish”. A good site to use is one of the Discovery
Sites (e.g. Callisto or Europa) - which has a collection of Eclipse components including EMF.

This will launch a search for updates to Eclipse; it may show a list of update site mirrors – click
OK. When it finishes, it shows a list of possible updates in an expandable tree. Expand the tree
nodes to find EMF SDK. The specific level may vary from the level shown below as newer
versions are released.

http://www.eclipse.org/emf
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Click “Next”. Then pick Eclipse Modeling Framework (EMF), and push “Next”, accept any
licensing agreements, etc., until it finishes the installation. It may say it's an “unsigned feature”;
proceed by clicking “Install”. If it recommends restarting, you may do that.

This will install EMF, without any extras. (If you want the whole EMF system, including source
and documentation, you can pick the “EMF SDK” and the “Examples for Eclipse Modeling
Framework”.)

3.1.3.1. EMF Installation Shortcut for Eclipse 3.2

Since Eclipse 3.2, all major Eclipse sub-projects coordinate their release timeframes and publish
the consolidated releases. The code name for 3.2 was Callisto, the one for 3.3 is Europa. You can
easily install EMF via the release discovery site as follows.

1. From the Eclipse menu, select Help/Software Updates/Find and Install.../Search for new
features to install.

2. Check the "[release name] discovery site", push "Next".

3. Select a convenient mirror site.

4. Check the EMF box under "Models and model development"

5. Follow the instructions for the rest of the install.
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3.1.4. Install the UIMA SDK

If you haven't already done so, please download and install the UIMA SDK from http://
incubator.apache.org/uima. Be sure to set the environmental variable UIMA_HOME
pointing to the root of the installed UIMA SDK and run the adjustExamplePaths.bat or
adjustExamplePaths.sh script, as explained in the README.

The environmental parameter UIMA_HOME is used by the command-line scripts in the
%UIMA_HOME%/bin directory as well as by eclipse run configurations in the uimaj-examples
sample project.

3.1.5. Installing the UIMA Eclipse Plugins, manually

If you installed the UIMA plugins using the update mechanism above, please skip this section.

If you are unable to use the Eclipse Update mechanism to install the UIMA plugins, you can do
this manually. In the directory %UIMA_HOME%/eclipsePlugins (The environment variable
%UIMA_HOME% is where you installed the UIMA SDK), you will see a set of folders. Copy
these to your %ECLIPSE_HOME%/eclipse/plugins directory (%ECLIPSE_HOME% is where you
installed Eclipse).

3.1.6. Start Eclipse

If you have Eclipse running, restart it (shut it down, and start it again) using the -clean option;
you can do this by running the command eclipse -clean (see explanation in the next section) in the
directory where you installed Eclipse. You may want to set up a desktop shortcut at this point for
Eclipse.

3.1.6.1. Special startup parameter for Eclipse: -clean

If you have modified the plugin structure (by copying or files directly in the file system) in
Eclipse 3.x after you started it for the first time, please include the “-clean” parameter in the
startup arguments to Eclipse, one time (after any plugin modifications were done). This is needed
because Eclipse may not notice the changes you made, otherwise. This parameter forces Eclipse to
reexamine all of its plugins at startup and recompute any cached information about them.

3.2. Setting up Eclipse to view Example Code
Later chapters refer to example code. You can create a special project in Eclipse to hold the
examples. Here's how:

• In Eclipse, if the Java perspective is not already open, switch to it by going to Window →
Open Perspective → Java.

• Set up a class path variable named UIMA_HOME, whose value is the directory where you
installed the UIMA SDK. This is done as follows:

• Go to Window → Preferences → Java → Build Path → Classpath Variables.

• Click “New”

• Enter UIMA_HOME (all capitals, exactly as written) in the “Name” field.

http://incubator.apache.org/uima
http://incubator.apache.org/uima
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• Enter your installation directory (e.g. C:/Program Files/apache-uima) in the
“Path” field

• Click “OK” in the “New Variable Entry” dialog

• Click “OK” in the “Preferences” dialog

• If it asks you if you want to do a full build, click “Yes”
• Select the File → Import menu option
• Select “General/Existing Project into Workspace” and click the “Next” button.
• Click “Browse” and browse to the %UIMA_HOME%/ directory
• Click “Finish.” This will create a new project called “uimaj-examples” in your Eclipse

workspace. There should be no compilation errors.

To verify that you have set up the project correctly, check that there are no error messages in the
“Problems” view.

3.3. Adding the UIMA source code to the jar files
If you would like to be able to jump to the UIMA source code in Eclipse or to step through it with
the debugger, you can add the UIMA source code to the jar files. This is done via a shell script that
comes with the source distribution. To add the source code to the jars, you need to:

• Download and unpack the UIMA source distribution.

• Download and install the UIMA binary distribution (the UIMA_HOME environment
variable needs to be set to point to where you installed the UIMA binary distribution).

• Execute the addSourceToJars script in the root directory of the source distribution.

This adds the source code to the jar files, and it will then be automatically available from Eclipse.
There is no further Eclipse setup required.

3.4. Attaching UIMA Javadocs
The binary distribution also includes the UIMA Javadocs. They are attached to the UIMA library
Jar files in the uima-examples project described above. You can attach the Javadocs to your own
project as well.

Note: If you attached the source as described in the previous section, you don't need to
attach the Javadocs because the source includes the Javadoc comments.

Attaching the Javadocs enables Javadoc help for UIMA APIs. After they are attached, if you hover
your mouse over a certain UIMA api element, the corresponding Javadoc will appear. You can
then press “F2” to make the hover "stick", or “Shift-F2” to open the default web-browser on your
system to let you browse the entire Javadoc information for that element.

If this pop-up behavior is something you don't want, you can turn it off in the Eclipse preferences,

in the menu Window → Preferences → Java → Editors → hovers.

Eclipse also has a Javadoc "view" which you can show, using the Window → Show View →
Javadoc.
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See UIMA References Section 1.1, “Using named Eclipse User Libraries” for information on how
to set up a UIMA "library" with the Javadocs attached, which can be reused for other projects in
your Eclipse workspace.

You can attach the Javadocs to each UIMA library jar you think you might be interested in. It
makes most sense for the uima-core.jar, you'll probably use the core APIs most of all.

Here's a screenshot of what you should see when you hover your mouse pointer over the class name
“CAS” in the source code.

3.5. Running external tools from Eclipse
You can run many tools without using Eclipse at all, by using the shell scripts in the UIMA SDK's
bin directory. In addition, many tools can be run from inside Eclipse; examples are the Document
Analyzer, CPE Configurator, CAS Visual Debugger, and JCasGen. The uimaj-examples project
provides Eclipse launch configurations that make this easy to do.

To run these tools from Eclipse:
• If the Java perspective is not already open, switch to it by going to Window → Open

Perspective → Java.
• Go to Run → Run...
• In the window that appears, select “UIMA CPE GUI”, “UIMA CAS Visual Debugger”,

“UIMA JCasGen”, or “UIMA Document Analyzer” from the list of run configurations on

the left. (If you don't see, these, please select the uimaj-examples project and do a Menu →
File → Refresh).

• Press the “Run” button. The tools should start. Close the tools by clicking the “X” in the
upper right corner on the GUI.

For instructions on using the Document Analyzer and CPE Configurator, in the UIMA Tools Guide
and Reference book see Chapter 3, Document Analyzer User's Guide, and Chapter 2, Collection
Processing Engine Configurator User's Guide For instructions on using the CAS Visual Debugger
and JCasGen, see Chapter 5, CAS Visual Debugger and Chapter 8, JCasGen User's Guide
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Chapter 4. UIMA Frequently Asked Questions
(FAQ's)

What is UIMA?
UIMA stands for Unstructured Information Management Architecture. It is component
software architecture for the development, discovery, composition and deployment of multi-
modal analytics for the analysis of unstructured information.

UIMA processing occurs through a series of modules called analysis engines. The result of
analysis is an assignment of semantics to the elements of unstructured data, for example, the
indication that the phrase “Washington” refers to a person's name or that it refers to a place.

Analysis Engine's output can be saved in conventional structures, for example, relational
databases or search engine indices, where the content of the original unstructured information
may be efficiently accessed according to its inferred semantics.

UIMA supports developers in creating, integrating, and deploying components across
platforms and among dispersed teams working to develop unstructured information
management applications.

How do you pronounce UIMA?
You – eee – muh.

What's the difference between UIMA and the Apache UIMA?
UIMA is an architecture which specifies component interfaces, design patterns, data
representations and development roles.

Apache UIMA is an open source, Apache-licensed software project, currently undergoing
incubation at Apache.org. It includes run-time frameworks in Java and C++, APIs and tools for
implementing, composing, packaging and deploying UIMA components.

The UIMA run-time framework allows developers to plug-in their components and
applications and run them on different platforms and according to different deployment
options that range from tightly-coupled (running in the same process space) to loosely-
coupled (distributed across different processes or machines for greater scale, flexibility and
recoverability).

Does UIMA include a semantic search engine?
The Apache UIMA project does not itself include a semantic search engine. It can interface
with the semantic search engine component (available from http://www.alphaworks.ibm.com/
tech/uima for indexing and querying over the results of analysis. Over time, we expect that
additional search engines will add support for semantic searching.

What is an Annotation?
An annotation is metadata that is associated with a region of a document. It often is a label,
typically represented as string of characters. The region may be the whole document.

An example is the label “Person” associated with the span of text “George Washington”. We
say that “Person” annotates “George Washington” in the sentence “George Washington was
the first president of the United States”. The association of the label “Person” with a particular
span of text is an annotation. Another example may have an annotation represent a topic, like
“American Presidents” and be used to label an entire document.

http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima
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Annotations are not limited to regions of texts. An annotation may annotate a region of an
image or a segment of audio. The same concepts apply.

What is the CAS?
The CAS stands for Common Analysis Structure. It provides cooperating UIMA components
with a common representation and mechanism for shared access to the artifact being analyzed
(e.g., a document, audio file, video stream etc.) and the current analysis results.

What does the CAS contain?
The CAS is a data structure for which UIMA provides multiple interfaces. It contains and
provides the analysis algorithm or application developer with access to

• the subject of analysis (the artifact being analyzed, like the document),
• the analysis results or metadata(e.g., annotations, parse trees, relations, entities etc.),
• indices to the analysis results, and
• the type system (a schema for the analysis results).

A CAS can hold multiple versions of the artifact being analyzed (for instance, a raw html
document, and a detagged version, or an English version and a corresponding German version,
or an audio sample, and the text that corresponds, etc.). For each version there is a separate
instance of the results indices.

Does the CAS only contain Annotations?
No. The CAS contains the artifact being analyzed plus the analysis results. Analysis results are
those metadata recorded by analysis engines in the CAS. The most common form of analysis
result is the addition of an annotation. But an analysis engine may write any structure that
conforms to the CAS's type system into the CAS. These may not be annotations but may be
other things, for example links between annotations and properties of objects associated with
annotations.

The CAS may have multiple representations of the artifact being analyzed, each one
represented in the CAS as a particular Subject of Analysis. or Sofa

Is the CAS just XML?
No, in fact there are many possible representations of the CAS. If all of the analysis engines are
running in the same process, an efficient, in-memory data object is used. If a CAS must be sent
to an analysis engine on a remote machine, it can be done via an XML or a binary serialization
of the CAS.

The UIMA framework provides serialization and de-serialization methods for a particular
XML representation of the CAS named the XMI.

What is a Type System?
Think of a type system as a schema or class model for the CAS. It defines the types of objects
and their properties (or features) that may be instantiated in a CAS. A specific CAS conforms
to a particular type system. UIMA components declare their input and output with respect to a
type system.

Type Systems include the definitions of types, their properties, range types (these can restrict
the value of properties to other types) and single-inheritance hierarchy of types.

What is a Sofa?
Sofa stands for “Subject of Analysis". A CAS is associated with a single artifact being
analysed by a collection of UIMA analysis engines. But a single artifact may have multiple
independent views, each of which may be analyzed separately by a different set of analysis
engines. For example, given a document it may have different translations, each of which are
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associated with the original document but each potentially analyzed by different engines. A
CAS may have multiple Views, each containing a different Subject of Analysis corresponding
to some version of the original artifact. This feature is ideal for multi-modal analysis, where for
example, one view of a video stream may be the video frames and the other the close-captions.

What's the difference between an Annotator and an Analysis Engine?
In the terminology of UIMA, an annotator is simply some code that analyzes documents
and outputs annotations on the content of the documents. The UIMA framework takes the
annotator, together with metadata describing such things as the input requirements and outputs
types of the annotator, and produces an analysis engine.

Analysis Engines contain the framework-provided infrastructure that allows them to be easily
combined with other analysis engines in different flows and according to different deployment
options (collocated or as web services, for example).

Analysis Engines are the framework-generated objects that an Application interacts with. An
Annotator is a user-written class that implements the one of the supported Annotator interfaces.

Are UIMA analysis engines web services?
They can be deployed as such. Deploying an analysis engine as a web service is one of the
deployment options supported by the UIMA framework.

Do Analysis Engines have to be "stateless"?
This is a user-specifyable option. The XML metadata for the component includes an
operationalProperties element which can specify if multiple deployment is allowed.
If true, then a particular instance of an Engine might not see all the CASes being processed.
If false, then that component will see all of the CASes being processed. In this case, it can
accumulate state information among all the CASes. Typically, Analysis Engines in the
main analysis pipeline are marked multipleDeploymentAllowed = true. The CAS Consumer
component, on the other hand, defaults to having this property set to false, and is typically
associated with some resource like a database or search engine that aggregates analysis results
across an entire collection.

Analysis Engines developers are encouraged not to maintain state between documents
that would prevent their engine from working as advertised if operated in a parallelized
environment.

Is engine meta-data compatible with web services and UDDI?
All UIMA component implementations are associated with Component Descriptors which
represents metadata describing various properties about the component to support discovery,
reuse, validation, automatic composition and development tooling. In principle, UIMA
component descriptors are compatible with web services and UDDI. However, the UIMA
framework currently uses its own XML representation for component metadata. It would
not be difficult to convert between UIMA's XML representation and the WSDL and UDDI
standards.

How do you scale a UIMA application?
The UIMA framework allows components such as analysis engines and CAS Consumers to
be easily deployed as services or in other containers and managed by systems middleware
designed to scale. UIMA applications tend to naturally scale-out across documents allowing
many documents to be analyzed in parallel.

A component in the UIMA framework called the CPM (Collection Processing Manager) has a
host of features and configuration settings for scaling an application to increase its throughput
and recoverability.
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What does it mean to embed UIMA in systems middleware?
An example of an embedding would be the deployment of a UIMA analysis engine as an
Enterprise Java Bean inside an application server such as IBM WebSphere. Such an embedding
allows the deployer to take advantage of the features and tools provided by WebSphere for
achieving scalability, service management, recoverability etc. UIMA is independent of any
particular systems middleware, so analysis engines could be deployed on other application
servers as well.

How is the CPM different from a CPE?
These name complimentary aspects of collection processing. The CPM (Collection Processing
Manager is the part of the UIMA framework that manages the execution of a workflow
of UIMA components orchestrated to analyze a large collection of documents. The UIMA
developer does not implement or describe a CPM. It is a piece of infrastructure code that
handles CAS transport, instance management, batching, check-pointing, statistics collection
and failure recovery in the execution of a collection processing workflow.

A Collection Processing Engine (CPE) is component created by the framework from a
specific CPE descriptor. A CPE descriptor refers to a series of UIMA components including
a Collection Reader, CAS Initializer, Analysis Engine(s) and CAS Consumers. These
components are organized in a work flow and define a collection analysis job or CPE. A
CPE acquires documents from a source collection, initializes CASs with document content,
performs document analysis and then produces collection level results (e.g., search engine
index, database etc). The CPM is the execution engine for a CPE.

What is Semantic Search and what is its relationship to UIMA?
Semantic Search refers to a document search paradigm that allows users to search based not
just on the keywords contained in the documents, but also on the semantics associated with the
text by analysis engines. UIMA applications perform analysis on text documents and generate
semantics in the form of annotations on regions of text. For example, a UIMA analysis engine
may discover the text “First Financial Bank” to refer to an organization and annotated it as
such. With traditional keyword search, the query first will return all documents that contain
that word. First is a frequent and ambiguous term – it occurs a lot and can mean different
things in different places. If the user is looking for organizations that contain that word first in
their names, s/he will likely have to sift through lots of documents containing the word “first”
used in different ways. Semantic Search exploits the results of analysis to allow more precise
queries. For example, the semantic search query <organization> first </organization> will
rank first documents that contain the word “first” as part of the name of an organization. The
UIMA SDK documentation demonstrates how UIMA applications can be built using semantic
search. It provides details about the XML Fragment Query language. This is the particular
query language used by the semantic search engine that comes with the SDK.

Is an XML Fragment Query valid XML?
Not necessarily. The XML Fragment Query syntax is used to formulate queries interpreted
by the semantic search engine that ships with the UIMA SDK. This query language relies on
basic XML syntax as an intuitive way to describe hierarchical patterns of annotations that
may occur in a CAS. The language deviates from valid XML in order to support queries over
“overlapping” or “cross-over” annotations and other features that affect the interpretation of the
query by the query processor. For example, it admits notations in the query to indicate whether
a keyword or an annotation is optional or required to match a document.

Does UIMA support modalities other than text?
The UIMA architecture supports the development, discovery, composition and deployment of
multi-modal analytics including text, audio and video. Applications that process text, speech
and video have been developed using UIMA. This release of the SDK, however, does not
include examples of these multi-modal applications.
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It does however include documentation and programming examples for using the key feature
required for building multi-modal applications. UIMA supports multiple subjects of analysis
or Sofas. These allow multiple views of a single artifact to be associated with a CAS. For
example, if an artifact is a video stream, one Sofa could be associated with the video frames
and another with the closed-captions text. UIMA's multiple Sofa feature is included and
described in this release of the SDK.

How does UIMA compare to other similar work?
A number of different frameworks for NLP have preceded UIMA. Two of them were
developed at IBM Research and represent UIMA's early roots. For details please refer
to the UIMA article that appears in the IBM Systems Journal Vol. 43, No. 3 (http://
www.research.ibm.com/journal/sj/433/ferrucci.html ).

UIMA has advanced that state of the art along a number of dimensions including: support for
distributed deployments in different middleware environments, easy framework embedding in
different software product platforms (key for commercial applications), broader architectural
converge with its collection processing architecture, support for multiple-modalities, support
for efficient integration across programming languages, support for a modern software
engineering discipline calling out different roles in the use of UIMA to develop applications,
the extensive use of descriptive component metadata to support development tooling,
component discovery and composition. (Please note that not all of these features are available
in this release of the SDK.)

Is UIMA Open Source?
Yes. As of version 2, UIMA development has moved to Apache and is being developed within
the Apache open source processes. It is licensed under the Apache version 2 license. Previous
versions are available on the IBM alphaWorks site ( http://www.alphaworks.ibm.com/tech/
uima) and the source code for previous version of the UIMA framework is available on
SourceForge ( http://uima-framework.sourceforge.net/).

What Java level and OS are required for the UIMA SDK?
As of release 2.2.1, the UIMA SDK requires a Java 1.5 level (or later). Releases prior to 2.2.1
require as a minimum the Java 1.4 level; they will not run on 1.3 (or earlier levels). The release
has been tested with Java 5 and 6. It has been tested on mainly on Windows XP and Linux Intel
32bit platforms, with some testing on the MacOSX. Other platforms and JDK implementations
will likely work, but have not been as significantly tested.

Can I build my UIM application on top of UIMA?
Yes. Apache UIMA is licensed under the Apache version 2 license, enabling you to build and
distribute applications which include the framework.

Do any commercial products support the UIMA framework or include it as part of their
product?

Yes. IBM's WebSphere Information Integration Omnifind Edition product (http://
www.ibm.com/developerworks/db2/zones/db2ii or http://www-306.ibm.com/software/data/
integration/db2ii/editions_womnifind.html ) has UIMA “inside” and supports adding UIMA
annotators to the processing pipeline. We are actively seeking other product embeddings.

http://www.research.ibm.com/journal/sj/433/ferrucci.html
http://www.research.ibm.com/journal/sj/433/ferrucci.html
http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima
http://uima-framework.sourceforge.net/
http://www.ibm.com/developerworks/db2/zones/db2ii
http://www.ibm.com/developerworks/db2/zones/db2ii
http://www-306.ibm.com/software/data/integration/db2ii/editions_womnifind.html
http://www-306.ibm.com/software/data/integration/db2ii/editions_womnifind.html
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Chapter 5. Known Issues
Sun Java 1.4.2_12 doesn't serialize CR characters to XML

(Note: Apache UIMA now requires Java 1.5, so this issue is moot.) The XML serialization
support in Sun Java 1.4.2_12 doesn't serialize CR characters to XML. As a result, if the
document text contains CR characters, XCAS or XMI serialization will cause them to be lost,
resulting in incorrect annotation offsets. This is exposed in the DocumentAnalyzer, with the
highlighting being incorrect if the input document contains CR characters.

JCasGen merge facility only supports Java levels 1.4 or earlier
JCasGen has a facility to merge in user (hand-coded) changes with the code generated by
JCasGen. This merging supports Java 1.4 constructs only. JCasGen generates Java 1.4
compliant code, so as long as any code you change here also only uses Java 1.4 constructs, the
merge will work, even if you're using Java 5 or later. If you use syntactic structures particular
to Java 5 or later, the merge operation will likely fail to merge properly.

Descriptor editor in Eclipse tooling does not work with libgcj 4.1.2
The descriptor editor in the Eclipse tooling does not work with libgcj 4.1.2, and possibly other
versions of libgcj. This is apparently due to a bug in the implementation of their XML library,
which results in a class cast error. libgcj is used as the default JVM for Eclipse in Ubuntu (and
other Linux distributions?). The workaround is to use a different JVM to start Eclipse.
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Glossary: Key Terms & Concepts
Aggregate
Analysis Engine

An Analysis Engine made up of multiple subcomponent Analysis Engines arranged in
a flow. The flow can be one of the two built-in flows, or a custom flow provided by the
user.

Analysis Engine A program that analyzes artifacts (e.g. documents) and infers information about them,
and which implements the UIMA Analysis Engine interface Specification. It does not
matter how the program is built, with what framework or whether or not it contains
component (“sub”) Analysis Engines.

Annotation The association of a metadata, such as a label, with a region of text (or other type of
artifact). For example, the label “Person” associated with a region of text “John Doe”
constitutes an annotation. We say “Person” annotates the span of text from X to Y
containing exactly “John Doe”. An annotation is represented as a special type in a
UIMA type system. It is the type used to record the labeling of regions of a Sofa

Annotator A software component that implements the UIMA annotator interface. Annotators are
implemented to produce and record annotations over regions of an artifact (e.g., text
document, audio, and video).

Application An application is the outer containing code that invokes the UIMA framework
functions to instantiate an Analysis Engine or a Collection Processing Engine from a
particular descriptor, and run it.

Apache UIMA
Java Framework

A Java-based implementation of the UIMA architecture. It provides a run-time
environment in which developers can plug in and run their UIMA component
implementations and with which they can build and deploy UIM applications. The
framework is the core part of the Apache UIMA SDK.

Apache UIMA
Software
Development Kit
(SDK)

The SDK for which you are now reading the documentation. The SDK includes the
framework plus additional components such as tooling and examples. Some of the
tooling is Eclipse-based (http://www.eclipse.org/).

CAS The UIMA Common Analysis Structure is the primary data structure which UIMA
analysis components use to represent and share analysis results. It contains:

• The artifact. This is the object being analyzed such as a text document or audio
or video stream. The CAS projects one or more views of the artifact. Each view
is referred to as a Sofa.

• A type system description – indicating the types, subtypes, and their features.

• Analysis metadata – “standoff” annotations describing the artifact or a region of
the artifact

• An index repository to support efficient access to and iteration over the results
of analysis.

UIMA's primary interface to this structure is provided by a class called the Common
Analysis System. We use “CAS” to refer to both the structure and system. Where
the common analysis structure is used through a different interface, the particular
implementation of the structure is indicated, For example, the JCas is a native Java
object representation of the contents of the common analysis structure.

http://www.eclipse.org/
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A CAS can have multiple views; each view has a unique representation of the artifact,
and has its own index repository, representing results of analysis for that representation
of the artifact.

CAS Consumer A component that receives each CAS in the collection, usually after it has been
processed by an Analysis Engine. It is responsible for taking the results from the CAS
and using them for some purpose, perhaps storing selected results into a database, for
instance. The CAS Consumer may also perform collection-level analysis, saving these
results in an application-specific, aggregate data structure.

CAS Initializer
(deprecated)

Prior to version 2, this was the component that took an undefined input form and
produced a particular Sofa. For version 2, this has been replaced with using any
Analysis Engine which takes a particular CAS View and creates a new output Sofa. For
example, if the document is HTML, an Analysis Engine might create a Sofa which is
a detagged version of an input CAS View, perhaps also creating annotations derived
from the tags. For example <p> tags might be translated into Paragraph annotations in
the CAS.

CAS Multiplier A component, implemented by a UIMA developer, that takes a CAS as input and
produces 0 or more new CASes as output. Common use cases for a CAS Multiplier
include creating alternative versions of an input Sofa (see CAS Initializer), and
breaking a large input CAS into smaller pieces, each of which is emitted as a separate
output CAS. There are other uses, however, such as aggregating input CASes into a
single output CAS.

CAS Processor A component of a Collection Processing Engine (CPE) that takes a CAS as input and
returns a CAS as output. There are two types of CAS Processors: Analysis Engines and
CAS Consumers.

CAS View A CAS Object which shares the base CAS and type system definition and index
specifications, but has a unique index repository and a particular Sofa. Views are
named, and applications and annotators can dynamically create additional views
whenever they are needed. Annotations are made with respect to one view. Feature
structures can have references to feature structures indexed in other views, as needed.

CDE The Component Descriptor Editor. This is the Eclipse tool that lets you conveniently
edit the UIMA descriptors; see Chapter 1, Component Descriptor Editor User's Guide.

Collection
Processing Engine
(CPE)

Performs Collection Processing through the combination of a Collection Reader, 0 or
more Analysis Engines, and zero or more CAS Consumers. The Collection Processing
Manager (CPM) manages the execution of the engine.

The CPE also refers to the XML specification of the Collection Processing engine. The
CPM reads a CPE specification and instantiates a CPE instance from it, and runs it.

Collection
Processing
Manager (CPM)

The part of the framework that manages the execution of collection processing, routing
CASs from the Collection Reader to 0 or more Analysis Engines and then to the 0 or
more CAS Consumers. The CPM provides feedback such as performance statistics and
error reporting and supports other features such as parallelization and error handling.

Collection Reader A component that reads documents from some source, for example a file system or
database. The collection reader initializes a CAS with this document. Each document
is returned as a CAS that may then be processed by an Analysis Engines. If the task of
populating a CAS from the document is complex, you may use an arbitrarily complex
chain of Analysis Engines and have the last one create and initialize a new Sofa.
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Fact Search A search that given a fact pattern, returns facts extracted from a collection of
documents by a set of Analysis Engines that match the fact pattern.

Feature A data member or attribute of a type. Each feature itself has an associated range type,
the type of the value that it can hold. In the database analogy where types are tables,
features are columns. In the world of structured data types, each feature is a “field”, or
data member.

Flow Controller A component which implements the interfaces needed to specify a custom flow within
an Aggregate Analysis Engine.

Hybrid Analysis
Engine

An Aggregate Analysis Engine where more than one of its component Analysis
Engines are deployed the same address space and one or more are deployed remotely
(part tightly and part loosely-coupled).

Index Data in the CAS can only be retrieved using Indexes. Indexes are analogous to
the indexes that are specified on tables of a database. Indexes belong to Index
Repositories; there is one Repository for each view of the CAS. Indexes are specified
to retrieve instances of some CAS Type (including its subtypes), and can be optionally
sorted in a user-definable way. For example, all types derived from the UIMA built-in
type uima.tcas.Annotation contain begin and end features, which mark the begin
and end offsets in the text where this annotation occurs. There is a built-in index of
Annotations that specifies that annotations are retrieved sequentially by sorting first
on the value of the begin feature (ascending) and then by the value of the end feature
(descending). In this case, iterating over the annotations, one first obtains annotations
that come sequentially first in the text, while favoring longer annotations, in the case
where two annotations start at the same offset. Users can define their own indexes as
well.

JCas A Java object interface to the contents of the CAS. This interface use additional
generated Java classes, where each type in the CAS is represented as a Java class with
the same name, each feature is represented with a getter and setter method, and each
instance of a type is represented as a Java object of the corresponding Java class.

Keyword Search The standard search method where one supplies words (or “keywords”) and candidate
documents are returned.

Knowledge Base A collection of data that may be interpreted as a set of facts and rules considered true
in a possible world.

Loosely-Coupled
Analysis Engine

An Aggregate Analysis Engine where no two of its component Analysis Engines run
in the same address space but where each is remote with respect to the others that
make up the aggregate. Loosely coupled engines are ideal for using remote Analysis
Engine services that are not locally available, or for quickly assembling and testing
functionality in cross-language, cross-platform distributed environments. They also
better enable distributed scaleable implementations where quick recoverability may
have a greater impact on overall throughput than analysis speed.

The part of a knowledge base that defines the semantics of the data axiomatically.

PEAR An archive file that packages up a UIMA component with its code, descriptor files and
other resources required to install and run it in another environment. You can generate
PEAR files using utilities that come with the UIMA SDK.

Primitive Analysis
Engine

An Analysis Engine that is composed of a single Annotator; one that has no component
(or “sub”) Analysis Engines inside of it; contrast with Aggregate Analysis Engine.
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Semantic Search search where the semantic intent of the query is specified using one or more entity or
relation specifiers. For example, one could specify that they are looking for a person
(named) “Bush.” Such a query would then not return results about the kind of bushes
that grow in your garden but rather just persons named Bush.

Structured
Information

Items stored in structured resources such as search engine indices, databases or
knowledge bases. The canonical example of structured information is the database
table. Each element of information in the database is associated with a precisely
defined schema where each table column heading indicates its precise semantics,
defining exactly how the information should be interpreted by a computer program or
end-user.

Subject of Analysis
(Sofa)

A piece of data (e.g., text document, image, audio segment, or video segment), which
is intended for analysis by UIMA analysis components. It belongs to a CAS View
which has the same name; there is a one-to-one correspondence between these.
There can be multiple Sofas contained within one CAS, each one representing a
different view of the original artifact – for example, an audio file could be the original
artifact, and also be one Sofa, and another could be the output of a voice-recognition
component, where the Sofa would be the corresponding text document. Sofas may be
analyzed independently or simultaneously; they all co-exist within the CAS.

Tightly-Coupled
Analysis Engine

An Aggregate Analysis Engine where all of its component Analysis Engines run in the
same address space.

Type A specification of an object in the CAS used to store the results of analysis. Types
are defined using inheritance, so some types may be defined purely for the sake of
defining other types, and are in this sense “abstract types.” Types usually contain
Features, which are attributes, or properties of the type. A type is roughly equivalent to
a class in an object oriented programming language, or a table in a database. Instances
of types in the CAS may be indexed for retrieval.

Type System A collection of related types. All components that can access the CAS, including
Applications, Analysis Engines, Collection Readers, Flow Controllers, or CAS
Consumers declare the type system that they use. Type systems are shared across
Analysis Engines, allowing the outputs of one Analysis Engine to be read as input
by another Analysis Engine. A type system is roughly analogous to a set of related
classes in object oriented programming, or a set of related tables in a database. The
type system / type / feature terminology comes from computational linguistics.

Unstructured
Information

The canonical example of unstructured information is the natural language text
document. The intended meaning of a document's content is only implicit and its
precise interpretation by a computer program requires some degree of analysis to
explicate the document's semantics. Other examples include audio, video and images.
Contrast with Structured Information.

UIMA UIMA is an acronym that stands for Unstructured Information Management
Architecture; it is a software architecture which specifies component interfaces, design
patterns and development roles for creating, describing, discovering, composing
and deploying multi-modal analysis capabilities. The UIMA specification is being
developed by a technical committee at OASIS1.

UIMA Java
Framework

See Apache UIMA Java Framework.

1 http://www.oasis-open.org/committees/uima

http://www.oasis-open.org/committees/uima
http://www.oasis-open.org/committees/uima
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UIMA SDK See Apache UIMA SDK.

XCAS An XML representation of the CAS. The XCAS can be used for saving and restoring
CASs to and from streams. The UIMA SDK provides XCAS serialization and de-
serialization methods for CASes. This is an older serialization format and new UIMA
code should use the standard XMI format instead.

XML Metadata
Interchange (XMI)

An OMG standard for representing object graphs in XML, which UIMA uses to
serialize analysis results from the CAS to an XML representation. The UIMA SDK
provides XMI serialization and de-serialization methods for CASes
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