
Apache uimaFIT™ Guide and Reference
Written and maintained by the Apache

UIMA™ Development Community

Version 2.0.0

Copyright © 2012, 2013 The Apache Software Foundation

License and Disclaimer. The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such terms in this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date August, 2013

http://www.apache.org/licenses/LICENSE-2.0

Apache uimaFIT™ Guide and Reference iii

Table of Contents
1. Introduction .. 1

1.1. Simplify Component Implementation .. 1
1.2. Simplify Component Instantiation ... 1

1.2.1. From a class .. 1
1.2.2. From an XML descriptor .. 2

1.3. Is this cheating? ... 2
1.4. Conclusion ... 3

2. Getting Started .. 5
2.1. Adding uimaFIT to your project ... 5

2.1.1. Maven users .. 5
2.1.2. Non-Maven users ... 5

2.2. A simple analysis engine implementation .. 5
2.3. Running the analysis engine ... 6
2.4. Generate a descriptor file ... 6

3. Pipelines .. 9
4. Running Experiments ... 11
5. CAS Utilities .. 13

5.1. Access methods .. 13
6. Configuration Parameters ... 15
7. External Resources .. 19

7.1. Resource injection ... 19
7.1.1. Regular UIMA components ... 19
7.1.2. uimaFIT-aware components ... 20
7.1.3. Resources extending Resource_ImplBase .. 21
7.1.4. Resources implementing SharedResourceObject ... 22
7.1.5. Note on injecting resources into resources ... 22

7.2. Resource locators .. 23
8. Type System Detection .. 25

8.1. Making types auto-detectable ... 25
8.2. Using type auto-detection ... 25
8.3. Multiple META-INF/org.apache.uima.fit/types.txt files .. 26
8.4. Performance note and caching .. 26
8.5. Potential problems .. 26

8.5.1. m2eclipse fails to copy descriptors to target/classes 27
8.5.2. Class version conflicts .. 27
8.5.3. Classes and resources in the default package .. 27

9. uimaFIT Maven Plugin .. 29
9.1. enhance goal .. 29
9.2. generate goal .. 30

10. Migration Guide .. 33
10.1. Version 1.4.0 to 2.0.0 .. 33

10.1.1. Changes ... 33
10.1.2. Legacy support module ... 34

Introduction 1

Chapter 1. Introduction
While uimaFIT provides many features for a UIMA developer, there are two overarching themes
that most features fall under. These two sides of uimaFIT are,while complementary, largely
independent of each other. One of the beauties of uimaFIT is that a developer that uses one side of
uimaFIT extensively is not required to use the other side at all.

1.1. Simplify Component Implementation
The first broad theme of uimaFIT provides features that simplify component implementation. Our
favorite example of this is the @ConfigurationParameter annotation which allows you to
annotate a member variable as a configuration parameter. This annotation in combination with
the method ConfigurationParameterInitializer.initialize() completely automates
the process of initializing member variables with values from the UimaContext passed into your
analysis engine's initialize method. Similarly, the annotation @ExternalResource annotation in
combination with the method ExternalResourceInitializer.initialize() completely
automates the binding of an external resource as defined in the UimaContext to a member
variable. Dispensing with manually writing the code that performs these two tasks reduces effort,
eliminates verbose and potentially buggy boiler-plate code, and makes implementing a UIMA
component more enjoyable. Consider, for example, a member variable that is of type Locale. With
uimaFIT you can simply annotate the member variable with @ConfigurationParameter and
have your initialize method automatically initialize the variable correctly with a string value in the
UimaContext such as en_US.

1.2. Simplify Component Instantiation
The second broad theme of uimaFIT provides features that simplify component instantiation.
Working with UIMA, have you ever said to yourself “but I just want to tag some text!?” What does
it take to “just tag some text?” Here's a list of things you must do with the traditional approach:

• wrap your tagger as a UIMA analysis engine

• write a descriptor file for your analysis engine

• write a CAS consumer that produces the desired output

• write another descriptor file for the CAS consumer

• write a descriptor file for a collection reader

• write a descriptor file that describes a pipeline

• invoke the Collection Processing Manager with your pipeline descriptor file

1.2.1. From a class
Each of these steps has its own pitfalls and can be rather time consuming. This is a rather
unsatisfying answer to our simple desire to just tag some text. With uimaFIT you can literally
eliminate all of these steps.

Here's a simple snippet of Java code that illustrates “tagging some text” with uimaFIT:

JCas jCas = JCasFactory.createJCas();

From an XML descriptor

2 Introduction Apache uimaFIT™ Version 2.0.0

jCas.setDocumentText("some text");

AnalysisEngine tokenizer = createEngine(MyTokenizer.class);

AnalysisEngine tagger = createEngine(MyTagger.class);

runPipeline(jCas, tokenizer, tagger);

for(Token token : iterate(jCas, Token.class)){
 System.out.println(token.getTag());
}

This code assumes several static method imports (e.g. createEngine()) provided by uimaFIT
for brevity. And while the terseness of this code won't make a Python programmer blush - it is
certainly much easier than the seven steps outlined above!

1.2.2. From an XML descriptor
uimaFIT provides mechanisms to instantiate and run UIMA components programmatically with or
without descriptor files. For example, if you have a descriptor file for your analysis engine defined
by MyTagger (as shown above), then you can instead instantiate the analysis engine with:

AnalysisEngine tagger = createEngine("mypackage.MyTagger");

This will find the descriptor file mypackage/!MyTagger.xml by name. Similarly, you can
find a descriptor file by location with createEngineFromPath(). However, if you want to
dispense with XML descriptor files altogether (and you probably do), you can use the method
createEngine() as shown above. One of the driving motivations for creating the second side of
uimaFIT is our frustration with descriptor files and our desire to eliminate them. Descriptor files are
difficult to maintain because they are generally tightly coupled with java code, they decay without
warning, they are wearisome to test, and they proliferate, among other reasons.

1.3. Is this cheating?
One question that is often raised by new uimaFIT users is whether or not it breaks the UIMA
way. That is, does adopting uimaFIT lead me down a path of creating UIMA components
and systems that are incompatible with the traditional UIMA approach? The answer to this
question is no. For starters, uimaFIT does not skirt the UIMA mechanism of describing
components - it only skips the XML part of it. For example, when the method createEngine()
is called (as shown above) an AnalysisEngineDescription is created for the analysis
engine. This is the same object type that is instantiated when a descriptor file is used. So,
instead of parsing XML to instantiate an analysis engine description from XML, uimaFIT
uses a factory method to instantiate it from method parameters. One of the happy benefits of
this approach is that for a given AnalysisEnginedDescription (which can be obtained
directly with createEngineDescription()) you can generate an XML descriptor file using
AnalysisEngineDescription.toXML(). So, uimaFIT actually provides a very simple and
direct path for generating XML descriptor files rather than manually creating and maintaining
them!

It is also useful to clarify that if you only want to use one side or the other of uimaFIT, then
you are free to do so. This is possible precisely because uimaFIT does not workaround UIMA's
mechanisms for describing components but rather uses them directly. For example, if the only
thing you want to use in uimaFIT is the @ConfigurationParameter, then you can do so

Conclusion

Apache uimaFIT™ Version 2.0.0 Introduction 3

without worrying about what effect this will have on your descriptor files. This is because your
analysis engine will be initialized with exactly the same UimaContext regardless of whether
you instantiate your analysis engine in the UIMA way or use one of uimaFIT's factory methods.
Similarly, a UIMA component does not need to be annotated with @ConfiguratioParameter
for you to make use of the createEngine() method. This is because when you pass
configuration parameter values in to the createEngine() method, they are added to an
AnalysisEngineDescription which is used by UIMA to populate a UimaContext - just as it
would if you used a descriptor file.

1.4. Conclusion
Because uimaFIT can be used to simplify component implementation and instantiation it is easy to
assume that you can't do one without the other. This page has demonstrated that while these two
sides of uimaFIT complement each other, they are not coupled together and each can be effectively
used without the other. Similarly, by understanding how uimaFIT uses the UIMA component
description mechanisms directly, one can be assured that uimaFIT enables UIMA development that
is compatible and consistent with the UIMA standard and APIs.

Getting Started 5

Chapter 2. Getting Started
This quick start tutorial demonstrates how to use uimaFIT to define and set a configuration
parameter in an analysis engine, run it, and generate a descriptor file for it. The complete code for
this example can be found in the uimaFIT-examples module.

2.1. Adding uimaFIT to your project
The following instructions describe how to add uimaFIT to your project's classpath.

2.1.1. Maven users
If you use Maven, then uimaFIT can be added to your project by simply adding uimaFIT as a
project dependency by adding the following snippet of XML to your pom.xml file:

<dependency>
 <groupId>org.apache.uima</groupId>
 <artifactId>uimafit-core</artifactId>
 <version>2.0.0</version>
</dependency>

uimaFIT distributions are hosted by Maven Central and so no repository needs to be added to your
pom.xml file.

2.1.2. Non-Maven users
If you do not build with Maven, then download uimaFIT from the Apache UIMA downloads page1.
The file name should be uimafit-2.0.0-bin.zip. Download and unpack this file. The contents of the
resulting upacked directory will contain a directory called lib. Add all of the files in this directory
to your classpath.

2.2. A simple analysis engine implementation
Here is the complete analysis engine implementation for this example.

public class GetStartedQuickAE
 extends org.apache.uima.fit.component.JCasAnnotator_ImplBase {

 public static final String PARAM_STRING = "stringParam";
 @ConfigurationParameter(name = PARAM_STRING)
 private String stringParam;

 @Override
 public void process(JCas jCas) throws AnalysisEngineProcessException {
 System.out.println("Hello world! Say 'hi' to " + stringParam);
 }
}

The first thing to note is that the member variable stringParam is annotated with
@ConfigurationParameter which tells uimaFIT that this is an analysis engine configuration
parameter. It is best practice to create a public constant for the parameter name, here

1 http://uima.apache.org/downloads.cgi

http://uima.apache.org/downloads.cgi
http://uima.apache.org/downloads.cgi

Running the analysis engine

6 Getting Started Apache uimaFIT™ Version 2.0.0

PARAM_STRING The second thing to note is that we extend uimaFIT's version of the
JCasAnnotator_ImplBase. The initialize method of this super class calls:

ConfigurationParameterInitializer.initializeConfigurationParameters(
 Object, UimaContext)

which populates the configuration parameters with the appropriate contents of the UimaContext.
If you do not want to extend uimaFIT's JCasAnnotator_ImplBase, then you can call this
method directly in the initialize method of your analysis engine or any class that implements
Initializable. You can call this method for an instance of any class that has configuration
parameters.

2.3. Running the analysis engine
The following lines of code demonstrate how to instantiate and run the analysis engine from a main
method:

JCas jCas = JCasFactory.createJCas();

AnalysisEngine analysisEngine = AnalysisEngineFactory.createEngine(
 GetStartedQuickAE.class,
 GetStartedQuickAE.PARAM_STRING, "uimaFIT");

analysisEngine.process(jCas);

In a more involved example, we would probably instantiate a collection reader and run this
analysis engine over a collection of documents. Here, it suffices to simply create a JCas. Line 3
instantiates the analysis engine using AnalysisEngineFactory and sets the string parameter
named stringParam to the value uimaFIT. Running this simple program sends the following
output to the console:

Hello world! Say 'hi' to uimaFIT

Normally you would be using a type system with your analysis components. When using uimaFIT,
it is easiest to keep your type system descriptors in your source folders and make them known to
uimaFIT. To do so, create a file META-INF/org.apache.uima.fit/types.txt in a source
folder and add references to all your type descriptors to the file, one per line. You can also use
wildcards. For example:

classpath*:org/apache/uima/fit/examples/type/Token.xml
classpath*:org/apache/uima/fit/examples/type/Sentence.xml
classpath*:org/apache/uima/fit/examples/tutorial/type/*.xml

2.4. Generate a descriptor file
The following lines of code demonstrate how a descriptor file can be generated using the class
definition:

AnalysisEngine analysisEngine = AnalysisEngineFactory.createEngine(
 GetStartedQuickAE.class,
 GetStartedQuickAE.PARAM_STRING, "uimaFIT");

analysisEngineDescription.toXML(

Generate a descriptor file

Apache uimaFIT™ Version 2.0.0 Getting Started 7

 new FileOutputStream("GetStartedQuickAE.xml"));

If you open the resulting descriptor file you will see that the configuration parameter
stringParam is defined with the value set to uimaFIT. We could now instantiate an analysis
engine using this descriptor file with a line of code like this:

AnalysisEngineFactory.createEngine("GetStartedQuickAE");

But, of course, we really wouldn't want to do that now that we can instantiate analysis engines
using the class definition as was done above!

This chapter, of course, did not demonstrate every feature of uimaFIT which provides support for
annotating external resources, creating aggregate engines, running pipelines, testing components,
among others.

Pipelines 9

Chapter 3. Pipelines
UIMA is a component-based architecture that allows composing various processing components
into a complex processing pipeline. A pipeline typically involves a collection reader which ingests
documents and analysis engines that do the actual processing.

Normally, you would run a pipeline using a UIMA Collection Processing Engine or using UIMA
AS. uimaFIT offers a third alternative that is much simpler to use and well suited for embedding
UIMA pipelines into applications or for writing tests.

As uimaFIT does not supply any readers or processing components, we just assume that we have
written three components:

• TextReader - reads text files from a directory

• Tokenizer - annotates tokens

• TokenFrequencyWriter - writes a list of tokens and their frequency to a file

We create descriptors for all components and run them as a pipeline:

CollectionReaderDescription reader =
 CollectionReaderFactory.createReaderDescription(
 TextReader.class,
 TextReader.PARAM_INPUT, "/home/uimafit/documents");

AnalysisEngineDescription tokenizer =
 AnalysisEngineFactory.createEngineDescription(
 Tokenizer.class);

AnalysisEngineDescription tokenFrequencyWriter =
 AnalysisEngineFactory.createEngineDescription(
 TokenFrequencyWriter.class,
 TokenFrequencyWriter.PARAM_OUTPUT, "counts.txt");

SimplePipeline.runPipeline(reader, tokenizer, writer);

Instead of running the full pipeline end-to-end, we can also process one document at a time and
inspect the analysis results:

CollectionReaderDescription reader =
 CollectionReaderFactory.createReaderDescription(
 TextReader.class,
 TextReader.PARAM_INPUT, "/home/uimafit/documents");

AnalysisEngineDescription tokenizer =
 AnalysisEngineFactory.createEngineDescription(
 Tokenizer.class);

for (JCas jcas : SimplePipeline.iteratePipeline(reader, tokenizer)) {
 System.out.printf("Found %d tokens%n",
 JCasUtil.select(jcas, Token.class).size());
}

Running Experiments 11

Chapter 4. Running Experiments
The uimafit-examples module contains a package org.apache.uima.fit.examples.experiment.pos
which demonstrates a very simple experimental setup for testing a part-of-speech tagger. You may
find this example more accessible if you check out the code from subversion and build it in your
own environment.

The documentation for this example can be found in the code itself. Please refer to
RunExperiment as a starting point. The following is copied from the javadoc comments of that
file:

RunExperiment demonstrates a very common (though simplified) experimental
setup in which gold standard data is available for some task and you want to
evaluate how well your analysis engine works against that data. Here we are
evaluating BaselineTagger which is a (ridiculously) simple part-of-speech
tagger against the part-of-speech tags found in src/main/resources/org/
apache/uima/fit/examples/pos/sample-gold.txt

The basic strategy is as follows:

• post the data as is into the default view,

• parse the gold-standard tokens and part-of-speech tags and put the results into another view
we will call GOLD_VIEW,

• create another view called SYSTEM_VIEW and copy the text and Token annotations from
the GOLD_VIEW into this view,

• run the BaselineTagger on the SYSTEM_VIEW over the copied Token annoations,

• evaluate the part-of-speech tags found in the SYSTEM_VIEW with those in the
GOLD_VIEW.

CAS Utilities 13

Chapter 5. CAS Utilities
uimaFIT facilitates working with the CAS and JCas by offering various convenient methods for
accessing and navigating annotations and feature structures. Additionally, the the convenience
methods for JCas access are fully type-safe and return the JCas type or a collection of the JCas type
which you wanted to access.

5.1. Access methods
uimaFIT supports the following convenience methods for accessing CAS and JCas structures. All
methods respect the UIMA index definitions and return annotations or feature structures in the
order defined by the indexes. Unless the default UIMA index for annotations has been overwritten,
annotations are returned sorted by begin (increasing) and end (decreasing).

• select(cas, type) - fetch all annotations of the given type from the CAS/JCas. Variants
of this method also exist to fetch annotations from a FSList or FSArray.

• selectAll(cas) - fetch all annotations from the CAS or fetch all feature structures from
the JCas.

• selectBetween(type, annotation1, annotation2)* - fetch all annotations
between the given two annotations.

• selectCovered(type, annotation)* - fetch all annotations covered by the given
annotation. If this operation is used intensively, indexCovered(...) should be used to
pre-calculate annotation covering information.

• selectCovering(type, annotation)* - fetch all annotations covering the given
annotation. If this operation is used intensively, indexCovering(...) should be used to
pre-calculate annotation covering information.

• selectByIndex(cas, type, n) - fetch the n-th feature structure of the given type.

• selectSingle(cas, type) - fetch the single feature structure of the given type. An
exception is thrown if there is not exactly one feature structure of the type.

• selectSingleRelative(type, annotation, n)* - fetch a single annotation relative
to the given annotation. A positive n fetches the n-th annotation right of the specified
annotation, while the a negative n fetches to the left.

• selectPreceding(type, annotation, n)* - fetch the n annotations preceding the
given annotation. If there are less then n preceding annotations, all preceding annotations are
returned.

• selectFollowing(type, annotation, n)* - fetch the n annotations following the
given annotation. If there are less then n following annotations, all following annotations are
returned.

Note: For historical reasons, the method marked with * also exist in a version that accepts
a CAS/JCas as the first argument. These may not work as expected when the annoation
arguments provided to the method are from a different CAS/JCas/view. Also, for any
method accepting two annotations, these should come from the same CAS/JCas/view.
In future, the potentially problematic signatures may be deprecated, removed, or throw
exeptions if these conditions are not met.

Access methods

14 CAS Utilities Apache uimaFIT™ Version 2.0.0

Note: You should expect the structures returned by these methods to be backed by the
CAS/JCas contents. In particular, if you remove any feature structures from the CAS while
iterating over these structures may cause failures. For this reason, you should also not hold
on to these structures longer than necessary, as is the case for UIMA FSIterators as
well.

Depending on whether one works with a CAS or JCas, the respective methods are available from
the JCasUtil or CasUtil classes.

JCasUtil expect a JCas wrapper class for the type argument, e.g. select(jcas, Token.class)
and return this type or a collection using this generic type. Any subtypes of the specified type are
returned as well. CasUtil expects a UIMA Type instance. For conveniently getting these, CasUtil
offers the methods getType(CAS, Class<?>) or getType(CAS, String) which fetch a type
either by its JCas wrapper class or by its name.

Unless annotations are specifically required, e.g. because begin/end offsets are required, the
JCasUtil methods can be used to access any feature structure inheriting from TOP, not only
annotations. The CasUtil methods generally work only on annotations. Alternative methods ending
in "FS" are provided for accessing arbitrary feature structures, e.g. selectFS.

Examples:

// CAS version
Type tokenType = CasUtil.getType(cas, "my.Token");
for (AnnotationFS token : CasUtil.select(cas, tokenType)) {
 ...
}

// JCas version
for (Token token : JCasUtil.select(jcas, Token.class)) {
 ...
}

Configuration Parameters 15

Chapter 6. Configuration Parameters
uimaFIT defines the @ConfigurationParameter annotation which can be used to annotate the
fields of an analysis engine or collection reader. The purpose of this annotation is twofold:

• injection of parameters from the UIMA context into fields

• declaration of parameter metadata (mandatory, default value, description) which can be used
to generate XML descriptors

In a regular UIMA component, parameters need to be manually extracted from the UIMA context,
typically requiring a type cast.

class MyAnalysisEngine extends CasAnnotator_ImplBase {
 public static final String PARAM_SOURCE_DIRECTORY = "sourceDirectory";
 private File sourceDirectory;

 public void initialize(UimaContext context)
 throws ResourceInitializationException {

 sourceDirectory = new File((String) context.getConfigParameterValue(
 PARAM_SOURCE_DIRECTORY));
 }
}

The component has no way to declare a default value or to declare if a parameter is optional or
mandatory. In addition, any documentation needs to be maintained in !JavaDoc and in the XML
descriptor for the component.

With uimaFIT, all this information can be declared in the component using the
@ConfigurationParameter annotation.

Table 6.1. @ConfigurationParameter annotation

Parameter Description Default

name parameter name name of annotated field

description description of the parameter

mandatory whether a non-null value must
be specified

true

defaultValue the default value if no value is
specified

class MyAnalysisEngine
 extends org.apache.uima.fit.component.CasAnnotator_ImplBase {

 /**
 * Directory to read the data from.
 */
 public static final String PARAM_SOURCE_DIRECTORY = "sourceDirectory";
 @ConfigurationParameter(name=PARAM_SOURCE_DIRECTORY, defaultValue=".")
 private File sourceDirectory;
}

16 Configuration Parameters Apache uimaFIT™ Version 2.0.0

Note, that it is no longer necessary to implement the initialize() method. uimaFIT takes care
of locating the parameter sourceDirectory in the UIMA context. It recognizes that the File
class has a String constructor and uses that to instantiate a new File object from the parameter.
A parameter is mandatory unless specified otherwise. If a mandatory parameter is not specified in
the context, an exception is thrown.

The defaultValue is used when generating an UIMA component description from the class.
It should be pointed out in particular, that uimaFIT does not make use of the default value when
injecting parameters into fields. For this reason, it is possible to have a parameter that is mandatory
but does have a default value. The default value is used as a parameter value when a component
description is generated via the uimaFIT factories unless a parameter is specified in the factory
call. If a component description in created manually without specifying a value for a mandatory
parameter, uimaFIT will generate an exception.

Note: You can use the enhance goal of the uimaFIT Maven plugin to pick up the
parameter description from the JavaDoc and post it to the description field of the
@ConfigurationParameter annotation. This should be preferred to specifying the
description explicitly as part of the annotation.

The parameter injection mechanism is implemented in the
ConfigurationParameterInitializer class. uimaFIT provides several base classes that
already come with an initialize() method using the initializer:

• CasAnnotator_ImplBase`

• CasCollectionReader_ImplBase

• CasConsumer_ImplBase

• CasFlowController_ImplBase

• CasMultiplier_ImplBase

• JCasAnnotator_ImplBase

• JCasCollectionReader_ImplBase

• JCasConsumer_ImplBase

• JCasFlowController_ImplBase

• JCasMultiplier_ImplBase

• Resource_ImplBase

The ConfigurationParameterInitializer can also be used with shared resources:

class MySharedResourceObject implements SharedResourceObject {
 public static final String PARAM_VALUE = "Value";
 @ConfigurationParameter(name = PARAM_VALUE, mandatory = true)
 private String value;

 public void load(DataResource aData)
 throws ResourceInitializationException {

 ConfigurationParameterInitializer.initialize(this, aData);
 }

Apache uimaFIT™ Version 2.0.0 Configuration Parameters 17

}

Fields that can be annotated with the @ConfigurationParameter annotation are any array or
collection types of primitive types (int, boolean, float, double), any enum types, any types that
define a constructor accepting a single String (e.g. File), as well as, fields of the types Pattern
and Locale.

External Resources 19

Chapter 7. External Resources
An analysis engine often uses some data model. This may be as simple as word frequency counts
or as complex as the model of a parser. Often these models can become quite large. If an analysis
engine is deployed multiple times in the same pipeline or runs on multiple CPU cores, memory
can be saved by using a shared instance of the data model. UIMA supports such a scenario by so-
called external resources. The following sections illustrates how external resources can be used
with uimaFIT.

First create a class for the shared data model. Usually this class would load its data from some URI
and then expose it via its methods. An example would be to load word frequency counts and to
provide a getFrequency() method. In our simple example we do not load anything from the
provided URI - we just offer a method to get the URI from which data be loaded.

// Simple model that only stores the URI it was loaded from. Normally data
// would be loaded from the URI instead and made accessible through methods
// in this class. This simple example only allows accessing the URI.
public static final class SharedModel implements SharedResourceObject {
 private String uri;

 public void load(DataResource aData)
 throws ResourceInitializationException {

 uri = aData.getUri().toString();
 }

 public String getUri() { return uri; }
}

7.1. Resource injection

7.1.1. Regular UIMA components

When an external resource is used in a regular UIMA component, it is usually fetched from the
context, cast and copied to a class member variable.

class MyAnalysisEngine extends CasAnnotator_ImplBase {
 final static String MODEL_KEY = "Model";
 private SharedModel model;

 public void initialize(UimaContext context)
 throws ResourceInitializationException {

 configuredResource = (SharedModel)
 getContext().getResourceObject(MODEL_KEY);
 }
}

uimaFIT can be used to inject external resources into such traditional components using the
createDependencyAndBind() method. To show that this works with any off-the-shelf UIMA
component, the following example uses uimaFIT to configure the OpenNLP Tokenizer:

// Create descriptor
AnalysisEngineDescription tokenizer = createEngineDescription(

uimaFIT-aware components

20 External Resources Apache uimaFIT™ Version 2.0.0

 Tokenizer.class,
 UimaUtil.TOKEN_TYPE_PARAMETER, Token.class.getName(),
 UimaUtil.SENTENCE_TYPE_PARAMETER, Sentence.class.getName());

// Create the external resource dependency for the model and bind it
createDependencyAndBind(tokenizer, UimaUtil.MODEL_PARAMETER,
 TokenizerModelResourceImpl.class,
 "http://opennlp.sourceforge.net/models-1.5/en-token.bin");

7.1.2. uimaFIT-aware components

uimaFIT provides the @ExternalResource annotation to inject external resources directly into
class member variables.

Table 7.1. @ExternalResource annotation

Parameter Description Default

key Resource key field name

api Used when the external
resource type is different from
the field type, e.g. when using
an ExternalResourceLocator

field type

mandatory Whether a value must be
specified

true

// Example annotator that uses the SharedModel. In the process() we only
// test if the model was properly initialized by uimaFIT
public static class Annotator
 extends org.apache.uima.fit.component.JCasAnnotator_ImplBase {

 final static String MODEL_KEY = "Model";
 @ExternalResource(key = MODEL_KEY)
 private SharedModel model;

 public void process(JCas aJCas) throws AnalysisEngineProcessException {
 assertTrue(model.getUri().endsWith("gene_model_v02.bin"));
 // Prints the instance ID to the console - this proves the same
 // instance of the SharedModel is used in both Annotator instances.
 System.out.println(model);
 }
}

Note, that it is no longer necessary to implement the initialize() method. uimaFIT takes care
of locating the external resource Model in the UIMA context and assigns it to the field model. If a
mandatory resource is not present in the context, an exception is thrown.

The resource injection mechanism is implemented in the ExternalResourceInitializer class.
uimaFIT provides several base classes that already come with an initialize() method using the
initializer:

• CasAnnotator_ImplBase

• CasCollectionReader_ImplBase

Resources extending Resource_ImplBase

Apache uimaFIT™ Version 2.0.0 External Resources 21

• CasConsumer_ImplBase

• CasFlowController_ImplBase

• CasMultiplier_ImplBase

• JCasAnnotator_ImplBase

• JCasCollectionReader_ImplBase

• JCasConsumer_ImplBase

• JCasFlowController_ImplBase

• JCasMultiplier_ImplBase

• Resource_ImplBase

When building a pipeline, external resources can be set of a component just like configuration
parameters. External resources and configuration parameters can be mixed and appear in any order
when creating a component description.

Note that in the following example, we create only one external resource description and use it
to configure two different analysis engines. Because we only use a single description, also only a
single instance of the external resource is created and shared between the two engines.

ExternalResourceDescription extDesc = createExternalResourceDescription(
 SharedModel.class, new File("somemodel.bin"));

// Binding external resource to each Annotator individually
AnalysisEngineDescription aed1 = createEngineDescription(
 Annotator.class,
 Annotator.MODEL_KEY, extDesc);

AnalysisEngineDescription aed2 = createEngineDescription(
 Annotator.class,
 Annotator.MODEL_KEY, extDesc);

// Check the external resource was injected
AnalysisEngineDescription aaed = createEngineDescription(aed1, aed2);
AnalysisEngine ae = createEngine(aaed);
ae.process(ae.newJCas());

This example is given as a full JUnit-based example in the the uimaFIT-examples project.

7.1.3. Resources extending Resource_ImplBase
One kind of resources extend Resource_ImplBase. These are the easiest to handle, because
uimaFIT's version of Resource_ImplBase already implements the necessary logic. Just be sure to
call super.initialize() when overriding initialize(). Also mind that external resources
are not available yet when initialize() is called. For any initialization logic that requires
resources, override and implement afterResourcesInitialized(). Other than that, injection
of external resources works as usual.

public static class ChainableResource extends Resource_ImplBase {
 public final static String PARAM_CHAINED_RESOURCE = "chainedResource";
 @ExternalResource(key = PARAM_CHAINED_RESOURCE)

Resources implementing SharedResourceObject

22 External Resources Apache uimaFIT™ Version 2.0.0

 private ChainableResource chainedResource;

 public void afterResourcesInitialized() {
 // init logic that requires external resources
 }
}

7.1.4. Resources implementing SharedResourceObject
The other kind of resources implement SharedResourceObject. Since this is an interface,
uimaFIT cannot provide the initialization logic, so you have to implement a couple of things in the
resource:

• implement ExternalResourceAware

• declare a configuration parameter ExternalResourceFactory.PARAM_RESOURCE_NAME
and return its value in getResourceName()

• invoke ConfigurationParameterInitializer.initialize() in the load()
method.

Again, mind that external resource not properly initialized until uimaFIT invokes
afterResourcesInitialized().

public class TestSharedResourceObject implements
 SharedResourceObject, ExternalResourceAware {

 @ConfigurationParameter(name=ExternalResourceFactory.PARAM_RESOURCE_NAME)
 private String resourceName;

 public final static String PARAM_CHAINED_RESOURCE = "chainedResource";
 @ExternalResource(key = PARAM_CHAINED_RESOURCE)
 private ChainableResource chainedResource;

 public String getResourceName() {
 return resourceName;
 }

 public void load(DataResource aData)
 throws ResourceInitializationException {

 ConfigurationParameterInitializer.initialize(this, aData);
 // rest of the init logic that does not require external resources
 }

 public void afterResourcesInitialized() {
 // init logic that requires external resources
 }
}

7.1.5. Note on injecting resources into resources
Nested resources are only initialized if they are used in a pipeline which contains at least one
component that calls ConfigurationParameterInitializer.initialize(). Any
component extending uimaFIT's component base classes qualifies. If you use nested resources in a
pipeline without any uimaFIT-aware components, you can just add uimaFIT's NoopAnnotator to
the pipeline.

Resource locators

Apache uimaFIT™ Version 2.0.0 External Resources 23

7.2. Resource locators
Normally, in UIMA an external resource needs to implement either SharedResourceObject
or Resource. In order to inject arbitrary objects, uimaFIT has the concept of
ExternalResourceLocator. When a resource implements this interface, not the resource itself
is injected, but the method getResource() is called on the resource and the result is injected. The
following example illustrates how to inject an object from JNDI into a UIMA component:

class MyAnalysisEngine2 extends JCasAnnotator_ImplBase {
 static final String RES_DICTIONARY = "dictionary";
 @ExternalResource(key = RES_DICTIONARY)
 Dictionary dictionary;
}

AnalysisEngineDescription desc = createEngineDescription(
 MyAnalysisEngine2.class);

bindResource(desc, MyAnalysisEngine2.RES_DICTIONARY,
 JndiResourceLocator.class,
 JndiResourceLocator.PARAM_NAME, "dictionaries/german");

Type System Detection 25

Chapter 8. Type System Detection
UIMA requires that types that are used in the CAS are defined in XML files - so-called type system
descriptions (TSD). Whenever a UIMA component is created, it must be associated with such a
type system. While it is possible to manually load the type system descriptors and pass them to
each UIMA component and to each created CAS, it is quite inconvenient to do so. For this reason,
uimaFIT supports the automatic detection of such files in the classpath. Thus is becomes possible
for a UIMA component provider to have component's type automatically detected and thus the
components becomes immediately usable by adding it to the classpath.

8.1. Making types auto-detectable
The provider of a type system should create a file META-INF/org.apache.uima.fit/
types.txt in the classpath. This file should define the locations of the type system descriptions.
Assume that a type org.apache.uima.fit.type.Token is specified in the TSD org/apache/
uima/fit/type/Token.xml, then the file should have the following contents:

classpath*:org/apache/uima/fit/type/Token.xml

To specify multiple TSDs, add additonal lines to the file. If you have a large number of TSDs,
you may prefer to add a pattern. Assume that we have a large number of TSDs under org/
apache/uima/fit/type, we can use the following pattern which recursively scans the package
org.apache.uima.fit.type and all sub-packages for XML files and tries to load them as TSDs.

classpath*:org/apache/uima/fit/type/**/*.xml

Try to design your packages structure in a way that TSDs and JCas wrapper classes generated from
them are separate from the rest of your code.

If it is not possible or inconvenient to add the `types.txt` file, patterns can also be specified using
the system property org.apache.uima.fit.type.import_pattern. Multiple patterns may be
specified separated by semicolon1:

-Dorg.apache.uima.fit.type.import_pattern=\
 classpath*:org/apache/uima/fit/type/**/*.xml

8.2. Using type auto-detection
The auto-detected type system can be obtained from the TypeSystemDescriptionFactory:

TypeSystemDescription tsd =
 TypeSystemDescriptionFactory.createTypeSystemDescription()

Popular factory methods also support auto-detection:

AnalysisEngine ae = createEngine(MyEngine.class);

1The \ in the example is used as a line-continuation indicator. It and all spaces following it should be ommitted.

Multiple META-INF/org.apache.uima.fit/types.txt files

26 Type System Detection Apache uimaFIT™ Version 2.0.0

8.3. Multiple META-INF/org.apache.uima.fit/types.txt
files

uimaFIT supports multiple `types.txt` files in the classpath (e.g. in differnt JARs). The types.txt
files are located via Spring using the classpath search pattern:

TYPE_MANIFEST_PATTERN = "classpath*:META-INF/org.apache.uima.fit/types.txt"

This resolves to a list URLs pointing to ALL types.txt files. The resolved URLs are unique and
will point either to a specific point in the file system or into a specific JAR. These URLs can be
handled by the standard Java URL loading mechanism. Example:

jar:/path/to/syntax-types.jar!/META-INF/org.apache.uima.fit/types.txt
jar:/path/to/token-types.jar!/META-INF/org.apache.uima.fit/types.txt

uimaFIT then reads all patters from all of these URLs and uses these to search the classpath again.
The patterns now resolve to a list of URLs pointing to the individual type system XML descriptors.
All of these URLs are collected in a set to avoid duplicate loading (for performance optimization
- not strictly necessary because the UIMA type system merger can handle compatible duplicates).
Then the descriptors are loaded into memory and merged using the standard UIMA type system
merger (CasCreationUtils.mergeTypeSystems()). Example:

jar:/path/to/syntax-types.jar!/desc/types/Syntax.xml
jar:/path/to/token-types.jar!/org/foobar/typesystems/Tokens.xml

Voilá, the result is a type system covering all types could be found in the classpath.

It is recommended

1. to put type system descriptors into packages resembling a namespace you "own" and to use
a package-scoped wildcard search

classpath*:org/apache/uima/fit/type/**/*.xml`

2. or when putting descriptors into a "well-known" package like desc.type, that types.txt
file should explicitly list all type system descriptors instead of using a wildcard search

classpath*:desc/type/Token.xml
classpath*:desc/type/Syntax.xml

Method 1 should be preferred. Both methods can be mixed.

8.4. Performance note and caching
Currently uimaFIT evaluates the patterns for TSDs once and caches the locations,
but not the actual merged type system description. A rescan can be forced using
TypeSystemDescriptionFactory.forceTypeDescriptorsScan(). This may change in
future.

8.5. Potential problems
The mechanism works fine. However, there are specific issues with Java in general that one should
be aware of.

m2eclipse fails to copy descriptors to target/classes

Apache uimaFIT™ Version 2.0.0 Type System Detection 27

8.5.1. m2eclipse fails to copy descriptors to target/classes
There seems to be a bug in some older versions of m2eclipse that causes resources not always to be
copied to target/classes. If UIMA complains about type definitions missing at runtime, try to
clean/rebuild your project and carefully check the m2eclipse console in the console view for error
messages that might cause m2eclipse to abort.

8.5.2. Class version conflicts
A problem can occur if you end up having multiple incompatible versions of the same type system
in the classpath. This is a general problem and not related to the auto-detection feature. It is the
same as when you have incompatible version of a particular class (e.g. JCas wrapper or some
third-party-library) in the classpath. The behavior of the Java Classloader is undefined in that case.
The detection will do its best to try and load everything it can find, but the UIMA type system
merger may barf or you may end up with undefined behavior at runtime because one of the class
versions is used at random.

8.5.3. Classes and resources in the default package
It is bad practice to place classes into the default (unnamed) package. In fact it is not possible to
import classes from the default package in another class. Similarly it is a bad idea to put resources
at the root of the classpath. The Spring documentation on resources explains this in detail2.

For this reason the types.txt resides in /META-INF/org.apache.uima.fit and it is suggest
that type system descriptors reside either in a proper package like /org/foobar/typesystems/
XXX.xml or in /desc/types/XXX.xml.

2 http://static.springsource.org/spring/docs/3.0.x/reference/resources.html#resources-app-ctx-wildcards-in-resource-paths

http://static.springsource.org/spring/docs/3.0.x/reference/resources.html#resources-app-ctx-wildcards-in-resource-paths
http://static.springsource.org/spring/docs/3.0.x/reference/resources.html#resources-app-ctx-wildcards-in-resource-paths

uimaFIT Maven Plugin 29

Chapter 9. uimaFIT Maven Plugin
uimaFIT dynamically generates UIMA component descriptions from annotations in the Java source
code. The uimaFIT Maven plugin provides the ability to automatically create such annotations
in already compiled classes and to automatically generate XML descriptors from the annotated
classes.

9.1. enhance goal
The goal enhance allows automatically augmenting compiled classes with uimaFIT annotations.
Information like vendor, copyright, or version can be obtained from the Maven POM. Additionally,
descriptions for parameters and components can be generated from Javadoc comments. Existing
annotations are not overwritten unless forced.

<plugin>
 <groupId>org.apache.uima</groupId>
 <artifactId>uimafit-maven-plugin</artifactId>
 <version>2.0.0</version> <!-- change to latest version -->
 <configuration>
 <!-- OPTIONAL -->
 <!-- Override component description in generated descriptors. -->
 <overrideComponentDescription>false</overrideComponentDescription>

 <!-- OPTIONAL -->
 <!-- Override version in generated descriptors. -->
 <overrideComponentVersion>false</overrideComponentVersion>

 <!-- OPTIONAL -->
 <!-- Override vendor in generated descriptors. -->
 <overrideComponentVendor>false</overrideComponentVendor>

 <!-- OPTIONAL -->
 <!-- Override copyright in generated descriptors. -->
 <overrideComponentCopyright>false</overrideComponentCopyright>

 <!-- OPTIONAL -->
 <!-- Version to use in generated descriptors. -->
 <componentVersion>${project.version}</componentVersion>

 <!-- OPTIONAL -->
 <!-- Vendor to use in generated descriptors. -->
 <componentVendor>Apache Foundation</componentVendor>

 <!-- OPTIONAL -->
 <!-- Copyright to use in generated descriptors. -->
 <componentCopyright>Apache Foundation 2013</componentCopyright>

 <!-- OPTIONAL -->
 <!-- Source file encoding. -->
 <encoding>${project.build.sourceEncoding}</encoding>

 <!-- OPTIONAL -->
 <!-- Generate a report of missing meta data in
 $project.build.directory/uimafit-missing-meta-data-report.txt -->
 <generateMissingMetaDataReport>true</generateMissingMetaDataReport>

 <!-- OPTIONAL -->
 <!-- Fail on missing meta data. This setting has no effect unless

generate goal

30 uimaFIT Maven Plugin Apache uimaFIT™ Version 2.0.0

 generateMissingMetaDataReport is enabled. -->
 <failOnMissingMetaData>false</failOnMissingMetaData>

 <!-- OPTIONAL -->
 <!-- Constant name prefixes used for parameters and external resources,
 e.g. "PARAM_". -->
 <parameterNameConstantPrefixes>
 <prefix>PARAM_<prefix/>
 </parameterNameConstantPrefixes>

 <!-- OPTIONAL -->
 <!-- Fail on missing meta data. This setting has no effect unless
 generateMissingMetaDataReport is enabled. -->
 <externalResourceNameConstantPrefixes>
 <prefix>KEY_<prefix/>
 <prefix>RES_<prefix/>
 </externalResourceNameConstantPrefixes>
 </configuration>
 <executions>
 <execution>
 <id>default</id>
 <phase>process-classes</phase>
 <goals>
 <goal>enhance</goal>
 </goals>
 </execution>
 </executions>
</plugin>

When generating descriptions for configuration parameters or external resources, the plugin
supports a common practice of placing the Javadoc on a constant field instead of the parameter or
external resource field. Per default, parameter name constants must be prefixed with PARAM_ and
external resource key constants must be prefixed with RES_ or KEY_.

/**
 * Enable or disable my feature.
 */
public static final String PARAM_ENABLE_FEATURE = "enableFeature";
@ConfigurationParameter(name=PARAM_ENABLE_FEATURE)
private boolean enableFeature;

/**
 * My external resource.
 */
public static final String RES_MY_RESOURCE = "resource";
@ExternalResource(key=RES_MY_RESOURCE)
private MyResource resource;

By enabling generateMissingMetaDataReport, the build can be made to fail if meta data such
as parameter descriptions are missing. A report about the missing data is generated in uimafit-
missing-meta-data-report.txt in the project build directory.

9.2. generate goal
The generate goal generates XML component descriptors for UIMA components.

<plugin>
 <groupId>org.apache.uima</groupId>
 <artifactId>uimafit-maven-plugin</artifactId>

generate goal

Apache uimaFIT™ Version 2.0.0 uimaFIT Maven Plugin 31

 <version>2.0.0</version> <!-- change to latest version -->
 <configuration>
 <!-- OPTIONAL -->
 <!-- Path where the generated resources are written. -->
 <outputDirectory>
 ${project.build.directory}/generated-sources/uimafit
 </outputDirectory>

 <!-- OPTIONAL -->
 <!-- Skip generation of META-INF/org.apache.uima.fit/components.txt -->
 <skipComponentsManifest>false</skipComponentsManifest>

 <!-- OPTIONAL -->
 <!-- Source file encoding. -->
 <encoding>${project.build.sourceEncoding}</encoding>
 </configuration>
 <executions>
 <execution>
 <id>default</id>
 <phase>process-classes</phase>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
</plugin>

In addition to the XML descriptors, a manifest file is written to META-INF/
org.apache.uima.fit/components.txt. This file can be used to conveniently locate the
XML descriptors, which are written in the packages next to the classes they describe.

classpath*:org/apache/uima/fit/examples/ExampleComponent.xml

It is recommended to use both, the enhance and the generate goal. Both goals should be specified in
the same execution, first enhance, then generate:

<execution>
 <id>default</id>
 <phase>process-classes</phase>
 <goals>
 <goal>enhance</goal>
 <goal>generate</goal>
 </goals>
</execution>

Migration Guide 33

Chapter 10. Migration Guide
This section provides helpful information on incompatible chanes between versions.

10.1. Version 1.4.0 to 2.0.0

10.1.1. Changes
Backwards compatibility. Compatibility with legacy annotation is provided by the Legacy
support module.

Change of Maven groupId and artifactId. The Maven group ID has changed from
org.uimafit to org.apache.uima.

The artifact ID of the main uimaFIT artifact has been changed from uimafit to uimafit-core.

Change of package names. The base package has been renamed from org.uimafit to
org.apache.uima.fit. A global search/replace on Java files with for lines starting with import
org.uimafit and replacing that with import org.apache.uima.fit should work.

Version requirements. Depends on UIMA 2.4.2.

@ConfigurationParameter. The default value for the mandatory attribute
now is true. The default name of configuration parameters is now the name
of the annotated field only. The classname is no longer prefixed. The method
ConfigurationParameterFactory.createConfigurationParameterName() that was
used to generate the prefixed name has been removed.

Type detection: META-INF/org.uimafit folder. The META-INF/org.uimafit was renamed
to META-INF/org.apache.uima.fit.

JCasUtil. The deprecated JCasUtil.iterate() methods have been removed.
JCasUtil.select() should be used instead.

AnalysisEngineFactory. All createAggregateXXX and createPrimitiveXXX methods
have been renamed to createEngineXXX. The old names are deprecated and will be removed in
future versions.

All createAnalysisEngineXXX methods have been renamed to createEngineXXX. The old
names are deprecated and will be removed in future versions.

CollectionReaderFactory. All createDescriptionXXX methods have been renamed to
createReaderDescriptionXXX. The old names are deprecated and will be removed in future
versions.

All createCollectionReaderXXX methods have been renamed to createReaderXXX. The old
names are deprecated and will be removed in future versions.

JCasIterable. JCasIterable now only accepts reader and engine descriptions (no instances)
and no longer implements the Iterator interface. Instead, new JCasIterator has been added,
which replaces JCasIterable in that respect.

CasDumpWriter. org.uimafit.component.xwriter.CASDumpWriter has been renamed
to org.apache.uima.fit.component.CasDumpWriter.

Legacy support module

34 Migration Guide Apache uimaFIT™ Version 2.0.0

CpePipeline. CpePipeline has been moved to a separate module with the artifact ID
uimafit-cpe to reduce the dependencies incurred by the main uimaFIT artifact.

XWriter removed. The XWriter and associated file namers have been removed as they were
much more complex then acutally needed. As an alternative, CasIOUtil has been introduced
providing several convenience methods to read/write JCas/CAS data.

JCasFactory. Methods only loading JCas data have been removed from JCasFactory. The
new methods in CasIOUtil can be used instead.

10.1.2. Legacy support module
The compatibility layer should allow you to migrate to uimaFIT 2.0.0 without breaking anything.
You should then be able to gradually change the codebase to be compatible with uimaFIT 2.0.0. As
far as my tests go, uimaFIT 1.x and 2.0.0 can coexist peacefully on the classpath (and indeed both
need to be on the classpath in order to use the legacy support module).

To enable the legacy support, make sure that you have a dependency on uimaFIT 1.x and then just
add a dependency on the legacy module:

<dependency>
 <groupId>org.uimafit</groupId>
 <artifactId>uimafit</artifactId>
 <version>1.4.0</version>
</dependency>
<dependency>
 <groupId>org.apache.uima</groupId>
 <artifactId>uimafit-legacy-support</artifactId>
 <version>2.0.0</version>
</dependency>

uimaFIT 2.x automatically detects the presence of the legacy module and uses it - no additional
configuration is necessary.

	Apache uimaFIT™ Guide and Reference
	Table of Contents
	Chapter 1. Introduction
	1.1. Simplify Component Implementation
	1.2. Simplify Component Instantiation
	1.2.1. From a class
	1.2.2. From an XML descriptor

	1.3. Is this cheating?
	1.4. Conclusion

	Chapter 2. Getting Started
	2.1. Adding uimaFIT to your project
	2.1.1. Maven users
	2.1.2. Non-Maven users

	2.2. A simple analysis engine implementation
	2.3. Running the analysis engine
	2.4. Generate a descriptor file

	Chapter 3. Pipelines
	Chapter 4. Running Experiments
	Chapter 5. CAS Utilities
	5.1. Access methods

	Chapter 6. Configuration Parameters
	Chapter 7. External Resources
	7.1. Resource injection
	7.1.1. Regular UIMA components
	7.1.2. uimaFIT-aware components
	7.1.3. Resources extending Resource_ImplBase
	7.1.4. Resources implementing SharedResourceObject
	7.1.5. Note on injecting resources into resources

	7.2. Resource locators

	Chapter 8. Type System Detection
	8.1. Making types auto-detectable
	8.2. Using type auto-detection
	8.3. Multiple META-INF/org.apache.uima.fit/types.txt files
	8.4. Performance note and caching
	8.5. Potential problems
	8.5.1. m2eclipse fails to copy descriptors to target/classes
	8.5.2. Class version conflicts
	8.5.3. Classes and resources in the default package

	Chapter 9. uimaFIT Maven Plugin
	9.1. enhance goal
	9.2. generate goal

	Chapter 10. Migration Guide
	10.1. Version 1.4.0 to 2.0.0
	10.1.1. Changes
	10.1.2. Legacy support module

