
DUCC Installation and Verification

Excerpt From Complete DUCC Documentation

Written and maintained by the Apache
UIMATMDevelopment Community

Copyright c© 2012 The Apache Software Foundation

Copyright c© 2012 International Business Machines Corporation

License and Disclaimer The ASF licenses this documentation to you under the Apache License, Version
2.0 (the ”License”); you may not use this documentation except in compliance with the License. You may
obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents are distributed
under the License on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and limitations under
the License.

Trademarks All terms mentioned in the text that are known to be trademarks or service marks have been
appropriately capitalized. Use of such terms in this book should not be regarded as affecting the validity of
the the trademark or service mark.

Publication date: August 2015

1

http://www.apache.org/licenses/LICENSE-2.0

Overview

DUCC is a multi-user, multi-system distributed application. The instuctions below follow a staged installation/verification
methodology, roughly as follows:

• Single system installation.

• Add new machines to DUCC control.

• Enable processes to run with the credentials of multiple submitting user. This step requires root authority on
one or more machines.

• Enable CGroup containers. This step requires root authority on every DUCC machine.

DUCC is distributed as a compressed tar file. The instructions below assume installation from one of this distribution
media. If building from source, the build creates this file in your svn trunk/target directory. The distribution file is
in the form

uima-ducc-[version]-bin.tar.gz

where [version] is the DUCC version; for example, uima-ducc-VERSION-bin.tar.gz (where VERSION is the current
DUCC version). This document will refer to the distribution file as the “<distribution.file>”.

Software Prerequisites

Single system installation:

• Reasonably current Linux. DUCC has been tested on SLES 11.x and RHEL 6.x

Note: On some systems the default user limits for max user processes (ulimit -u) and nfiles (ulimit -n) are
defined too low for DUCC. The shell login profile for user ducc should set the soft limit for max user processes
to be the same as the hard limit (ulimit -u ‘ulimit -Hu‘), and the nfiles limit raised above 1024 to at least twice
the number of user processes running on the cluster.

• Python 2.x, where ’x’ is 4 or greater. DUCC has not been tested on Python 3.x.

• Java 7. DUCC has been tested and run using IBM and Oracle JDK 1.7.

• Passwordless ssh for user running DUCC

Additional requirements for multiple system installation:

• All systems must have a shared filesystem (such as NFS or GPFS) and common user space. The $DUCC HOME
directory must be located on a shared filesystem.

Additional requirements for running multiple user processes with their own credentials.

• A userid ducc, and group ducc. User ducc must the the only member of group ducc.

• DUCC run with user ducc credentials.

• Root access is required to setuid-root the DUCC process launcher.

Additional requirements for CGroup containers:

• A userid ducc, and group ducc. User ducc must the the only member of group ducc.

• DUCC run with user ducc credentials.

• libcgroup1-0.37+ on SLES and libcgroup-0.37+ on RHEL, along with a custom /etc/cgconfig.conf

In order to build DUCC from source the following software is also required:

• A Subversion client, from http://subversion.apache.org/packages.html. The svn url is https://svn.

apache.org/repos/asf/uima/sandbox/uima-ducc/trunk.

2

http://subversion.apache.org/packages.html
https://svn.apache.org/repos/asf/uima/sandbox/uima-ducc/trunk
https://svn.apache.org/repos/asf/uima/sandbox/uima-ducc/trunk

• Apache Maven, from http://maven.apache.org/index.html

The DUCC webserver server optionally supports direct “jconsole” attach to DUCC job processes. To install this,
the following is required:

• Apache Ant, any reasonably current version.

To (optionally) build the documentation, the following is also required:

• Latex, including the pdflatex and htlatex packages. A good place to start if you need to install it is https:

//www.tug.org/texlive/.

More detailed one-time setup instructions for source-level builds via subversion can be found here: http://uima.

apache.org/one-time-setup.html#svn-setup

Building from Source

To build from source, ensure you have Subversion and Maven installed. Extract the source from the SVN repository
named above.

Then from your extract directory into the root directory (usually current-directory/trunk), and run the command

mvn install

or

mvn install -Pbuild-duccdocs

if you have LaTeX insalled and wish to do the optional build of documentation.

If this is your first Maven build it may take quite a while as Maven downloads all the open-source pre-requisites.
(The pre-requisites are stored in the Maven repository, usually your $HOME/.m2).

When build is complete, a tarball is placed in your current-directory/trunk/target directory.

Documentation

After installation the DUCC documentation is found (in both PDF and HTML format) in the directory
ducc runtime/docs. As well, the DUCC webserver contains a link to the full documentation on each
major page. The API is documented only via JavaDoc, distributed in the webserver’s root directory
$DUCC HOME/webserver/root/doc/api.

If building from source, Maven places the documentation in

• trunk/uima-ducc-duccdocs/target/site (main documentation), and

• trunk/target/site/apidocs (API Javadoc)

Single System Installation and Verification

Although any user ID can be used to run DUCC, it is recommended to create user “ducc” to later enable use of
cgroups as well as running processes with the credentials of the submitting user.

If multiple nodes are going to be added later, it is recommended to install the ducc runtime tree on a shared filesystem
so that it can be mounted on the additional nodes.

Verification submits a very simple UIMA pipeline for execution under DUCC. Once this is shown to be working, one
may proceed installing additional features.

3

http://maven.apache.org/index.html
https://www.tug.org/texlive/
https://www.tug.org/texlive/
http://uima.apache.org/one-time-setup.html#svn-setup
http://uima.apache.org/one-time-setup.html#svn-setup

Minimal Hardware Requirements for Single System Installation

• One Intel-based or IBM Power-based system. (More systems may be added later.)

• 8GB of memory. 16GB or more is preferable for developing and testing applications beyond the non-trivial.

• 1GB disk space to hold the DUCC runtime, system logs, and job logs. More is usually needed for larger
installations.

Please note: DUCC is intended for scaling out memory-intensive UIMA applications over computing clusters con-
sisting of multiple nodes with large (16GB-256GB or more) memory. The minimal requirements are for initial test
and evaluation purposes, but will not be sufficient to run actual workloads.

Single System Installation

1. Expand the distribution file with the appropriate umask:

(umask 022 && tar -zxf <distribution.file>)

This creates a directory with a name of the form “apache-uima-ducc-[version]”.

This directory contains the full DUCC runtime which you may use “in place” but it is highly recommended
that you move it into a standard location on a shared filesystem; for example, under ducc’s HOME directory:

mv apache-uima-ducc-[version] /home/ducc/ducc_runtime

We refer to this directory, regardless of its location, as $DUCC HOME. For simplicity, some of the examples
in this document assume it has been moved to /home/ducc/ducc runtime.

2. Change directories into the admin sub-directory of $DUCC HOME:

cd $DUCC_HOME/admin

3. Run the post-installation script:

./ducc_post_install

If this script fails, correct any problems it identifies and run it again.

Note that ducc post install initializes various default parameters which may be changed later by the system
administrator. Therefore it usually should be run only during this first installation step.

4. If you wish to install jconsole support from the webserver, make sure Apache Ant is installed, and run

./sign_jconsole_jar

This step may be run at any time if you wish to defer it.

That’s it, DUCC is installed and ready to run. (If errors were displayed during ducc post install they must be
corrected before continuing.)

The post-installation script performs these tasks:

1. Verifies that the correct level of Java and Python are installed and available.

2. Creates a default nodelist, $DUCC HOME/resources/ducc.nodes, containing the name of the node you are
installing on.

3. Defines the “ducc head” node to be to node you are installing from.

4. Sets up the default https keystore for the webserver.

5. Installs the DUCC documentation “ducc book” into the DUCC webserver root.

6. Builds and installs the C program, “ducc ling”, into the default location.

4

7. Ensures that the (supplied) ActiveMQ broker is runnable.

Initial System Verification

Here we verify the system configuration, start DUCC, run a test Job, and then shutdown DUCC.

To run the verification, issue these commands.

1. cd $DUCC HOME/admin

2. ./check ducc

Examine the output of check ducc. If any errors are shown, correct the errors and rerun check ducc until there
are no errors.

3. Finally, start ducc: ./start ducc

Start ducc will first perform a number of consistency checks. It then starts the ActiveMQ broker, the DUCC control
processes, and a single DUCC agent on the local node.

You will see some startup messages similar to the following:

ENV: Java is configured as: /share/jdk1.7/bin/java

ENV: java full version "1.7.0_40-b43"

ENV: Threading enabled: True

MEM: memory is 15 gB

ENV: system is Linux

allnodes /home/ducc/ducc_runtime/resources/ducc.nodes

Class definition file is ducc.classes

OK: Class and node definitions validated.

OK: Class configuration checked

Starting broker on ducchead.biz.org

Waiting for broker 0

Waiting for broker 1

ActiveMQ broker is found on configured host and port: ducchead.biz.org:61616

Starting 1 agents

********** Starting agents from file /home/ducc/ducc_runtime/resources/ducc.nodes

Starting warm

Waiting for Completion

ducchead.biz.org Starting rm

PID 14198

ducchead.biz.org Starting pm

PID 14223

ducchead.biz.org Starting sm

PID 14248

ducchead.biz.org Starting or

PID 14275

ducchead.biz.org Starting ws

PID 14300

ducchead.biz.org

ducc_ling OK

DUCC Agent started PID 14325

All threads returned

Now open a browser and go to the DUCC webserver’s url, http://<hostname>:42133 where <hostname> is the
name of the host where DUCC is started. Navigate to the Reservations page via the links in the upper-left corner.
You should see the DUCC JobDriver reservation in state WaitingForResources. In a few minutes this should change
to Assigned. Now jobs can be submitted.

5

To submit a job,

1. $DUCC HOME/bin/ducc submit –specification $DUCC HOME/examples/simple/1.job

Open the browser in the DUCC jobs page. You should see the job progress through a series of transitions: Waiting
For Driver, Waiting For Services, Waiting For Resources, Initializing, and finally, Running. You’ll see the number of
work items submitted (15) and the number of work items completed grow from 0 to 15. Finally, the job will move
into Completing and then Completed..

Since this example does not specify a log directory DUCC will create a log directory in your HOME directory under

$HOME/ducc/logs/job-id

In this directory, you will find a log for the sample job’s JobDriver (JD), JobProcess (JP), and a number of other
files relating to the job.

This is a good time to explore the DUCC web pages. Notice that the job id is a link to a set of pages with details
about the execution of the job.

Notice also, in the upper-right corner is a link to the full DUCC documentation, the “DuccBook”.

Finally, stop DUCC:

1. cd $DUCC HOME/admin

2. ./stop ducc -a

Add additional nodes to the DUCC cluster

Additional nodes must meet all prerequisites (listed above).

$DUCC HOME must be on a shared filesystem and mounted at the same location on all DUCC nodes.

If user’s home directories are on local filesystems the location for user logfiles should be specified to be on a shared
filesystem.

Addional nodes are normally added to a worker node group. Note that the DUCC head node does not have to be a
worker node. In addition, the webserver node can be separate from the DUCC head node (see webserver configuration
options in ducc.properties).

For worker nodes DUCC needs to know what node group each machine belongs to, and what nodes need an Agent
process to be started on.

The configuration shipped with DUCC have all nodes in the same ”default” node pool. Worker nodes are listed in
the file

$DUCC_HOME/resources/ducc.nodes.

During initial installation, this file was initialized with the node DUCC is installed on. Additional nodes may be
added to the file using a text editor to increase the size of the DUCC cluster.

Ducc ling Configuration - Running with credentials of submitting user

DUCC launches user processes through ducc ling, a small native C application. By default the resultant process
runs with the credentials of the user ID of the DUCC application. It is possible for multiple users to submit work
to DUCC in this configuration, but it requires that the user ID running DUCC has write access to all directories to
which the user process outputs data. By configuring the ducc user ID and ducc ling correctly, work submitted by all
users will run with their own credentials.

Before proceeding with this step, please note:

6

• The sequence operations consisting of chown and chmod MUST be performed in the exact order given below.
If the chmod operation is performed before the chown operation, Linux will regress the permissions granted by
chmod and ducc ling will be incorrectly installed.

ducc ling is designed to be a setuid-root program whose function is to run user processes with the identity of the
submitting user. This must be installed correctly; incorrect installation can prevent jobs from running as their
submitters, and in the worse case, can introduce security problems into the system.

ducc ling can either be installed on a local disk on every system in the DUCC cluster, or on a shared-filesystem that
does not suppress setuid-root permissions on client nodes. The path to ducc ling must be the same on each DUCC
node. The default path configuration is $DUCC HOME/admin/${os.arch}/ in order to handle clusters with mixed
OS platforms. ${os.arch} is the architecture specific value of the Java system property with that name; examples
are amd64 and ppc64.

The steps are: build ducc ling for each node architecture to be added to the cluster, copy ducc ling to the desired
location, and then configure ducc ling to give user ducc the ability to spawn a process as a different user.

In the example below ducc ling is left under $DUCC HOME, where it is built.

As user ducc, build ducc ling for necessary architectures (this is done automatically for the DUCC head machine by
the ducc post install script). For each unique OS platform:

1. cd $DUCC HOME/admin

2. ./build duccling

Then, as user root on the shared filesystem, cd $DUCC HOME/admin, and for each unique OS architecture:

1. chown ducc.ducc ${os.arch}
(set directory ownership to be user ducc, group ducc)

2. chmod 700 ${os.arch}
(only user ducc can read contents of directory)

3. chown root.ducc ${os.arch}/ducc ling
(make root owner of ducc ling, and let users in group ducc access it)

4. chmod 4750 ${os.arch}/ducc ling
(ducc ling runs as user root when started by users in group ducc)

If these steps are correctly performed, ONLY user ducc may use the ducc ling program in a privileged way. ducc ling
contains checks to prevent even user root from using it for privileged operations.

If a different location is chosen for ducc ling the new path needs to be specified for ducc.agent.launcher.ducc spawn path
in $DUCC HOME/resources/site.ducc.properties. See more info at see properties merging in the duccbook.

CGroups Installation and Configuration

Note: A key feature of DUCC is to run user processes in CGroups in order to guarantee each process always has
the amount of RAM requested. RAM allocated to the managed process (and any child processes) that exceed
requested DUCC memory size will be forced into swap space. Without CGroups a process that exceeds its
requested memory size by N% is killed (default N=5 in ducc.properties), and memory use by child processes is
ignored.

DUCC’s CGroup configuration also allocates CPU resources to managed processes based on relative memory
size. A process with 50% of a machine’s RAM will be guaranteed at least 50% of the machine’s CPU resources
as well.

The steps in this task must be done as user root and user ducc.

To install and configure CGroups for DUCC:

1. Install the appropriate libcgroup package at level 0.37 or above (see Installation Prerequisites).

7

2. Configure /etc/cgconfig.conf as follows:

Mount cgroups

mount {

memory = /cgroup;

cpu = /cgroup;

}

Define cgroup ducc and setup permissions

group ducc {

perm {

task {

uid = ducc;

}

admin {

uid = ducc;

}

}

memory {}

cpu{}

}

3. Start the cgconfig service:

service cgconfig start

4. Verify cgconfig service is running by the existence of directory:

/cgroups/ducc

5. Configure the cgconfig service to start on reboot:

chkconfig cgconfig on

Note: if CGroups is not installed on a machine the DUCC Agent will detect this and not attempt to use the feature.
CGroups can also be disabled for all machines (see ducc.agent.launcher.cgroups.enable in ducc.properties, described
in the Duccbook.) or it can be disabled for individual machines (see ducc.agent.exclusion.file in ducc.properties,
described in the Duccbook.)

Full DUCC Verification

This is identical to initial verification, with the one difference that the job “1.job” should be submitted as any
user other than ducc. Watch the webserver and check that the job executes under the correct identity. Once this
completes, DUCC is installed and verified.

Enable DUCC webserver login

This step is optional. As shipped, the webserver is disabled for logins. This can be seen by hovering over the Login
text located in the upper right of most webserver pages:

System is configured to disallow logins

To enable logins, a Java-based authenticator must be plugged-in and the login feature must be enabled in the
ducc.properties file by the DUCC administrator. Also, ducc ling should be properly deployed (see Ducc ling Instal-
lation section above).

A beta version of a Linux-based authentication plug-in is shipped with DUCC. It can be found in the source tree:

org.apache.uima.ducc.ws.authentication.LinuxAuthenticationManager

8

The Linux-based authentication plug-in will attempt to validate webserver login requests by appealing to the host
OS. The user who wishes to login provides a userid and password to the webserver via https, which in-turn are
handed-off to the OS for a success/failure reply.

To have the webserver employ the beta Linux-based authentication plug-in, the DUCC administrator should perform
the following as user ducc:

1. edit ducc.properties

2. locate: ducc.ws.login.enabled = false

3. modify: ducc.ws.login.enabled = true

4. save

Note: The beta Linux-based authentication plug-in has limited testing. In particular, it was tested using:

Red Hat Enterprise Linux Workstation release 6.4 (Santiago)

Alternatively, you can provide your own authentication plug-in. To do so:

1. author a Java class that implements

org.apache.uima.ducc.common.authentication.IAuthenticationManager

2. create a jar file comprising your authentication class

3. put the jar file in a location accessible by the DUCC webserver, such as

$DUCC_HOME/lib/authentication

4. put any authentication dependency jar files there as well

5. edit ducc.properties

6. add the following:

ducc.local.jars = authentication/*

ducc.authentication.implementer=<your.authenticator.class.Name>

7. locate: ducc.ws.login.enabled = false

8. modify: ducc.ws.login.enabled = true

9. save

9

	Overview
	Software Prerequisites
	Building from Source
	Documentation
	Single System Installation and Verification
	Minimal Hardware Requirements for Single System Installation
	Single System Installation
	Initial System Verification
	Add additional nodes to the DUCC cluster
	Ducc_ling Configuration - Running with credentials of submitting user
	CGroups Installation and Configuration
	Full DUCC Verification
	Enable DUCC webserver login

